JPS6114606B2 - - Google Patents

Info

Publication number
JPS6114606B2
JPS6114606B2 JP58079431A JP7943183A JPS6114606B2 JP S6114606 B2 JPS6114606 B2 JP S6114606B2 JP 58079431 A JP58079431 A JP 58079431A JP 7943183 A JP7943183 A JP 7943183A JP S6114606 B2 JPS6114606 B2 JP S6114606B2
Authority
JP
Japan
Prior art keywords
mol
tio
composition
temperature coefficient
bao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58079431A
Other languages
Japanese (ja)
Other versions
JPS59230206A (en
Inventor
Toyosaku Sato
Kazutoshi Ayusawa
Munetada Kazama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP58079431A priority Critical patent/JPS59230206A/en
Publication of JPS59230206A publication Critical patent/JPS59230206A/en
Publication of JPS6114606B2 publication Critical patent/JPS6114606B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明はマイクロ波用誘電体セラミツクスに関
するものであり、特にその比誘電率εrおよび無
負荷Qが大きく、かつ組成変化で0を中心にして
正又は負の任意の温度係数が得られるマイクロ波
用誘電体セラミツクス組成物を提供しようとする
ものである。 (従来技術) 一般にマイクロ波回路用の誘電体共振器では、
使用誘電体セラミツクスとしてその比誘電率εr
および無負荷Q(=1/tanδ)が大きく、共振周
波数の温度係数ηfとしては金属の温度係数を考
慮して±30ppm/℃以下にすることが必要とされ
ている。 従来かかる誘電体セラミツクス組成物としては
BaO―TiO2系、MgO―TiO2―CaO系、ZrO2
SnO2―TiO2系等のセラミツクス組成物が使用さ
れていた。しかしこれらのセラミツクス組成物を
用いて誘電体共振器を製造した場合、その温度係
数ηfが0(ppm/℃)付近では比誘電率εrが20
〜40と小さくなり、その結果これらの部品を使用
した装置自体の大形化が免がれない欠点があつ
た。 (発明の目的) ここに発明者等はかかる欠点を解決するための
試験研究を重ねた結果、上記(BaO)(TiO2x
組成物、及びSa2O3,La2O3を特定の組成範囲と
することにより上述した温度係数ηfが0(ppm/
℃)付近に於いても比誘電率εr及び無負荷Qの
大きいセラミツクス材料が得られることを見出し
この発明に到達したのである。 (発明の構成) 即ち本発明は、(BaO)(TiO2x系組成物、
Sa2O3およびLa2O3からなる誘電体セラミツクス
組成物であつて、酸化物換算で、 BaO:15〜19モル% TiO2:62〜74モル% Sm2O3:8〜18モル% La2O3:1〜3.5モル% の組成範囲としたことを特徴とするマイクロ波用
誘電体セラミツクスである。 (発明の構成及び実施例) 以下にこの発明を具体的な実施例を示しつつ詳
細に説明する。 出発原料として化学的に高純度のBaCO3
TiO2,Sa2O3およLa2O3を表1及び表2に示す組
成比率にて混合し空気中において1100℃の温度下
で2時間間仮焼した。得られた仮焼物をポツトミ
ルで純水とともに湿式粉砕し、脱水乾燥後バイン
ダを添加して造粒し32メツシユのふるいを通して
分級した。得られた造粒粉体は金型と油圧プレス
を用いて成形圧力1〜3ton/cm2で直径16mm、厚さ
9mmの円板状の成形体とした。そしてこの成形体
を高純度のアルミナ匣に入れ、1260〜1450℃、2
時間の条件で焼成し誘電体セラミツクスを得た。
得られた誘電体セラミツクスについてハツキ・コ
ールマン法により比誘電率εrと無負荷Qを測定
し、又共振周波数の温度係数ηfは下記(1)式に従
つて20℃に於ける共振周波数を基準にして−40℃
から80℃の温度範囲に於ける値から求めこれらの
結果を同表2に示した。 ηf=f(80)−f(−40)/f(20)・1/
△T(ppm/℃)……(1) 但し、f(20):20℃に於ける共振周波数 f(-40):−40℃ 〃 f(80):80℃ △T:温度差ここでは80−(-40)=120℃ これらの測定における共振周波数は3〜6GHz
であつた。
(Technical Field) The present invention relates to dielectric ceramics for microwave use, and in particular has a large relative permittivity ε r and no-load Q, and can have any positive or negative temperature coefficient centered around 0 due to composition change. The present invention aims to provide a microwave dielectric ceramic composition obtained. (Prior art) In general, dielectric resonators for microwave circuits:
As the dielectric ceramic used, its relative permittivity ε r
Also, the no-load Q (=1/tan δ) is large, and the temperature coefficient η f of the resonant frequency is required to be less than ±30 ppm/°C in consideration of the temperature coefficient of metal. Conventionally, such dielectric ceramic compositions
BaO―TiO 2 system, MgO―TiO 2 -CaO system, ZrO 2 -
Ceramic compositions such as SnO 2 -TiO 2 were used. However, when dielectric resonators are manufactured using these ceramic compositions, when the temperature coefficient η f is around 0 (ppm/°C), the relative permittivity ε r is 20.
40, and as a result, there was a drawback that the device itself using these parts had to be enlarged. (Purpose of the Invention) As a result of repeated testing and research to solve these drawbacks, the inventors identified the above-mentioned (BaO) (TiO 2 ) x -based composition, as well as Sa 2 O 3 and La 2 O 3 . By setting the composition range to , the temperature coefficient η f mentioned above becomes 0 (ppm/
They discovered that a ceramic material with a large relative dielectric constant ε r and a high no-load Q can be obtained even at temperatures close to 100° C.), resulting in the present invention. (Structure of the Invention) That is, the present invention provides a (BaO)(TiO 2 ) x -based composition,
A dielectric ceramic composition consisting of Sa 2 O 3 and La 2 O 3 , in terms of oxides: BaO: 15-19 mol% TiO 2 : 62-74 mol% Sm 2 O 3 : 8-18 mol% A microwave dielectric ceramic characterized by having a composition range of La 2 O 3 :1 to 3.5 mol %. (Structure and Examples of the Invention) The present invention will be described in detail below with reference to specific examples. Chemically pure BaCO 3 as starting material,
TiO 2 , Sa 2 O 3 and La 2 O 3 were mixed at the composition ratios shown in Tables 1 and 2 and calcined in air at a temperature of 1100° C. for 2 hours. The obtained calcined product was wet-pulverized with pure water in a pot mill, dehydrated and dried, and then granulated by adding a binder and classified through a 32-mesh sieve. The obtained granulated powder was molded into a disc-shaped body with a diameter of 16 mm and a thickness of 9 mm using a mold and a hydraulic press at a molding pressure of 1 to 3 ton/cm 2 . Then, this molded body was placed in a high-purity alumina box and heated at 1260 to 1450℃ for 2 hours.
Dielectric ceramics were obtained by firing under certain conditions.
The dielectric constant ε r and no-load Q of the obtained dielectric ceramic were measured using the Hatsuki-Coleman method, and the temperature coefficient η f of the resonance frequency was determined by the resonance frequency at 20°C according to the following equation (1). -40℃ as standard
The results are shown in Table 2. η f =f (80) -f (-40) /f (20)・1/
△T (ppm/℃)……(1) However, f (20) : Resonance frequency at 20℃ f (-40) : −40℃ 〃 f (80) : 80℃ △T: Temperature difference Here 80−(-40)=120℃ Resonance frequency in these measurements is 3~6GHz
It was hot.

【表】【table】

【表】 上表の結果によれば(BaO)(TiO2xが79モル
%未満ならびに91モル%を超えると無負荷Qが小
さく温度係数も正又は負で大きくなりすぎる。ま
たLa2O3量が3.5モル%以上では温度係数ηfが同
様に正又は負で非常に大きく、La2O3量が1モル
%以下では比誘電率εrが50以下と非常に小さく
なる。さらにSm2O3量が8モル%未満及び18モル
%を越えると無負荷Qが小さく温度係数が正又は
負で大きくなつて不適当である。 したがつて実用的にみてBaO:15〜19モル%、
TiO2:62〜74モル%、Sm2O3:8〜18モル%、
La2O3:1〜3.5モル%の範囲が適当である。 (発明の効果) 本発明は以上の説明で明らかなように、マイク
ロ波領域において無負荷Qが大きく、かつその比
誘電率εrも大きく、さらに組成変化によつて広
範囲に温度係数を変化させることができる。従つ
て温度補償用磁器コンデンサまたは誘電体共振器
等の誘電体セラミツクス組成物として好適に利用
することができその工業的価値は非常に大きい。
[Table] According to the results in the above table, when (BaO)(TiO 2 ) x is less than 79 mol% or exceeds 91 mol%, the no-load Q is small and the temperature coefficient is too large, either positive or negative. Furthermore, when the amount of La 2 O 3 is 3.5 mol % or more, the temperature coefficient η f is similarly very large, positive or negative, and when the amount of La 2 O 3 is 1 mol % or less, the relative dielectric constant ε r is very small, 50 or less. Become. Further, if the amount of Sm 2 O 3 is less than 8 mol % or exceeds 18 mol %, the unloaded Q will be small and the temperature coefficient will be large in positive or negative conditions, which is unsuitable. Therefore, from a practical point of view, BaO: 15 to 19 mol%,
TiO2 : 62-74 mol%, Sm2O3 : 8-18 mol%,
La 2 O 3 : A range of 1 to 3.5 mol % is suitable. (Effects of the Invention) As is clear from the above explanation, the present invention has a large unloaded Q in the microwave region, a large relative dielectric constant ε r , and also allows the temperature coefficient to vary over a wide range by changing the composition. be able to. Therefore, it can be suitably used as a dielectric ceramic composition for temperature-compensating ceramic capacitors, dielectric resonators, etc., and has great industrial value.

Claims (1)

【特許請求の範囲】 1 (BaO)(TiO2x系組成物、Sm2O3および
La2O3からなる誘電体セラミツクス組成物であつ
て、酸化物換算で、 BaO:15〜19モル% TiO2:62〜74モル% Sm2O3:8〜18モル% La2O3:1〜3.5モル% の組成範囲としたことを特徴とするマイクロ波用
誘電体セラミツクス。
[Claims] 1 (BaO) (TiO 2 ) x -based composition, Sm 2 O 3 and
A dielectric ceramic composition consisting of La 2 O 3 , in terms of oxides: BaO: 15-19 mol% TiO 2 : 62-74 mol% Sm 2 O 3 : 8-18 mol% La 2 O 3 : A dielectric ceramic for microwave use, characterized in that the composition range is from 1 to 3.5 mol%.
JP58079431A 1983-05-09 1983-05-09 Microwave dielectric ceramics Granted JPS59230206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58079431A JPS59230206A (en) 1983-05-09 1983-05-09 Microwave dielectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58079431A JPS59230206A (en) 1983-05-09 1983-05-09 Microwave dielectric ceramics

Publications (2)

Publication Number Publication Date
JPS59230206A JPS59230206A (en) 1984-12-24
JPS6114606B2 true JPS6114606B2 (en) 1986-04-19

Family

ID=13689685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58079431A Granted JPS59230206A (en) 1983-05-09 1983-05-09 Microwave dielectric ceramics

Country Status (1)

Country Link
JP (1) JPS59230206A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112460A (en) * 1986-10-28 1988-05-17 沖電気工業株式会社 Dielectric ceramics for microwave

Also Published As

Publication number Publication date
JPS59230206A (en) 1984-12-24

Similar Documents

Publication Publication Date Title
JPS5937526B2 (en) dielectric magnetic composition
US4550089A (en) Microwave dielectric ceramic compositions
JPS6114606B2 (en)
JPH0255884B2 (en)
JPS6410467B2 (en)
JPS5951096B2 (en) dielectric porcelain composition
JP2731940B2 (en) Dielectric ceramics for microwave
JPH0415963B2 (en)
JPS5951088B2 (en) dielectric porcelain material
JPS5951095B2 (en) dielectric porcelain composition
JPH0785363B2 (en) Microwave dielectric ceramics
JPS6112865B2 (en)
JPH0369560A (en) Microwave dielectric ceramics
JPS6033784B2 (en) dielectric porcelain composition
JPS63291866A (en) Porcelaneous composition
JPS59191204A (en) Dielectric porcelain composition
JPH0563882B2 (en)
JPH0447922B2 (en)
JPS5937527B2 (en) dielectric porcelain composition
JPS5857842B2 (en) dielectric material
JPS5935484B2 (en) dielectric porcelain composition
JPS5951090B2 (en) dielectric porcelain material
JPH0815007B2 (en) Dielectric porcelain composition
JPH0415962B2 (en)
JPS62187161A (en) Dielectric ceramic composition