JPS6114604B2 - - Google Patents

Info

Publication number
JPS6114604B2
JPS6114604B2 JP11216280A JP11216280A JPS6114604B2 JP S6114604 B2 JPS6114604 B2 JP S6114604B2 JP 11216280 A JP11216280 A JP 11216280A JP 11216280 A JP11216280 A JP 11216280A JP S6114604 B2 JPS6114604 B2 JP S6114604B2
Authority
JP
Japan
Prior art keywords
conductor
film
papa
heat treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11216280A
Other languages
Japanese (ja)
Other versions
JPS5736704A (en
Inventor
Mutsuaki Murakami
Susumu Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11216280A priority Critical patent/JPS5736704A/en
Priority to US06/247,316 priority patent/US4401590A/en
Publication of JPS5736704A publication Critical patent/JPS5736704A/en
Priority to US06/496,300 priority patent/US4497728A/en
Publication of JPS6114604B2 publication Critical patent/JPS6114604B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 本発明は有機物より成る電導体の製造方法に関
し、特に芳香族ポリアミドを真空中又は不活性ガ
ス中で熱処理することにより電導体を得ようとす
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an electrical conductor made of an organic substance, and in particular, to obtain an electrical conductor by heat-treating aromatic polyamide in vacuum or in an inert gas.

従来、絶縁体として知られて来た有機材料に電
気伝導性を付与せしめ、金属電導体では考えられ
ない様な特異な性能を有するセンサーやヒーター
を開発しようとする試みが最近活発になつて来て
いる。1964年にIBM社のS.D.Bruckはポリイミド
フイルム(デユポン社製カプトンHフイルム)を
800℃以上の高温で熱分解する事によつて、5×
10-2Ωcmの比抵抗値を有する電導体が得られる事
を発見した。ポリイミドフイルムの比抵抗値は常
温で1018Ωcmであり、熱分解法により1020に及ぶ
抵抗値の変化が生じている訳であるから、この方
法は高分子に電気伝導性を付与させるためのすぐ
れた方法である。しかしながらこの様な方法は必
ずしもすべての高分子フイルムに適用出来るわけ
ではなく、実際にほとんどの高分子材料ではこの
様な熱分解法を用いても高電導体は得られない。
また熱分解法によつて得られた電導体はもろく、
高分子フイルムの特徴であるフレキシビリテイが
失なわれてしまう事,電導度の最高値が20cm-1
であつて電導体としては不十分な値であつた事な
どからその後の研究は進歩せず今日に至つてい
る。
Recently, there has been an increase in attempts to impart electrical conductivity to organic materials, which have traditionally been known as insulators, and to develop sensors and heaters with unique performance unimaginable with metal conductors. ing. In 1964, IBM's SDBruck introduced polyimide film (Kapton H film manufactured by Dupont).
By thermal decomposition at a high temperature of 800℃ or higher, 5×
It was discovered that a conductor with a specific resistance value of 10 -2 Ωcm can be obtained. The specific resistance value of polyimide film is 10 18 Ωcm at room temperature, and the resistance value changes as much as 10 20 Ωcm by thermal decomposition, so this method is a method for imparting electrical conductivity to polymers. This is an excellent method. However, such a method is not necessarily applicable to all polymer films, and in fact, high conductors cannot be obtained with most polymer materials even if such a thermal decomposition method is used.
Furthermore, conductors obtained by pyrolysis are brittle;
The flexibility, which is a characteristic of polymer films, will be lost, and the maximum value of electrical conductivity will be 20 cm -1.
However, since the value was insufficient for an electrical conductor, subsequent research has not progressed to this day.

熱分解法によつて高電導体となり得る高分子材
料の具備しなければならない基本的な条件は、熱
分解がある段階で停止する事,分解の進行に伴つ
て再結合反応が進行する事,再結合生成物中に十
分な量の不飽和な原子価状態が存在する事,であ
ると考えられる。しかしながらどの様な分子構造
を有する高分子材料においてその様な条件が満足
されるのかと言う点については現在の所全く明ら
かになつていない。一つの目安となる条件として
は高分子材料の融点が分解点よりも高い事が上げ
られる。それは融点が分解点よりも低い様な材料
では、分解反応が生ずる前に試料の融解,蒸発が
生じるからである。したがつてこの様な条件から
通常良く知られているポリエステル,ポリスチレ
ン,塩化ビニル,ポリエチレン,ポリプロピレン
などの汎用高分子材料はのぞかれる訳である。熱
分解法が適用される可能性のある高分子材料とし
ては、したがつて、一般に耐熱性高分子として知
られる、ポリイミド,ポリベンツイミダゾール,
ポリジフエニルエーテル,ポリパラフエニレン等
の材料が考えられる。しかしながら融点が分解点
より高いと言う条件は必要条件ではあるが十分条
件ではなく、例えば、ポリパラフエニレンでは分
解反応がある段階で停止すると言う事がないため
に熱処理によつて分解してしまい電導体を得る事
は出来ない。
The basic conditions that must be met for a polymer material that can be made into a high conductor by pyrolysis are that the pyrolysis should stop at a certain stage, that the recombination reaction should proceed as the decomposition progresses, This is thought to be due to the presence of a sufficient amount of unsaturated valence states in the recombination product. However, at present, it is not clear at all what kind of molecular structure polymer materials have that satisfy such conditions. One criterion is that the melting point of the polymer material be higher than its decomposition point. This is because if the material has a melting point lower than the decomposition point, the sample will melt and evaporate before the decomposition reaction occurs. Therefore, due to these conditions, commonly known general-purpose polymer materials such as polyester, polystyrene, vinyl chloride, polyethylene, and polypropylene are excluded. Polymer materials to which the thermal decomposition method may be applied include polyimide, polybenzimidazole, and polybenzimidazole, which are generally known as heat-resistant polymers.
Possible materials include polydiphenyl ether and polyparaphenylene. However, although the condition that the melting point is higher than the decomposition point is a necessary condition, it is not a sufficient condition; for example, with polyparaphenylene, the decomposition reaction does not stop at a certain stage, so it decomposes during heat treatment. It is not possible to obtain a conductor.

ポリアミド系重合物は一般に脂肪族二塩基酸と
ジアミンの反応によつて得られ、ナイロン6,ナ
イロン66,ナイロン610,などの有名な高分子は
これらの仲間に属している。これらのポリアミド
系樹脂は上記熱分解反応を行なうと試料の融解,
蒸発が生じ電導体は生成しない。しかし我々はポ
リアミド樹脂のうちでも主鎖に芳香族環を含んだ
芳香族ポリアミド樹脂においては熱分解法によつ
てすぐれた電導体となり得る事を見出した。
Polyamide polymers are generally obtained by the reaction of aliphatic dibasic acids and diamines, and famous polymers such as nylon 6, nylon 66, and nylon 610 belong to this family. When these polyamide resins undergo the above thermal decomposition reaction, the sample melts and
Evaporation occurs and no conductor is produced. However, we have found that among polyamide resins, aromatic polyamide resins containing aromatic rings in the main chain can be made into excellent electrical conductors by thermal decomposition.

これらの電導体は従来のポリイミド熱分解法に
比べはるかに低温度の熱処理で良いと言う長所を
有している。以下に具体的に本発明の説明を行な
う。第1図にはm―フエニレンジアミンと塩化イ
ソフタロイルから得られる次の様な構造を有する
芳香族ポリアミド(APAと略す)を真空中、4
時間 熱処理をする事によつて得られる電導体の比抵抗
値と処理温度の関係を示す。処理温度の上昇に伴
ない比抵抗値は減少し、600℃において5×10-2
Ωcmに達する。比抵抗値は650℃において10-2Ω
cmに達し、それ以上の温度で熱処理を行なつても
ほぼ一定値である。すなわち熱処理APA(PAPA
と略す)電導体の最少比抵抗値は10-2Ωcmである
事が分る。この値はポリイミドフイルムを熱分解
して得られる電導体の抵抗値よりも小さく、しか
もその熱処理温度は低い温度で十分である事が分
る。以上は真空中の場合であるが、不活性ガス中
においても熱処理時間を長くすれば同様の結果と
なる。
These conductors have the advantage of requiring much lower temperature heat treatment than conventional polyimide thermal decomposition methods. The present invention will be specifically explained below. Figure 1 shows that an aromatic polyamide (abbreviated as APA) having the following structure obtained from m-phenylene diamine and isophthaloyl chloride is heated in vacuum to 4
time The relationship between the specific resistance value of a conductor obtained by heat treatment and the treatment temperature is shown. The specific resistance value decreases as the processing temperature increases, reaching 5×10 -2 at 600℃.
reaching Ωcm. Specific resistance value is 10 -2 Ω at 650℃
cm, and remains almost constant even when heat treatment is performed at temperatures higher than that. i.e. heat treated APA (PAPA
It can be seen that the minimum specific resistance value of a conductor is 10 -2 Ωcm. This value is smaller than the resistance value of a conductor obtained by thermally decomposing a polyimide film, and it can be seen that a low heat treatment temperature is sufficient. Although the above is the case in vacuum, the same result can be obtained even in inert gas if the heat treatment time is increased.

S.D.Bruckによれば熱分解ポリイミドの場合に
は真空中620℃で1時間熱処理を行なつたフイル
ムの元素分析値はC:76.4%,H:3.4%,O:
14.0%,N:5.9%であり、同様に700℃で1時記
熱処理を行なつたフイルムの元素分析値は、C:
88.0%,H:2.8%,O:7.2%,N:4.8%であ
り、800℃の熱処理ではフイルム中に酸素成分は
ほとんど存在していないと報告されている。(J.
Polymer Science,C,No.17,169(1967))。こ
れに対して550℃において4時間熱処理を行なつ
たPMPAの元素分析値はC;77.5%,H;3.8
%,O;10.1%,N;8.8%,であり、650℃にお
いては、C;86.5%,H;3.0%,O;4.2%,
N6.2%であつた。すなわち抵抗値が最も低い値
に達した状態での組成を比較すればポリイミドの
場合に比べ、PAPAでははるかに多くの酸素と窒
素を含んでおり、両者の構造が異なつている事を
示している。
According to SDBruck, in the case of pyrolytic polyimide, the elemental analysis values of a film heat-treated in vacuum at 620°C for 1 hour are C: 76.4%, H: 3.4%, O:
14.0%, N: 5.9%, and the elemental analysis value of the film that was similarly heat-treated at 700°C for one hour was C:
88.0%, H: 2.8%, O: 7.2%, N: 4.8%, and it is reported that almost no oxygen component exists in the film after heat treatment at 800°C. (J.
Polymer Science, C, No. 17, 169 (1967)). On the other hand, the elemental analysis values of PMPA heat-treated at 550℃ for 4 hours are C: 77.5%, H: 3.8
%, O: 10.1%, N: 8.8%, and at 650°C, C: 86.5%, H: 3.0%, O: 4.2%,
It was N6.2%. In other words, if we compare the compositions when the resistance reaches its lowest value, PAPA contains far more oxygen and nitrogen than polyimide, indicating that the structures of the two are different. .

第2図には4時間の処理で得られたPAPAの処
理温度と得られた低抗体のB定数との関係を示
す。400℃において得られた抵抗体のB定数は
3000であり500℃において得られた抵抗体のB定
数は1700である。
FIG. 2 shows the relationship between the treatment temperature of PAPA obtained after 4 hours of treatment and the B constant of the obtained low antibody. The B constant of the resistor obtained at 400℃ is
3000, and the B constant of the resistor obtained at 500°C is 1700.

650℃以上の温度で処理した場合にはB定数は
零となる。この様にPAPAでは熱処理温度の制御
によつて広範囲にそのB定数と抵抗値を変化させ
る事が出来る。したがつてPAPAには単なる電導
体としての用途以外に温度センサーや特異な抵抗
体としての応用が考えられる。
When processed at a temperature of 650°C or higher, the B constant becomes zero. In this way, in PAPA, its B constant and resistance value can be varied over a wide range by controlling the heat treatment temperature. Therefore, PAPA can be used not only as a simple conductor but also as a temperature sensor or a unique resistor.

一般に電子回路を使用して温度センサーを作動
させる場合のセンサーの最適インピーダンスは
103〜107Ωである。したがつて素子の形状に工夫
を加えるとしても抵抗体の比抵抗値としては1010
Ωcm以下である事がのぞましい。その様な制限か
らPAPAの熱処理温度としては400℃以上である
必要がある。もちろん、400℃以上でも1010Ωcm
以下の比抵抗値とする事は出来るがこの場合には
熱処理に長時間を必要とするので実用的でない。
以下、実施例について詳細に説明する。
In general, when using an electronic circuit to operate a temperature sensor, the optimum impedance of the sensor is
It is 10 3 to 10 7 Ω. Therefore, even if the shape of the element is modified, the specific resistance value of the resistor is 10 10
It is desirable that it be less than Ωcm. Due to such restrictions, the heat treatment temperature for PAPA must be 400°C or higher. Of course, 10 10 Ωcm even above 400℃
Although it is possible to set the specific resistance value to the following, it is not practical in this case because the heat treatment requires a long time.
Examples will be described in detail below.

〔実施例 1〕 本実施例はPAPAフイルム上に直接電極を印刷
し、そのまま抵抗体又は電導体として使用するも
のである。第3図には比抵抗値が105Ωcm以下で
ある場合に行なわれる平行電極タイプの抵抗体の
構成図を示す。図において1はセラミツクやベー
クライトなどの絶縁性の基板であつて、その面上
に抵抗体皮膜2が接着されている。この様な絶縁
性の基板1が使用されるのはセンサー皮膜の機械
的な強度を補うためである。電極3はカーボンペ
ースト,グラフアイトペースト,銀ペースト,銀
―パラジウムペースト等の電導体ペーストから選
択され、センサー皮膜2上に印刷されている。
[Example 1] In this example, electrodes are printed directly on a PAPA film and used as a resistor or conductor as is. FIG. 3 shows a configuration diagram of a parallel electrode type resistor used when the resistivity value is 10 5 Ωcm or less. In the figure, reference numeral 1 denotes an insulating substrate made of ceramic, Bakelite, or the like, and a resistor film 2 is adhered onto the surface thereof. The reason why such an insulating substrate 1 is used is to supplement the mechanical strength of the sensor film. The electrode 3 is selected from conductor pastes such as carbon paste, graphite paste, silver paste, silver-palladium paste, etc., and is printed on the sensor film 2.

第4図は25μ厚のAPAフイルムを真空中650℃
において4時間熱処理して得られた電導体を平行
電極タイプの素子とした場合の抵抗―温度特性を
示す。電極は銀パラジウムであり、熱処理と同時
に硬化させてある。素子の抵抗値は60Ωであつ
た。抵抗温度特性は100〜300℃の広い範囲で温度
依存性が零となり、本素子がすぐれた電導特性を
有している事が分る。したがつてこの様な素子は
電極間に定電流、又は定電圧を印加する事によつ
てヒーターとして使用する事が出来る。
Figure 4 shows a 25μ thick APA film in vacuum at 650℃.
The resistance-temperature characteristics are shown when the conductor obtained by heat treatment for 4 hours is used as a parallel electrode type element. The electrodes are silver palladium and are hardened at the same time as the heat treatment. The resistance value of the element was 60Ω. The temperature dependence of the resistance temperature characteristics becomes zero over a wide range of 100 to 300°C, indicating that this element has excellent conductive characteristics. Therefore, such an element can be used as a heater by applying a constant current or voltage between the electrodes.

〔実施例 2〕 第5図a,bは一般に比抵抗値が104Ωcm以上
の場合に行なわれるサンドイツチタイプの抵抗体
又は電導体の構成を示すもので、2は電導体皮
膜、3は電導体皮膜2上に塗布又は印刷された電
極、4はリード線取出しのための金属箔を示す。
さらに素子全体はエポキシ等の外装剤5で外装さ
れている。
[Example 2] Figures 5a and 5b show the construction of a Sanderch type resistor or conductor, which is generally used when the resistivity value is 10 4 Ωcm or more. Reference numeral 4 indicates an electrode coated or printed on the conductive film 2, and 4 indicates a metal foil for taking out a lead wire.
Furthermore, the entire device is coated with a coating material 5 such as epoxy.

この様な素子を例えば温度センサーとして使用
するには、外部の温度変化に対する素子の抵抗変
化を読み取れば良い訳である。この抵抗値測定に
はホイートストンブリツジ等周知の側定法を使用
すれば良い。この様な場合には素子の内部インピ
ーダンスは103〜107Ωの範囲である事がのぞまし
い事はすでにのべた。必要に応じて基本的に第3
図または第4図に示した様な構造の素子を選択す
れば良い。この様な素子は本質的に薄膜となり得
るので、従来のサーミスタに比べ応答速度が速い
と言う特徴を有している。したがつて、この様な
素子は、温度計としての用途以外にボロメータ
ー、風速計、液面センサーなどに利用出来る。
To use such an element as a temperature sensor, for example, it is sufficient to read the resistance change of the element in response to external temperature change. A well-known method such as a Wheatstone bridge may be used to measure this resistance value. It has already been mentioned that in such a case, the internal impedance of the element is preferably in the range of 10 3 to 10 7 Ω. Basically a third option if necessary.
An element having a structure as shown in the figure or FIG. 4 may be selected. Since such an element can be essentially a thin film, it has a characteristic of faster response speed than conventional thermistors. Therefore, such an element can be used not only as a thermometer but also as a bolometer, anemometer, liquid level sensor, etc.

〔実施例 3〕 ここではPAPA粉体を高分子バインダーに分散
して得られる組成物の例を示す。線状のAPAを
700℃で4時間熱処理を行ない、熱分解後アトラ
イターで2時間粉砕し、400メツシユのフルイを
もちいて粉体を分ける。分けられた粉体を使用
し、バインダーとしてポリイミド樹脂を使用し、
PAPAとバインダーの比を80:20とした。印刷ペ
ーストは3本ロールにより十分混練し、200メツ
シユスクリーンを用いてセラミツク上に印刷し
た。
[Example 3] Here, an example of a composition obtained by dispersing PAPA powder in a polymer binder is shown. Linear APA
Heat treatment is performed at 700℃ for 4 hours, and after thermal decomposition, it is crushed for 2 hours using an attritor, and the powder is separated using a 400 mesh sieve. Using separated powder and polyimide resin as a binder,
The ratio of PAPA to binder was 80:20. The printing paste was thoroughly kneaded using three rolls and printed on ceramic using a 200 mesh screen.

この様にして作られた印刷皮膜の面積抵抗値は
30Ω/□であり、85℃,5000時間の抵抗変化は10
%以内であつた。この様なすぐれた熱安定性は、
同様の方法によつて得られたカーボン印刷皮膜よ
りもすぐれたものであつた。
The sheet resistance value of the printed film made in this way is
It is 30Ω/□, and the resistance change after 5000 hours at 85℃ is 10
It was within %. This excellent thermal stability is due to
It was superior to a carbon printed film obtained by a similar method.

すなわちPAPA粉体を使用した印刷皮膜はペー
ストとのなじみにすぐれ、凝集による抵抗値の不
安定化を生じない事が分る。それはPAPA中に含
まれる窒素,酸素,水素等のためであろうと考え
られる。
In other words, it can be seen that the printed film using PAPA powder has excellent compatibility with the paste and does not cause instability of the resistance value due to agglomeration. This is thought to be due to the nitrogen, oxygen, hydrogen, etc. contained in PAPA.

バインダーとしてはエポキシ,ポリウレタン,
フエノキシ,ポリアミドイミド,ポリエステル,
シリコーンなどを使用することが出来る。
As a binder, epoxy, polyurethane,
Phenoxy, polyamideimide, polyester,
Silicone etc. can be used.

〔実施例 4〕 ここでは、実施例3で得られた高分子バインダ
ーに分散された複合体にさらに金属の粉体を加え
ることが可能であることを示す。添加する金属と
しては銀,金,ニツケル,銅,亜鉛,クロム,
錫,インジウム,コバルトあるいは鉄のいずれも
可能であるが、ここでは特に多く使用されている
銀について述べる。
[Example 4] Here, it is shown that it is possible to further add metal powder to the composite dispersed in the polymer binder obtained in Example 3. Metals to be added include silver, gold, nickel, copper, zinc, chromium,
Any of tin, indium, cobalt, or iron can be used, but here we will discuss silver, which is particularly commonly used.

実施例2の方法で熱処理,粉砕およびふるい分
けされた400メツシユのPAPA粉体を銀粉末とと
もに重量比で40対60の比率で混合した。次にポリ
アミドイミド樹脂を30%含むワニス(日立化成製
HI―400)と上記混合粉末を10:12の比率で混合
し、更に三本ロールにて溶剤としてメチルピロリ
ドンを滴下しつつ混練しペーストを得た。このよ
うにして得たペーストを200メツシユのスクリー
ンを用いて、アルミナ基板上に印刷し、200℃で
約2時間硬化処理を施した後に電気抵抗を測定し
たところ、0.3Ω/□であつた。一方、PAPAと
銀粉の混合比を50:50とする抵抗値は約0.6Ω/
□となつた。
400 meshes of PAPA powder heat treated, crushed and sieved by the method of Example 2 were mixed with silver powder in a weight ratio of 40:60. Next, a varnish containing 30% polyamide-imide resin (manufactured by Hitachi Chemical)
HI-400) and the above mixed powder were mixed at a ratio of 10:12, and further kneaded using three rolls while dropping methylpyrrolidone as a solvent to obtain a paste. The paste thus obtained was printed on an alumina substrate using a 200 mesh screen, and after curing at 200°C for about 2 hours, the electrical resistance was measured and found to be 0.3Ω/□. On the other hand, when the mixing ratio of PAPA and silver powder is 50:50, the resistance value is approximately 0.6Ω/
It became □.

本実施例により作られた印刷ペーストの色はほ
とんど銀のそれと変りなく、カーボンブラツクを
混合した場合のようなペーストの粘性の変化,粒
子の凝集など全く見られなかつた。
The color of the printing paste made according to this example was almost the same as that of silver, and there was no change in the viscosity of the paste or agglomeration of particles, which was observed when carbon black was mixed.

以上、4つの実施例で明らかな様にPAPAは温
度センサーとして、あるいは電導体,ヒーターと
して広く応用される。本発明に使用される芳香族
ポリアミドとしては単にn―フエニレンジアミン
と塩化イソフタロイルより得られる芳香族ポリア
ミドにとどまらず、酸塩化物とジアミンより得ら
れるその他の芳香族ポリアミドにも適用出来る事
は言うまでもない。
As is clear from the above four examples, PAPA is widely applied as a temperature sensor, an electric conductor, and a heater. It goes without saying that the aromatic polyamide used in the present invention is not limited to aromatic polyamides obtained simply from n-phenylenediamine and isophthaloyl chloride, but can also be applied to other aromatic polyamides obtained from acid chlorides and diamines. stomach.

例えば、酸塩化物として、塩化フタロイル,塩
化イソフタロイル,塩化テレフタロイル,塩化テ
レフタロイル等,ジアミンとしてフエニレンジア
ミン,ベンジジン,ジアミノスチルベン,ジアミ
ノジフエニルメタン,ジアミノメフタレン,ジア
ミノアゾベンゼン等より得られる一般式が下記構
造の芳香族ポリアミドも又使用可能である。
For example, acid chlorides include phthaloyl chloride, isophthaloyl chloride, terephthaloyl chloride, terephthaloyl chloride, etc., and diamines include phenylenediamine, benzidine, diaminostilbene, diaminodiphenylmethane, diaminomephthalene, diaminoazobenzene, etc. Aromatic polyamides of the structure below can also be used.

以上のように本発明は主鎖に芳香族環を含むポ
リアミドを真空中又は不活性ガス中で400℃〜700
℃で熱処理を行なう事を特徴とする電導体の製造
方法であり、従来知られていたポリイミド熱分解
物よりもはるかに低温処理ですぐれた電導性を有
する電導体を提供するものである。
As described above, the present invention allows polyamide containing an aromatic ring in the main chain to be heated at 400°C to 700°C in vacuum or inert gas.
This is a method for producing an electrical conductor characterized by heat treatment at °C, and provides an electrical conductor with far superior electrical conductivity at a lower temperature than conventionally known polyimide thermal decomposition products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用される芳香族ポリアミド
樹脂を真空中で4時間熱処理したときの比抵抗と
熱処理温度の関係を示す図、第2図は同上のB定
数と熱処理温度の関係を示す図、第3図は本発明
により得られる電導体を用いて構成した抵抗体の
平面図、第4図は第3図の実施例による電導体素
子の抵抗―温度特性図、第5図a,bは本発明の
方法で得られた電導体を用いた抵抗体の他の構成
例を示す平面図及び断面側面図である。 1……絶縁性基板、2……PAPA皮膜、3……
電極、4……電極とり出し用金属箔。
Figure 1 shows the relationship between resistivity and heat treatment temperature when the aromatic polyamide resin used in the present invention is heat treated in vacuum for 4 hours, and Figure 2 shows the relationship between the B constant and heat treatment temperature. 3 is a plan view of a resistor constructed using the conductor obtained according to the present invention, FIG. 4 is a resistance-temperature characteristic diagram of the conductor element according to the embodiment of FIG. 3, and FIG. b is a plan view and a cross-sectional side view showing another example of the structure of a resistor using a conductor obtained by the method of the present invention. 1... Insulating substrate, 2... PAPA film, 3...
Electrode, 4...Metal foil for taking out the electrode.

Claims (1)

【特許請求の範囲】 1 一般式 であらわされる芳香族ポリアミド樹脂を真空中又
は不活性気体中で熱処理することを特徴とする電
導体の製造方法。 2 一般式 であらわされる芳香族ポリアミド樹脂を真空中又
は不活性気体中で熱処理し、得られた電導体の粉
末と高分子バインダーを混合することを特徴とす
る電導体の製造方法。 3 銀,金,ニツケル,銅,亜鉛,クロム,錫,
インジウム,コバルトおよび鉄から成る群から選
ばれる金属の粉末をさらに混合することを特徴と
する特許請求の範囲第2項記載の電導体の製造方
法。
[Claims] 1. General formula 1. A method for producing an electrical conductor, which comprises heat-treating an aromatic polyamide resin represented by: in vacuum or in an inert gas. 2 General formula 1. A method for producing an electrical conductor, which comprises heat-treating an aromatic polyamide resin represented by the formula in vacuum or in an inert gas, and mixing the obtained electrical conductor powder with a polymer binder. 3 Silver, gold, nickel, copper, zinc, chromium, tin,
3. The method of manufacturing an electrical conductor according to claim 2, further comprising mixing powder of a metal selected from the group consisting of indium, cobalt, and iron.
JP11216280A 1980-03-26 1980-08-13 DENDOTAINOSEIZOHOHO Granted JPS5736704A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11216280A JPS5736704A (en) 1980-08-13 1980-08-13 DENDOTAINOSEIZOHOHO
US06/247,316 US4401590A (en) 1980-03-26 1981-03-25 Conductive pyrolytic product and composition using same
US06/496,300 US4497728A (en) 1980-03-26 1983-05-19 Conductive pyrolytic product and composition using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11216280A JPS5736704A (en) 1980-08-13 1980-08-13 DENDOTAINOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS5736704A JPS5736704A (en) 1982-02-27
JPS6114604B2 true JPS6114604B2 (en) 1986-04-19

Family

ID=14579787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11216280A Granted JPS5736704A (en) 1980-03-26 1980-08-13 DENDOTAINOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPS5736704A (en)

Also Published As

Publication number Publication date
JPS5736704A (en) 1982-02-27

Similar Documents

Publication Publication Date Title
US3411122A (en) Electrical resistance element and method of fabricating
US5980785A (en) Metal-containing compositions and uses thereof, including preparation of resistor and thermistor elements
US4722853A (en) Method of printing a polymer thick film ink
JP2940970B2 (en) Polymer thick film ink
US4401590A (en) Conductive pyrolytic product and composition using same
CN105024007B (en) A kind of method prepared by thermoelectricity thick film
EP0740841A1 (en) Heat-sensitive resistive compound and method for producing it and using it
US4497728A (en) Conductive pyrolytic product and composition using same
JPH0696843A (en) Temperature self-control conductive composition, temperature self-control surface heating element and temperature self-control pipe heater
US10153075B2 (en) Polyimide-based polymer thick film resistor composition
US3479216A (en) Cermet resistance element
JPS6114604B2 (en)
JPS6114602B2 (en)
JPS5853966A (en) Electrically-conductive coating compound using ni powder
JPS6055965B2 (en) Manufacturing method of temperature sensor
JPS6114603B2 (en)
JPH0122289B2 (en)
JPS6411666B2 (en)
JP2005158996A (en) Binder resin and slide resistor
JPS6341163B2 (en)
JPS599805A (en) Method of producing conductive composition
JPS599803A (en) Method of producing conductive composition
JPS60115103A (en) Conductive composition
JPS58103567A (en) Electrically conductive paint
JPS599804A (en) Method of producing conductive composition