JPS61145422A - Temperature measurement and determination of emissivity by emission spectrum analysis - Google Patents

Temperature measurement and determination of emissivity by emission spectrum analysis

Info

Publication number
JPS61145422A
JPS61145422A JP59267529A JP26752984A JPS61145422A JP S61145422 A JPS61145422 A JP S61145422A JP 59267529 A JP59267529 A JP 59267529A JP 26752984 A JP26752984 A JP 26752984A JP S61145422 A JPS61145422 A JP S61145422A
Authority
JP
Japan
Prior art keywords
temperature
emissivity
lambda
equation
minimum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59267529A
Other languages
Japanese (ja)
Inventor
Masanori Tokuda
徳田 昌則
Saburo Kobayashi
三郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU RIKO KK
Original Assignee
SHINKU RIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU RIKO KK filed Critical SHINKU RIKO KK
Priority to JP59267529A priority Critical patent/JPS61145422A/en
Publication of JPS61145422A publication Critical patent/JPS61145422A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • G01J5/602Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature using selective, monochromatic or bandpass filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/53Reference sources, e.g. standard lamps; Black bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • G01J5/802Calibration by correcting for emissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0074Radiation pyrometry, e.g. infrared or optical thermometry having separate detection of emissivity

Abstract

PURPOSE:To improve temperature measurement accuracy free from limitations by measurement environments, by measuring electric magnitudes corresponding to emission energy of the specified wave length at certain temperatures of heat radiating body of known temperature and specimen and determining emissivities from the particular equations. CONSTITUTION:Electric magnitudes Eb(lambda), Es(lambda) corresponding to emission energies of the particular wave lengths ib(lambda), is(lambda) at temperature Tb, Ts of black body, heat radiating body of known temperature and specimen are measured with an optical apparatus. And, temperature Ts of the specimen and the emissivity epsilons(lambda) at temperature Ts are assumed in equation I, temperature T and emissivity epsilon(lambda) in equation II, and from equation I the emissivity epsilons(lambda) at temperature Ts is assumed in equation III as the n-th order of the wave length lambda. Then, by scanning temperature T, square of the difference of the emissivity epsilon(lambda) derived from equation II ad that epsilons(lambda) at temperature Ts derived from equation III is determined as the residuals and number of orders (n) of equation III is selected in such a way that, the residuals represent the minimum value, true temperature Ts is determined from the angle corresponding the the minimum value of the residuals.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、被測定物体の表面温度を放射率に関する情報
なしにその放射エネルギを3以上の複数の波長毎に測定
することにより非接触にて決定することを特徴とする放
射スペクトル解析による温度測定法及び放射率の決定法
に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention measures the surface temperature of an object to be measured in a non-contact manner by measuring its radiant energy at each of three or more wavelengths without information regarding emissivity. The present invention relates to a temperature measurement method and a method for determining emissivity by radiation spectrum analysis, which are characterized in that the temperature is determined by radiation spectrum analysis.

(従来の技?!!r) ある温度T8に加熱され所定の垂直放射率ggs(λ)
(以下単に放射率1.(λ)という。ンの被測定物体の
面から放射される垂直放射強度1.(λ)は、ウィーン
の式によれば光学的装置により測定される放射エネルギ
に対応する電気的量If!、(λ)と次式のように関係
づけられる。
(Conventional technique?!!r) Heated to a certain temperature T8 and given a predetermined vertical emissivity ggs(λ)
(hereinafter simply referred to as emissivity 1.(λ)). The vertical radiation intensity 1.(λ) emitted from the surface of the object to be measured corresponds to the radiant energy measured by an optical device according to Wien's equation. It is related to the electrical quantity If!, (λ) as shown in the following equation.

1μ)=C(ll#)、λ)lcIil(λ)= 1 
、(λ)’201/(λ’ exp(O2/λTs) 
   ・・・囚 但し、’It’!は普遍定数 O(ω、λ)は視野立体角ω及び放射エネルギの波長λ
に関係する光学的装置定数。
1μ) = C(ll#), λ)lcIil(λ) = 1
, (λ)'201/(λ' exp(O2/λTs)
...However, 'It'! is the universal constant O(ω, λ) is the viewing solid angle ω and the wavelength of radiant energy λ
Optical equipment constants related to

この0(ω、λ月ま黒体もしくは任意の温度既知の熱放
射体を加熱し、その温度Tbを測定すると共に光学的装
置により被測定物体の測定のときと同じ波長λ及び視野
立体角ωにおける放射エネ・ルギに対応する電気的量1
.(λ)を測定することにより次式から求められる。
This 0(ω, λ) heats a black body or any thermal radiator of known temperature, measures its temperature Tb, and uses an optical device to use the same wavelength λ and viewing solid angle ω as when measuring the object to be measured. The electrical quantity 1 corresponding to the radiated energy in
.. (λ) can be obtained from the following equation.

1、(λ)=C(ω、λ]・Eb(λ)=20S / 
(λ’ −exp (am/λTb))0(ω、λ)=
201/(λ’ @xp (ow/λ−υ −[J3]
(2)式を固成に代入して整理すると g 、(J)= 8XI(−0、/λTb) −1!!
、(λ)/I、(λ)・@Xp (02/λT) =D (λ)・exp (θ8/わ       ・・
・(9)但し、Ds(λ)=exp (−at /λT
b)ψm、(乃/Eb(λ) は分光測定により得られる放射エネル ギに対応する無次元量。
1, (λ)=C(ω,λ]・Eb(λ)=20S/
(λ' −exp (am/λTb))0(ω,λ)=
201/(λ' @xp (ow/λ−υ −[J3]
Substituting equation (2) into solidification and rearranging it, g, (J) = 8XI (-0, /λTb) -1! !
, (λ)/I, (λ)・@Xp (02/λT) =D (λ)・exp (θ8/wa ・・
・(9) However, Ds(λ)=exp (-at /λT
b) ψm, (no/Eb(λ)) is a dimensionless quantity corresponding to the radiant energy obtained by spectroscopic measurement.

が得られる。is obtained.

この0式を見れば明らかなように、Dsは光学的装置に
よって測定されるが、放射率ε8(λ)と温度相当項θ
8が未知数として入っており、放射率が判らないとその
ときの被測定物体の真の温度T。
As is clear from this equation 0, Ds is measured by an optical device, but the emissivity ε8(λ) and the temperature equivalent term θ
8 is included as an unknown quantity, and if the emissivity is not known, the true temperature T of the object to be measured at that time.

が測定できない。cannot be measured.

そこで、従来、温度?、の被測定物体からの放射エネル
ギのうち、放射率g、(λ)が余り変化しない2つの波
長における放射強度1.(乃をそれぞれ■式に代入して
比をとることにより温度′r8を求める2色温度計によ
る温度測定法が知られている。
So, conventionally, temperature? Of the radiant energy from the measured object of , the radiant intensities at two wavelengths where the emissivity g and (λ) do not change much. (A temperature measurement method using a two-color thermometer is known in which the temperature 'r8 is determined by substituting each of the values into the equation (2) and taking the ratio.

他方、多重反射による測定面の黒体化を行なう方法も知
られている。
On the other hand, a method is also known in which the measurement surface is made into a black body by multiple reflections.

(発明が解決しようとする問題点) 2色温度計は、実際には放射率が放射エネルギの波長に
よって一定ではないので、測温精度の点で好ましくない
。また、多重反対による方法は高精度の測温を可能とす
るが、測定環境に関する制約を受ける不都合がある。
(Problems to be Solved by the Invention) A two-color thermometer is not preferable in terms of temperature measurement accuracy because the emissivity is not actually constant depending on the wavelength of the radiant energy. Further, although the method using multiplexing enables highly accurate temperature measurement, it has the disadvantage of being subject to restrictions regarding the measurement environment.

本発明は、従来のかかる不都合を解消した温度測定法及
び放射率の決定法を提供することをその目的としたもの
である。
An object of the present invention is to provide a temperature measurement method and an emissivity determination method that eliminate these conventional disadvantages.

(問題点を解決するための手段) 本発明は、(1)光学的装置を用いて黒体もしくけ任意
の温度既知の熱放射体のある温度Tbにおける所定波長
λの放射エネルギib(λ)に対応する電気的量]l1
b(λ)と被測定物体のある温度Tsにおける前記所定
波長λの放射エネルギー。(λ)に対応する電気的量m
、(λ)を測定すること。
(Means for Solving the Problems) The present invention provides (1) using an optical device to create a black body and generate radiant energy ib(λ) of a predetermined wavelength λ at a certain temperature Tb of a thermal radiator of known temperature. electrical quantity corresponding to]l1
b(λ) and the radiant energy of the predetermined wavelength λ at a certain temperature Ts of the object to be measured. Electrical quantity m corresponding to (λ)
, (λ).

(2)  Kb(λ)及びK11(λ)を用いて被測定
物体の前記温度T8とその温度T8における放射率g、
(λ)との関係式 %式% : を導出すること。
(2) Using Kb(λ) and K11(λ), calculate the temperature T8 of the object to be measured and the emissivity g at that temperature T8,
To derive the relational expression % expression %: with (λ).

(3)@式から求めた D C,2)=zaCλ)・e
xp(−θ8/λ)と、温度!及びその温度Tにおける
放射率g(λ)の関係式 %式%) ε(λ)=ε8(λ)・exp((θ−θg)/λ) 
  ・・・回を導出するこ゛と。但し θ=a、/T(
4)前記0式から前記温度Tsにおける放射率と仮定す
ること。但しbk: m 、(λ)、 Ib四Ts等で
定まる係数。
(3) D C,2)=zaCλ)・e obtained from @formula
xp(-θ8/λ) and temperature! and the relational expression of emissivity g(λ) at temperature T: ε(λ)=ε8(λ)・exp((θ−θg)/λ)
...We will derive the times. However, θ=a, /T(
4) Assuming the emissivity at the temperature Ts from the above equation 0. However, bk: A coefficient determined by m, (λ), Ib4Ts, etc.

(5)温度Tを走査して前記■式から各温度Tにおける
放射率e(λ)を求め、この各放射率8(λ)と開式か
ら求めた温度で8における放射率g、(λ)との差の2
乗値を残差として求めること。
(5) Scan the temperature T and find the emissivity e(λ) at each temperature T from the formula (■) above, and use the emissivity g, (λ ) the difference between
Find the multiplicative value as the residual.

(6)該残差が極小値を示すように前記■式の次数nを
選定し、該残差の極小値に対応するθを求めること。
(6) Select the order n of the equation (2) above so that the residual shows a minimum value, and find θ corresponding to the minimum value of the residual.

(7)該残差の極小値に対応する0から真の温度T8を
求めること。
(7) Find the true temperature T8 from 0 corresponding to the minimum value of the residual.

が行なわれることを特徴とする。It is characterized by being carried out.

(実施例) 固成から明らかなように、一般に、被測定物体の放射率
ε(λ)とその温度でとの間には、gs(λ)=D(λ
)・ exp  (θ/λ)、但し、θ=Ot / T
の関係がある。
(Example) As is clear from the solidification, in general, the relationship between the emissivity ε(λ) of the object to be measured and the emissivity at that temperature is gs(λ)=D(λ
)・exp (θ/λ), where θ=Ot/T
There is a relationship between

先ずこの式に助成から求めたDs(λ)=g、(λ)・
szp (−θa/λ)を代入して gs(λ)=ε(λ)@exp ((θ−a11) /
λ)     ・(1)1を導出する。
First, Ds (λ) = g, (λ)・calculated from the subsidy using this formula.
Substituting szp (-θa/λ), gs(λ)=ε(λ)@exp ((θ-a11)/
λ) ・(1) Derive 1.

この式において温度Tを走査してθを真の温度Tsに対
応するθ8とすればそのときの放射率e(λ)はεs(
λ)となる。そこで真の温度Tsにおける放射率εs(
λ)についてのω式を波長λについてのn次式 %式%[):) 但し、bo、 b、 ・−はI、(λ)、 E+b(λ
)、T8等で定まる係数。
In this equation, if the temperature T is scanned and θ is set to θ8 corresponding to the true temperature Ts, then the emissivity e(λ) is εs(
λ). Therefore, the emissivity εs(
The ω formula for wavelength λ is converted into the n-dimensional formula % formula %[):) However, bo, b, ・- is I, (λ), E+b(λ
), a coefficient determined by T8, etc.

と仮定し、この画成のε、(λ)を0式に代入して温度
Tにおける放射率1(λ)についての■式を波長λにつ
いてのm次式 %式% で定まる係数。
Assuming that, by substituting ε and (λ) of this definition into the equation 0, the equation (2) for the emissivity 1 (λ) at the temperature T is a coefficient determined by the m-order equation % equation % for the wavelength λ.

とし、■式と■式とから走査温度毎に残差S=(ε(λ
)−陥(λ))tを算出する。この残差Sが極小値とな
る温度Tは前述のように真の温度T8である。
Then, from formulas ■ and formulas, the residual S = (ε(λ
)−defect(λ))t is calculated. The temperature T at which this residual difference S becomes the minimum value is the true temperature T8, as described above.

尚、gll(λ)の次数n及びe(λ)の次数mは、残
差Sが極小値となるときが最適の次数で、そのときの波
長λについて関数形が実際の放射率ε8(λ)である。
Note that the order n of gll(λ) and the order m of e(λ) are the optimal orders when the residual S becomes the minimum value, and the functional form for the wavelength λ at that time is the actual emissivity ε8(λ ).

かくて、加熱された被測定物体の未知の温度T8は、光
学的装置によりこの物体から放射される放射エネルギの
波長λの放射強度18(λ)及び温度Tbにおける黒体
から放射される放射エネルギの波長λの放射強度1b(
λ)をそれぞれ電気的ff1x、(λ)及びに、(λ)
として測定し、このVs(λ)及び11ib(λ)を用
いて前述のような計算をすることにより求めることがで
きる。なお、]I!b(λ)はセンサ及び光学系の波長
特性を求めるための量であり、あらかじめ較正しておけ
ばよい。
Thus, the unknown temperature T8 of the heated object to be measured is determined by the radiation intensity 18 (λ) of the radiant energy emitted from this object by the optical device at the wavelength λ and the radiant energy emitted from the black body at the temperature Tb. The radiation intensity 1b(
λ) respectively electrical ff1x, (λ) and (λ)
It can be determined by calculating as described above using Vs(λ) and 11ib(λ). In addition,] I! b(λ) is a quantity for determining the wavelength characteristics of the sensor and optical system, and may be calibrated in advance.

第1図は、加熱された被測定物体について、ε8(λ)
=b0+b1λ、ε(λ)= ILQ + &、λ十a
lF+・・・・・・+ a、J  (m=1.2.5)
とし、温度Tを1200〜1450°Xの範囲で走査し
たときの前記残差Sの対数特性を示す。
Figure 1 shows ε8(λ) for a heated object to be measured.
=b0+b1λ, ε(λ)=ILQ+&,λ10a
IF+...+ a, J (m=1.2.5)
The logarithmic characteristic of the residual S when the temperature T is scanned in the range of 1200 to 1450°X is shown.

m=1.m=2のうち特にm=1の特性曲線が1300
’にで極小値を示した。
m=1. Especially the characteristic curve of m=1 among m=2 is 1300
It showed a minimum value at '.

この特性により加熱された被測定物体の温度は1300
0にであることが測定され、この物体の放射率e(λ)
は第3図のAで示すように波長に対して直線を示した。
Due to this characteristic, the temperature of the heated object to be measured is 1300
The emissivity of this object is measured to be 0, e(λ)
shows a straight line with respect to wavelength, as shown by A in FIG.

第2図は他の被測定物体について、す(λ)=b、+b
、λ十bt 2” +b3λ31g(λ)=1゜+IL
1λ+・・・・・・−λ (m=2.5,4.5)とし
、温度Tを1200〜1450°Xの範囲で走査したと
きの残差Sの特性曲線を示す。
Figure 2 shows other objects to be measured, S(λ)=b, +b
, λ0bt 2” +b3λ31g(λ)=1°+IL
1λ+...-λ (m=2.5, 4.5), and shows a characteristic curve of the residual S when scanning the temperature T in the range of 1200 to 1450°X.

m = 5の特性曲線が1300°にで極小値を示した
The characteristic curve for m = 5 showed a minimum value at 1300°.

この特性により被測定物体の温度は1300’にであり
、この物体の放射率6(λ)は第3図のBに示すように
波長に対して一極値曲線を示した。
Due to this characteristic, the temperature of the object to be measured was 1300', and the emissivity 6 (λ) of this object showed a one-extreme curve with respect to wavelength, as shown in B in FIG.

次表は白金板について、本発明の方法及び2色温度計に
よる方法で測定した温度と熱電対で測定した温度との対
比を4つの温度について示す。
The following table shows the comparison between the temperature measured by the method of the present invention and the method using a two-color thermometer and the temperature measured by a thermocouple for four temperatures on a platinum plate.

表 (発明の効果ン 本発明によれば、測温精度を高めることができると共に
測定環境についての制約を受けることがない効果を有す
る。さらに放射率に関するオンサイトの情報も得られる
Effects of the Invention According to the present invention, temperature measurement accuracy can be improved and there is no restriction on the measurement environment.In addition, on-site information regarding emissivity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、それぞれ本発明により温度を測定
するための温度を走査したときの残差特性図、第3図は
本発明により求めた波長に対する放射率特性図を示す。 S・・・残  差 T・・・温  度 ε・・・垂直放射率 λ・・・波   長 特許出願人  真空理工株式会社 仝  上     徳   1)  昌   則仝  
上     小   林   三   部外2石  − 萬151i 第2図 1200       ■刀       1久υ じ
にン第3図
1 and 2 are residual characteristic diagrams when scanning temperature for measuring temperature according to the present invention, respectively, and FIG. 3 is a diagram showing emissivity characteristics with respect to wavelength determined according to the present invention. S...Residual T...Temperature ε...Vertical emissivity λ...Wavelength Patent applicant: Shinku Riko Co., Ltd. 1) Noriyoshi Masa
Upper Kobayashi 3 outside 2 koku - 151i 1200 Figure 2 Sword 1 Kyuu Jinin Figure 3

Claims (7)

【特許請求の範囲】[Claims] (1)光学的装置を用いて黒体もしくは任意の温度既知
の熱放射体のある温度T_bにおける所定波長λの放射
エネルギi_b(λ)に対応する電気的量E_b(λ)
と被測定物体のある温度T_sにおける前記所定波長λ
の放射エネルギi_s(λ)に対応する電気的量E_s
(λ)を測定すること。
(1) Electrical quantity E_b(λ) corresponding to radiant energy i_b(λ) of a predetermined wavelength λ at a certain temperature T_b of a black body or any thermal radiator of known temperature using an optical device.
and the predetermined wavelength λ at a certain temperature T_s of the object to be measured
The electrical quantity E_s corresponding to the radiant energy i_s(λ) of
(λ).
(2)E_b(λ)及びE_s(λ)を用いて被測定物
体の前記温度T_sとの温度T_sにおける放射率g_
s(λ)との関係式 ε_s(λ)=D_s(λ)・exp(θ_s/λ)・
・・〔C〕但し、D_s(λ)=exp(−C_2/λ
T_b)・E_s(λ)E_b(λ)θ_s=C_2/
T_s(C_2:定数) を導出すること。
(2) Emissivity g_ at temperature T_s of the measured object using E_b(λ) and E_s(λ)
Relational expression with s(λ) ε_s(λ)=D_s(λ)・exp(θ_s/λ)・
... [C] However, D_s(λ)=exp(-C_2/λ
T_b)・E_s(λ)E_b(λ)θ_s=C_2/
Derive T_s(C_2: constant).
(3)〔C〕式から求めたD_s(λ)=g_s(λ)
・exp(−θ_s/λ)と、温度T及びその温度Tに
おける放射率ε(λ)の関係式 ε(λ)=D(λ)・exp(θ/λ)とからε(λ)
=ε_s(λ)・exp((θ−θ_s)/λ)・・・
〔D〕を導出すること。但しθ=C_2/T
(3) D_s(λ)=g_s(λ) obtained from [C] formula
・ε(λ) from the relational expression ε(λ)=D(λ)・exp(θ/λ) between exp(−θ_s/λ) and temperature T and emissivity ε(λ) at that temperature T
=ε_s(λ)・exp((θ−θ_s)/λ)...
Derive [D]. However, θ=C_2/T
(4)前記〔C〕式から前記温度T_sにおける放射率
g_s(λ)を波長λのn次式g_s(λ)=Σ^n_
k_=_0b_kλ^k・・・〔E〕と仮定すること。 但しb_k:E_s(λ)、E_b(λ)、T_s等で
定まる係数。
(4) From the above formula [C], the emissivity g_s(λ) at the temperature T_s can be calculated using the n-dimensional formula g_s(λ)=Σ^n_
Assume that k_=_0b_kλ^k...[E]. However, b_k: a coefficient determined by E_s(λ), E_b(λ), T_s, etc.
(5)温度Tを走査して前記〔D〕式から各温度Tにお
ける放射率g(λ)を求め、この各放射率e(λ)と〔
E〕式から求めた温度T_sにおける放射率ε_s(λ
)との差の2乗値を残差として求めること。
(5) Scan the temperature T, find the emissivity g(λ) at each temperature T from the above [D] formula, and calculate each emissivity e(λ) and [
E] The emissivity ε_s(λ
) to obtain the square value of the difference between the two as the residual.
(6)該残差が極小値を示すように前記〔E〕式の次数
nを選定し、該残差の極小値に対応するθを求めること
(6) Select the order n of the equation [E] so that the residual shows a minimum value, and find θ corresponding to the minimum value of the residual.
(7)該残差の極小値に対応するθから真の温度T_s
を求めること。 が行なわれることを特徴とする放射スペクトル解析によ
る温度測定法及び放射率の決定法。
(7) True temperature T_s from θ corresponding to the minimum value of the residual
to seek. A method for measuring temperature and determining emissivity by radiation spectrum analysis, characterized in that:
JP59267529A 1984-12-20 1984-12-20 Temperature measurement and determination of emissivity by emission spectrum analysis Pending JPS61145422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59267529A JPS61145422A (en) 1984-12-20 1984-12-20 Temperature measurement and determination of emissivity by emission spectrum analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59267529A JPS61145422A (en) 1984-12-20 1984-12-20 Temperature measurement and determination of emissivity by emission spectrum analysis

Publications (1)

Publication Number Publication Date
JPS61145422A true JPS61145422A (en) 1986-07-03

Family

ID=17446094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59267529A Pending JPS61145422A (en) 1984-12-20 1984-12-20 Temperature measurement and determination of emissivity by emission spectrum analysis

Country Status (1)

Country Link
JP (1) JPS61145422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19757447A1 (en) * 1997-12-23 1999-07-01 Braun Gmbh Temperature calculation method for radiation thermometers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19757447A1 (en) * 1997-12-23 1999-07-01 Braun Gmbh Temperature calculation method for radiation thermometers

Similar Documents

Publication Publication Date Title
Shinzato et al. A laser flash apparatus for thermal diffusivity and specific heat capacity measurements
Savino et al. Free emissivity temperature investigations by dual color applied physics methodology in the mid-and long-infrared ranges
Wang et al. Measurement technology for material emissivity under high temperature dynamic heating conditions
US5690429A (en) Method and apparatus for emissivity independent self-calibrating of a multiwavelength pyrometer
Vuelban et al. Radiometric techniques for emissivity and temperature measurements for industrial applications
JP6127019B2 (en) Method for measuring thermal diffusivity of translucent materials
JPS61145422A (en) Temperature measurement and determination of emissivity by emission spectrum analysis
US1894109A (en) Temperature measurement
Donlon et al. The calibration and intercalibration of sea-going infrared radiometer systems using a low cost blackbody cavity
US10598619B2 (en) Thermal properties measuring device
DeWitt et al. Temperature measurement issues in rapid thermal processing
Krapez Measurements without contact in heat transfer: Multiwavelength radiation thermometry. Principle, implementation and pitfalls
RU2610115C1 (en) Device for determining gas temperature in hollow high-temperature elements of gas turbine engines
RU2247339C2 (en) Method and device for measuring emissive power of inner surfaces of non-uniformly heated space
Koirala FTIR-Spectroscopic Measurement of Directional Spectral Emissivities of Microstructured Surfaces
Dai et al. Peak-wavelength method for temperature measurement
CN106768382A (en) A kind of radiometric temperature measurement device and method based on secondary light source
De Lucas Numerical optimization of the radial dependence of effective emissivity in blackbody cylindrical cavities
Saunders Reflection errors and uncertainties for dual and multiwavelength pyrometers
Palchetti et al. Design and characterisation of black-body sources for infrared wide-band Fourier transform spectroscopy
Woo et al. Measurement of gas temperature profile using spectral intensity from CO2 4.3 μm band
Seban et al. Thermal radiation properties of materials
Lisiecka Reduction of the impact of emissivity on high temperature measurements in non-contact thermometric devices
JP3424373B2 (en) Infrared radiation temperature measurement method
Clayton A 500 to 4500 F thermal radiation test facility for transparent materials