JPS6114483A - Conversion of wave energy - Google Patents

Conversion of wave energy

Info

Publication number
JPS6114483A
JPS6114483A JP59135816A JP13581684A JPS6114483A JP S6114483 A JPS6114483 A JP S6114483A JP 59135816 A JP59135816 A JP 59135816A JP 13581684 A JP13581684 A JP 13581684A JP S6114483 A JPS6114483 A JP S6114483A
Authority
JP
Japan
Prior art keywords
air
valve
wave
air chamber
check valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59135816A
Other languages
Japanese (ja)
Inventor
Hiroshi Ochiai
落合 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59135816A priority Critical patent/JPS6114483A/en
Publication of JPS6114483A publication Critical patent/JPS6114483A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/141Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
    • F03B13/142Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which creates an oscillating water column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To efficiently utilize the energy in dashing and retreat of waves by installing a plurality of wave-energy taking-in means so as to correspond to the variation of tide level. CONSTITUTION:At least two units of wave-energy taking-in means 1 and 1' are arranged in the vertical direction in accordance with the sea surface on ebb and flow. Suction check valves 8 and 8' and exhaust check valves 6 and 6' are arranged onto the respective taking-in means 1 and 1', respectively. Air is inhaled and discharged from the air chambers 2 and 2' in the taking-in means 1 and 1' which vary in accordance with the movement of waves. The upstream side of the suction check valves 8 and 8' is connected to a suction flow passage 9. Exhaust check valves 6 and 6' are connected to an exhaust flow passage 7. While, an air turbine 3 for driving an electric generator 10 is installed. The exhaust flow passage 7 is connected to the suction side of the air turbine 3 and the suction flow passage 9 is connected to the discharge side. Air is supplied through check valves 4 and 5.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は沿岸、岩礁及び船舶等において波エネルギーを
採取し、電気エネルギー等の有用エネルギーを得るため
の波エネルギー変換方法に関する「従来の技術」 小型波力発電装置を搭載した浮標灯が大川(こ供される
外に、沿岸波力発電プラントの試みがなされているが、
波エネルギー採取手段内に波による水面と周壁で包囲さ
れて密閉した空気室を形成し、波の打寄行程時に同空気
室内に発生する正圧空気を吐出し、又、波の後退行程時
に負圧を発生する空気室に吸入される大気による空気流
が、空気タービン及び数種の逆上弁を配設することによ
って、該空気タービンに対【7て常をこ同一方向になる
ようにし、空気タービン及び発電機を作動させる   
   へものである。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to "prior art" relating to a wave energy conversion method for collecting wave energy on the coast, reefs, ships, etc. and obtaining useful energy such as electrical energy. A buoy equipped with a small wave power generation device has been installed on the Okawa River (in addition to efforts being made to build a coastal wave power generation plant,
A sealed air chamber is formed in the wave energy harvesting means by being surrounded by the water surface caused by the waves and the peripheral wall, and the positive pressure air generated in the air chamber is discharged during the wave's upstroke, and the negative pressure air is discharged during the wave's retreating stroke. By arranging an air turbine and several types of reverse valves, the air flow caused by the atmospheric air drawn into the air chamber generating pressure is always in the same direction with respect to the air turbine, Operates air turbines and generators
It's a shame.

文献[11M、E、 McCormick: ’0ce
an Gradients。
References [11M, E., McCormick: '0ce
an Gradients.

Ti(ies  and WaVeFi  As  b
nergy 5ources’C0nferel]Ce
、 Pr0Qeed、ingS pnergyFrom
 The  oceans、  Fact and F
antasy?P、33〜41.1976 (2)海洋科学技術センター: 「海開」 実験につい
て、1979 「発明が解決しようとする問題点」 潮汐に関係なく常時波エネルギーを採取するためには、
沿岸等に構設する波エネルギー採取手段の波進退口を、
干潮時においても海面以下に開口させておくことを要す
るが、原註が海面から深く開口する時には波エネルギー
のiを占める運動エネルギーを採取し難く、逆に運動エ
ネルギーを含めて波エネルギーを採取するためには、波
進退口を海面に近く開口させておくことを要するから、
干潮時に原註が露出して空気室が形成されず、エネルギ
ー採取機能を喪失する点が問題である。
Ti(ies and WaVeFi As b
energy 5sources'C0nferel]Ce
, Pr0Qeed, ingS pnergyFrom
The oceans, Fact and F
antasy? P, 33-41.1976 (2) Marine Science and Technology Center: About the "Sea Opening" experiment, 1979 "Problems to be solved by the invention" In order to constantly collect wave energy regardless of the tide,
Wave advance and retreat ports for wave energy harvesting means installed on the coast, etc.
It is necessary to keep the opening below the sea level even at low tide, but when the opening is deep below the sea surface, it is difficult to collect the kinetic energy that accounts for i of wave energy, and conversely, it is necessary to collect wave energy including kinetic energy. In order to achieve this, it is necessary to open the wave entrance and exit close to the sea surface.
The problem is that at low tide, the apocalypse is exposed, no air chamber is formed, and the energy harvesting function is lost.

「問題を解決するための手段」 ■ 波の杓寄、後退行程時に、夫々正圧及び負圧を発生
する空気室を形成する2基以上の波エネルギー採取手段
を沿岸等に固設し、■ 大気を吸入する逆止弁(以下大
気逆止弁と称する)の上流側を大気に開放し、下流側を
空気タービン給気端に連通し、且、空気タービンの排気
を大気へ排出するための逆止弁(以下排気逆止弁と称す
る)の下流側を大気に開放し、上流側を空気タービン排
気端に連するように空気タービンに配設し、■空気室内
の正圧空気を吐出する逆止弁(以下吐出逆止弁と称する
)の上流側を空気室に連通ずるように夫々の空気室毎に
配設し、夫々の下流側と空気タービン給気端を連通ずる
空気流路(以下給気流路と称する)を配設し、■ 空気
室内が負圧になったとき空気タービンの排気を原案へ吸
入するための逆止弁(以下大気逆止弁と称する)の下流
側を空気室に連通ずるように夫々の空気室毎に配設し、
夫々の上流側と空気タービン排出端を連通ずる空気流路
(以下給気流路と称する)を配設することによって問題
点を解決する。
``Means to solve the problem'' ■ Two or more wave energy harvesting means that form air chambers that generate positive and negative pressure, respectively, during the wave's scooping and retreating strokes are fixedly installed on the coast, ■ The upstream side of a check valve (hereinafter referred to as atmospheric check valve) that takes in the atmosphere is opened to the atmosphere, the downstream side is connected to the air turbine supply end, and the exhaust gas of the air turbine is discharged to the atmosphere. The downstream side of the check valve (hereinafter referred to as exhaust check valve) is opened to the atmosphere, and the upstream side is installed in the air turbine so as to be connected to the air turbine exhaust end, and the positive pressure air in the air chamber is discharged. An air flow path (hereinafter referred to as a discharge check valve) is provided in each air chamber so that the upstream side of the check valve (hereinafter referred to as discharge check valve) communicates with the air chamber, and the downstream side of the check valve (hereinafter referred to as discharge check valve) communicates with the air turbine supply end. ■ A check valve (hereinafter referred to as the atmospheric check valve) for sucking the exhaust air from the air turbine into the air turbine when the air chamber becomes negative pressure is installed; Arranged in each air chamber so that it communicates with the room,
The problem is solved by providing an air flow path (hereinafter referred to as an air supply flow path) that communicates the upstream side of each air turbine with the air turbine discharge end.

「実 施 例」 纜V−Iこ、添付図面ζこ関連して本発明の好適な実施
例を例示して詳説する。但し、実施例に記載される各構
成部品の構造、形状、相対配置等は特に特定して記載し
ない限り、本発明をそれらのみに限定するものではなく
、単なる説明例に過ぎない。
``Embodiments'' Preferred embodiments of the present invention will be described in detail by way of example with reference to the accompanying drawings. However, unless otherwise specified, the structure, shape, relative arrangement, etc. of each component described in the examples are not intended to limit the present invention to these, and are merely illustrative examples.

(第1実施例) 、111図に示すヌケ71/ )ン図チこよって本発明
の第1実施例を説明すると、 (1)波エネルギー採取手段1及び1′は、垂直距離を
隔てて高位置及び低位置になるように沿岸等に夫々固設
され、周壁の下部に波進退口11及び11’を波の進行
方向に対向して開設し、原註11.11′と連通し波に
よる水面によって密閉する空気室2及び2′が形成でき
るように形設されてお帆(2)給気端3Aから排気端3
Bへ向う空気流で作動する空気タービン3の空気タービ
ン給気端3Aに、大気逆止弁下流側4Bと連通ずるよう
に大気逆止升4を配設し5、大気逆止弁下流側4Aを大
気に開放し、 (3)  空気タービン排気端3Bに、排気逆止弁上流
側5Aと連通するように排気逆止弁5を配設し、排気逆
止弁上流側5Bを大気に開放し、(4)波エネルギー採
取手段1及び1′の空気室2及び2′に、夫々吐出逆止
弁上流側6A及び6’Aと連通ずるように吐出逆止弁6
及び6′を配設し、各吐出逆止弁下流側6B及び6’B
と空気タービン給気端3Aとの間に給気流路7を配設し
て両者を連通し、 (5)空気室2及び2に、夫々笑気逆止弁下流側8B及
び8’Bと連通するよう1こ笑気逆止弁8及び8′を配
設すると共に、各笑気逆止弁上流側8A及び8′八と空
気タービン排気端3Bとの間に笑気流路9を配設して両
者を連通ずる。
(First Embodiment) The first embodiment of the present invention will now be described with reference to the blank diagram shown in FIG. Wave advance and retreat ports 11 and 11' are provided at the bottom of the surrounding wall facing the direction of wave propagation, communicating with 11' and 11' to prevent waves from moving. The sail (2) is shaped so that air chambers 2 and 2' sealed by the water surface can be formed from the air supply end 3A to the exhaust end 3.
An atmospheric check box 4 is disposed at the air turbine intake end 3A of the air turbine 3 that operates with the air flow toward B so as to communicate with the atmospheric check valve downstream side 4B. (3) An exhaust check valve 5 is provided at the air turbine exhaust end 3B so as to communicate with the upstream side 5A of the exhaust check valve, and the upstream side 5B of the exhaust check valve is opened to the atmosphere. , (4) A discharge check valve 6 is provided in the air chambers 2 and 2' of the wave energy harvesting means 1 and 1' so as to communicate with the discharge check valve upstream side 6A and 6'A, respectively.
and 6' are arranged, and each discharge check valve downstream side 6B and 6'B
An air supply flow path 7 is arranged between the air turbine air supply end 3A and the air turbine air supply end 3A to communicate the two, and (5) the air chambers 2 and 2 are communicated with the laughing gas check valve downstream side 8B and 8'B, respectively. One laughing gas check valve 8 and 8' is provided so that the laughing gas flow path 9 is provided between each laughing gas check valve upstream side 8A and 8'8 and the air turbine exhaust end 3B. to connect the two.

(10発電機10は空気タービン3に回転可能に接続さ
れている。
(10 The generator 10 is rotatably connected to the air turbine 3.

(第2実施例) 波エネルギー採取手段1及びlを、同一水平面上におい
て波の進行方向の変化等に応じて波進退口11及び11
′を所定の方向に開口するように固設すること以外の構
成は第1実施例と同じとする(第3実施例) 第3図に示す空気タービン部分の部分スケルトン図によ
って第3実施例を説明する。2基以上の空気タービン3
.3′、3″の給気端3A、3’A、 3’Aと、前実
施例と同様に各波エネルギー採取手段11′・・・の空
気室2.2′・・・に配設する吐出逆止弁6.6′・・
・の吐出逆止弁下流側6B、6’B・・・との間に給気
流路7を配設すると共に、空気タービン排気端3E、 
 8’B、  3’B・・・ と空気室2.2′・・・
に配設する笑気逆止弁8.8′・・・の笑気逆止弁上流
側8A、 8’A・・・との間に笑気流路を配設するも
のである。
(Second Embodiment) The wave energy harvesting means 1 and 1 are connected to wave advance/retreat ports 11 and 11 according to changes in the traveling direction of waves on the same horizontal plane.
The configuration of the third embodiment is the same as that of the first embodiment except for fixing it so as to open in a predetermined direction (Third embodiment). explain. 2 or more air turbines 3
.. 3', 3'' air supply ends 3A, 3'A, 3'A, and air chambers 2, 2', etc. of each wave energy harvesting means 11', as in the previous embodiment. Discharge check valve 6.6'...
An air supply flow path 7 is provided between the discharge check valve downstream side 6B, 6'B... of the air turbine exhaust end 3E,
8'B, 3'B... and air chamber 2.2'...
A laughing gas flow path is provided between the laughing gas check valves 8, 8', and the upstream laughing gas check valves 8A, 8'A, and so on.

1作 用」 波エネルギー採取手段内に、水面が密閉した空気室を形
成するときには、波の周期と一致する波の打寄せと後退
によって水面が上昇と下降を反復い空気室の容積を変化
させ、正圧と負圧を交互に発生して波エネルギーを空気
の圧力エネルギーに変換するが、第1図を用いて本発明
方法の作用を説明すると、 (波の打寄行程時) (1)M位がXの時、、(満潮時) 高位置に固設される波エネルギー採取手段1は潮位Xに
近く波進退口11を開口しているから、波の位置エネル
ギー及び運動エネルギーによって空気室2内に正圧空気
を発生し、吐出逆止弁上流側6Aと同下流側6Bとの間
に正の圧力差を生じて吐出逆止弁6を開弁する。そして
正圧空気は空気室2から吐出逆止弁上流側6Aを経て同
下流側6Bへ流出して空気流となり、給気流路7及び空
気タービン給気端3Aを経て空気タービン3へ流入し、
空気タービン3及び発電機IOを作動させ空気の圧力エ
ネルギーを電気エネルギーに変換した後、空気タービン
排気端3Bを経て排気逆止弁上流側4Aに至り、該上流
側4Aと下流側4Bとの間の正の圧力差によって排気逆
止弁4を開弁じ、排気逆止弁4を流れて該弁下流側4B
から大気中へ流出するように作用する。大気逆止弁4及
び笑気逆止弁8は上記の正圧によって閉弁状態を保って
いる。一方低位置に固設される波エネルギー採取手段1
′は潮位X以下にあるから、位置エネルギー及び運動エ
ネルギーの一部又は同手段1の深さによっては位置エネ
ルギーのみによって空気室2′内に正圧空気を発生する
が、該圧力が、波エネルギー採取手段1による給気流路
7内の圧力よりも高く、吐出逆止弁上流側6’Aと同下
流側6’Bとの間に正の圧力差を生ずるときには吐出逆
止弁6′を開弁し、上記と同様に作用する。笑気逆止弁
8′は負圧によって吐出逆止弁6′の開閉に関係なく閉
弁状態を保っている。
1. When the water surface forms a sealed air chamber in the wave energy harvesting means, the water surface rises and falls repeatedly due to the lapping and receding waves that match the wave cycle, changing the volume of the air chamber. , wave energy is converted into air pressure energy by alternately generating positive pressure and negative pressure. To explain the operation of the method of the present invention using Fig. 1, (during wave crashing stroke) (1) When position M is X, (at high tide) the wave energy harvesting means 1 fixed at a high position opens the wave advance/retreat port 11 close to the tide level 2, a positive pressure difference is generated between the upstream side 6A of the discharge check valve and the downstream side 6B of the discharge check valve 6, and the discharge check valve 6 is opened. Then, the positive pressure air flows out from the air chamber 2 to the downstream side 6B of the discharge check valve through the upstream side 6A, becomes an air flow, and flows into the air turbine 3 through the air supply flow path 7 and the air turbine air supply end 3A,
After operating the air turbine 3 and generator IO to convert air pressure energy into electrical energy, the air flows through the air turbine exhaust end 3B to the upstream side 4A of the exhaust check valve, and between the upstream side 4A and downstream side 4B. The positive pressure difference causes the exhaust check valve 4 to open, and the flow flows through the exhaust check valve 4 to the downstream side 4B of the valve.
It acts so that it flows out into the atmosphere. The atmospheric check valve 4 and the laughing gas check valve 8 are kept closed by the above positive pressure. On the other hand, wave energy harvesting means 1 fixed at a low position
Since ' is below the tide level When the pressure in the air supply passage 7 caused by the sampling means 1 is higher and a positive pressure difference occurs between the upstream side 6'A of the discharge check valve and the downstream side 6'B of the discharge check valve, the discharge check valve 6' is opened. valve and operates in the same manner as above. The laughing gas check valve 8' is kept closed by the negative pressure regardless of whether the discharge check valve 6' is opened or closed.

(2)潮位がXとYの中間にあり、波エネルギー採取手
段1に空気室2が形成される潮位の時。、+11と同様
に作用する。
(2) When the tide level is between X and Y and the air chamber 2 is formed in the wave energy harvesting means 1. , +11.

(31潮位がXとYの中間にあり、波エネルギー採取手
段1の波進退口11が露出して空気室2が形成されない
潮位の時。
(31) When the tide level is between X and Y, the wave advance/retreat port 11 of the wave energy harvesting means 1 is exposed and the air chamber 2 is not formed.

波エネルギー採取手段1′は潮位以下に波進退口11′
を開口し、(11及び(2)における波エネルギー採取
手段1と同様に作用するが、波エネルギー採取手段1は
空気室2内に正圧を発生し得す波エネルギーを空気の圧
力エネルギーに変換する機能を喪失する。
The wave energy harvesting means 1' has a wave advance/retreat port 11' below the tide level.
The wave energy harvesting means 1 operates in the same manner as the wave energy harvesting means 1 in (11 and (2)), but the wave energy harvesting means 1 converts the wave energy that can generate positive pressure in the air chamber 2 into air pressure energy. loss of ability to

(4)潮位がYの時。(干潮時) (3)と同様に作用する。(4) When the tide level is Y. (at low tide) It works in the same way as (3).

(波の後退行程時) (5)  潮位がXの時。(満潮時) 波エネルギー採取手段・1の空気室2内は水面の降下に
よって負圧を発生し、笑気逆止弁上流側8Aと同下流側
8Bとの間に正の圧力差を生じて笑気逆止弁8を開弁す
る。
(During the wave's backward stroke) (5) When the tide level is X. (At high tide) Negative pressure is generated in the air chamber 2 of the wave energy harvesting means 1 due to the drop of the water surface, and a positive pressure difference is created between the upstream side 8A and the downstream side 8B of the laughing gas check valve. The laughing gas check valve 8 is opened.

従って笑気流路9、空気タービン3、大気逆止弁4及び
給気流路7等の内部を負圧にするから大気逆止弁上流側
4Aと同下流側4Bとの間に正の圧力差を生じ、大気逆
止弁4を開弁し、大気逆止弁上流側4Aから流入する大
気は、該逆止弁4を通り空気タービン給気端3Aを経て
空気タービン3へ流入し、空気タービン3及び発電機1
0を作動させ空気の圧力エネルギーを電気エネルギーに
変換した後、空気タービン排気端3B、笑気流路9を経
て笑気逆止弁上流側8Aに到り、開弁じている笑気逆止
弁8を通過して、該弁下流側8Bから空気室2へ流入す
るように作用する。排気逆止弁5及び吐出逆止弁6は上
記の負圧によって閉弁状態を保っている。一方波エネル
ギー採取手段1゛は空気室2′にも負圧を発生するが、
この負圧が笑気流路9よりも低く笑気逆止弁上流側8’
Aと同下流側8’Bとの間に正の圧力差を生ずるときに
は笑気逆止弁8′を開弁じ、上記と同様に作用する。排
気逆止弁5′は負圧によって排気逆止弁8′の開閉に関
係なく閉弁状態を保っている。
Therefore, the internal pressure of the laughing gas flow path 9, the air turbine 3, the atmospheric check valve 4, the air supply flow path 7, etc. is made negative, so that a positive pressure difference is created between the upstream side 4A of the atmospheric check valve and the downstream side 4B of the atmospheric check valve. generated, the atmospheric check valve 4 is opened, and the atmospheric air flowing in from the atmospheric check valve upstream side 4A passes through the check valve 4 and flows into the air turbine 3 via the air turbine air supply end 3A. and generator 1
0 is activated to convert the pressure energy of the air into electrical energy, the air passes through the air turbine exhaust end 3B and the laughing gas flow path 9 to the upstream side of the laughing gas check valve 8A, where the laughing gas check valve 8 is opened. , and flows into the air chamber 2 from the downstream side 8B of the valve. The exhaust check valve 5 and the discharge check valve 6 are kept closed by the above negative pressure. On the other hand, the wave energy harvesting means 1' also generates negative pressure in the air chamber 2',
This negative pressure is lower than the laughing gas flow path 9 and the upstream side of the laughing gas check valve 8'
When a positive pressure difference is generated between A and the downstream side 8'B, the laughing gas check valve 8' is opened and operates in the same manner as described above. The exhaust check valve 5' is kept closed by negative pressure regardless of whether the exhaust check valve 8' is opened or closed.

(6)潮位がXとYの中間にあり、波エネルギー採取手
段1に空気室2が形成される潮位の時。
(6) When the tide level is between X and Y and the air chamber 2 is formed in the wave energy harvesting means 1.

(5)と同様に作用する。It works in the same way as (5).

(7)潮位がXとYの中間にあり、波エネルギー採取手
段1の波進退口11が露出して空気室2が形成されない
潮位の時。
(7) When the tide level is between X and Y, the wave advance/retreat port 11 of the wave energy harvesting means 1 is exposed and the air chamber 2 is not formed.

波エネルギー採取手段1′は潮位以下に波進退口11′
を開口い(5)及び(6)における波エネルギー採取手
段lと同様に作用するが、波エネルギー採取手段1は空
気室2内に負圧を発生し得す、エネルギー変換機能を喪
失する。
The wave energy harvesting means 1' has a wave advance/retreat port 11' below the tide level.
acts similarly to the wave energy harvesting means l in the openings (5) and (6), but the wave energy harvesting means 1 can generate a negative pressure in the air chamber 2 and lose its energy conversion function.

(4)潮位がYの時。(干潮時) (7)と同様に作用する。(4) When the tide level is Y. (at low tide) It works in the same way as (7).

第2実施例に例示したように、波エネルギー採取手段を
同一平面上に固設すると、波の進行方向の変化、波の回
折あるいは収斂が生じて各該手段が採取する波エネルギ
ーの量が異っても上記と同様に作用する。第3実施例も
同様に作用する。
As illustrated in the second embodiment, when the wave energy harvesting means are fixed on the same plane, changes in the traveling direction of the waves, wave diffraction, or convergence occur, and the amount of wave energy collected by each of the means differs. works in the same way as above. The third embodiment works similarly.

「発明の効果」 叙上の構成と作用により、本発明波エネルギー変換方法
は、潮汐及び波の進行方向の変化等の影響を少くして波
エネルギーを採取し、しかも運動エネルギーを含めて波
エネルギーを採取して多量の電気エネルギーを得ること
を可能とするから、沿岸地域、離島あるいは燈台等に必
要な電源を無尽蔵なソフトエネルギーに求めることを可
能とする点に著効を奏する。
"Effects of the Invention" With the configuration and operation described above, the wave energy conversion method of the present invention can collect wave energy while reducing the influence of tides and changes in the direction of wave travel, and can collect wave energy including kinetic energy. Since it is possible to obtain a large amount of electrical energy by extracting energy, it is effective in that it is possible to obtain the power source necessary for coastal areas, remote islands, lighthouses, etc. from inexhaustible soft energy.

「本発明と同じ目的を達するための別の発明」[+] 
 本発明に加え、波エネルギー採取手段1.1′・・・
の波進退口11.11′・・・が露出して空気室3.3
′・・・が形成できない時の潮位を検出する手段を具設
し、吐出逆止弁6.6・・・及び笑気逆止弁8.8′・
・・を′電磁等の外力によゲC自動的に閉鎖して開閉不
能とするロック保持手段を付設するようにしでなる波エ
ネルギー変換方法。
"Another invention for achieving the same purpose as the present invention" [+]
In addition to the present invention, wave energy harvesting means 1.1'...
The wave advance/retreat ports 11.11'... are exposed and the air chamber 3.3
'... is equipped with a means for detecting the tide level when the formation of the discharge check valve 6.6 and the laughing gas check valve 8.8'.
A method for converting wave energy by attaching a lock holding means that automatically closes the gate C by an external force such as electromagnetic force and makes it impossible to open or close.

[11]’4磁等の外力によって自動的に閉鎖して開閉
不能とするロック保持手段を付設する大気逆止弁4、・
・・及び排気逆止弁5、・・・を給気端3A、・・・及
び排気端3B、・・・に連通ずるように配設する空気タ
ービン3、・・・に、プロセッサー等を具設して各発電
機10、・・・の出力の総和が最大値を示す空気タービ
ン3、・・・及び発電機10、・・・の作動基数を求め
た結果、作動させることを要する以外の空気タービン3
、・・・に配設する大気逆止弁4、・・・及び排気逆止
弁5、・・・をロック保持手段によって開閉不能として
、潮位等の変化に対する空気タービン3、・・・及び発
電機10、・・・の最適作動基数を常に自動的に定めて
作動するようにしてなる波エネルギー変換方法。
[11] '4 Atmospheric check valve 4 equipped with a lock holding means that automatically closes and cannot be opened or closed by an external force such as a magnet.
. . . and the exhaust check valves 5, . . . are arranged to communicate with the air supply end 3A, . As a result of determining the operating number of the air turbines 3, . . . and the generators 10, . . . in which the total output of each generator 10, . . . air turbine 3
The atmospheric check valves 4, . . . and the exhaust check valves 5, . . . disposed in the air turbines 3, . A wave energy conversion method in which the optimum operating number of the machines 10, . . . is always automatically determined and operated.

[”lli ]  [II ]に加えて、ロック保持手
段の作用及び解除毎に、夫々の空気タービン3、・・・
の作動時間が略々等しくなるように、作動する空気ター
ビンを自動的(こ選択して交替するようにしてなる波エ
ネルギー変換方法っ
In addition to ["lli] [II], each air turbine 3,...
A wave energy conversion method that automatically (selects and alternates) the operating air turbines so that the operating times are approximately equal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1実施例のスケルトン図、第2図は第3実施
例の空気タービン及びその周辺を示すスケルトン図。
FIG. 1 is a skeleton diagram of the first embodiment, and FIG. 2 is a skeleton diagram showing the air turbine and its surroundings of the third embodiment.

Claims (1)

【特許請求の範囲】 1、波による水面と周壁で包囲して内部に形成される空
気室に連通して周壁の下部に波進退口を開設する波エネ
ルギー採取手段を、該波進退口を波の進行方向に対向す
るように固設し、波の打寄行程時に空気室内に発生して
吐出する正圧空気と、波の後退行程時に負圧を発生する
該空気室内へ吸入される大気による空気流が、空気ター
ビンに対して常に空気タービン給気端から同排気端へ向
う定まった方向に流れて空気タービン及び空気タービン
に回転可能に接続する発電機を作動して電気エネルギー
に変換するように、空気タービン及び数種の逆止弁を配
設してなる波エネルギー変換方法において、(1)波エ
ネルギー採取手段を2基以上沿岸等に固設し、(2)上
流側を大気に開放し、開弁した時に大気を吸入する逆止
弁を、該弁下流側を空気タービン給気端に連通するよう
に配設し、(3)下流側を大気に開放し、開弁した時に
空気タービンの排気を大気へ排出する逆止弁を、該弁上
流側を空気タービン排気端に連通するように配設し、(
4)上流側を空気室に連通して開弁した時に空気室内に
発生する正圧空気を空気室から吐出する逆止弁を夫々の
空気室に配設すると共に、該弁下流側と空気タービン給
気端との間に正圧空気を流す空気流路を配設して該弁下
流側と空気タービン給気端とを連通するようになし、(
5)下流側を空気室に連通して、空気室内に負圧を発生
した時に開弁し、空気タービンの排気を空気室内へ吸入
する逆止弁を夫々の空気室に配設すると共に、該弁上流
側と空気タービン排気端との間に空気タービンの排気を
流す空気流路を配設し、該弁上流側と空気タービン排気
端とを連通するようにしてなることを特徴とする波エネ
ルギー変換方法 2、空気タービン給気端から同排気端へ向う空気流によ
って作動し、回転可能に発電機を接続する空気タービン
であって、上流側を大気に開放し、開弁した時に大気を
吸入する逆止弁を、該弁下流側を空気タービン給気端に
連通するように配設し下流側を大気に開放し開弁した時
に空気タービンの排気を大気へ排出する逆止弁を、該弁
上流側を空気タービン排気端に連通するように配設して
なることを特徴とする空気タービン。 3、波による水面と周壁で包囲される空気室を形成し、
該空気室内に波の打寄行程時には正圧を、波の後退行程
時には負圧を発生するように波進退口を波の進行方向に
対向して開口する波エネルギー採取手段において、上流
側を空気室に連通して開弁した時、空気室内に発生する
正圧空気を上流側から下流側へ吐出する逆止弁と、下流
側を空気室に連通して開弁した時、上流側から下流側を
経て空気室内へ空気を吸入する逆止弁とを空気室に配設
してなることを特徴とする波エネルギー採取手段。 4、2基以上の波エネルギー採取手段を夫々垂直距離を
隔たった異った高さの位置に固設してなることを特徴と
する特許請求の範囲第1項に記載の波エネルギー変換方
法。 5、2基以上の波エネルギー採取手段を同一水平面上に
固設してなることを特徴とする特許請求の範囲第1項に
記載の波エネルギー変換方法。
[Scope of Claims] 1. A wave energy harvesting means that communicates with an air chamber formed inside surrounded by the water surface caused by waves and a surrounding wall, and has a wave advancement and retreat opening at the lower part of the surrounding wall. The positive pressure air generated in the air chamber and discharged during the wave's advancing stroke, and the atmospheric air sucked into the air chamber that generates negative pressure during the wave's retreat stroke. The airflow always flows in a fixed direction relative to the air turbine, from the air turbine inlet end to the air turbine exhaust end, and operates the air turbine and a generator rotatably connected to the air turbine to convert it into electrical energy. In a wave energy conversion method using an air turbine and several types of check valves, (1) two or more wave energy harvesting means are fixedly installed on the coast, etc., and (2) the upstream side is opened to the atmosphere. (3) A check valve that sucks in the atmosphere when opened is arranged so that the downstream side of the valve communicates with the air turbine supply end; A check valve for discharging the exhaust gas of the turbine to the atmosphere is disposed so that the upstream side of the valve communicates with the air turbine exhaust end, (
4) A check valve is provided in each air chamber, and the upstream side communicates with the air chamber, and when the valve is opened, the positive pressure air generated in the air chamber is discharged from the air chamber. An air flow path for flowing positive pressure air is disposed between the valve and the air supply end, so that the downstream side of the valve communicates with the air turbine air supply end;
5) Each air chamber is provided with a check valve that communicates with the air chamber on the downstream side and opens when negative pressure is generated in the air chamber and sucks the exhaust gas of the air turbine into the air chamber. A wave energy device characterized in that an air passage through which the exhaust gas of the air turbine flows is arranged between the upstream side of the valve and the air turbine exhaust end, and the upstream side of the valve and the air turbine exhaust end are communicated with each other. Conversion method 2: The air turbine is operated by air flow from the air supply end to the exhaust end, and is rotatably connected to a generator.The upstream side is open to the atmosphere, and when the valve is opened, the air is sucked in. A check valve is arranged so that the downstream side of the valve communicates with the air turbine intake end, and the downstream side is opened to the atmosphere, and when the valve is opened, the exhaust gas of the air turbine is discharged to the atmosphere. An air turbine characterized in that the upstream side of the valve is arranged so as to communicate with an air turbine exhaust end. 3. Forming an air chamber surrounded by the water surface and surrounding wall due to waves,
In the wave energy harvesting means in which the wave advance and retreat openings are opened opposite to the direction of wave propagation so as to generate positive pressure in the air chamber during the wave's approach stroke and negative pressure during the wave's retreat stroke, the upstream side is exposed to air. A check valve that communicates with the air chamber and discharges the positive pressure air generated in the air chamber from the upstream side to the downstream side when the valve opens, and a check valve that discharges the positive pressure air generated in the air chamber from the upstream side to the downstream side when the valve opens and communicates with the air chamber. A wave energy harvesting means characterized in that the air chamber is provided with a check valve that sucks air into the air chamber through the side. 4. The wave energy conversion method according to claim 1, wherein two or more wave energy harvesting means are fixedly installed at different heights separated by a vertical distance. 5. The wave energy conversion method according to claim 1, characterized in that two or more wave energy harvesting means are fixedly installed on the same horizontal plane.
JP59135816A 1984-06-30 1984-06-30 Conversion of wave energy Pending JPS6114483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59135816A JPS6114483A (en) 1984-06-30 1984-06-30 Conversion of wave energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59135816A JPS6114483A (en) 1984-06-30 1984-06-30 Conversion of wave energy

Publications (1)

Publication Number Publication Date
JPS6114483A true JPS6114483A (en) 1986-01-22

Family

ID=15160475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59135816A Pending JPS6114483A (en) 1984-06-30 1984-06-30 Conversion of wave energy

Country Status (1)

Country Link
JP (1) JPS6114483A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209978A (en) * 2012-02-29 2013-10-10 Kyb Co Ltd Wave power generator
JP2014020360A (en) * 2012-07-17 2014-02-03 Hiromitsu Tejima Wave-power generation
US11454205B2 (en) 2020-07-01 2022-09-27 Panasonic Intellectual Property Management Co., Ltd. Wave power utilization device and control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209978A (en) * 2012-02-29 2013-10-10 Kyb Co Ltd Wave power generator
JP2014020360A (en) * 2012-07-17 2014-02-03 Hiromitsu Tejima Wave-power generation
US11454205B2 (en) 2020-07-01 2022-09-27 Panasonic Intellectual Property Management Co., Ltd. Wave power utilization device and control method thereof

Similar Documents

Publication Publication Date Title
US4271668A (en) Counter-rotating wave energy conversion turbine
US4464080A (en) High volume tidal or current flow harnessing system
US7804182B2 (en) System and process for generating hydroelectric power
US7771158B2 (en) Power towers/innovative method of power extraction using static airfoils
CN114087117B (en) Gas reciprocating type multidirectional wave pressure floating power generation device and offshore integrated power generation system and method
JPS6123877A (en) Air circulation type wave-power generation set
KR20120121179A (en) a structure of break water for wave power generation system
CN107338774A (en) A kind of vertical type caisson breakwater system with wave-energy power generation function
WO2008082221A1 (en) Device for generating electricity using buoyancy
JP5486600B2 (en) Fluid generator
CN109488513A (en) A kind of oscillaton water column type Wave energy electric generator and electricity-generating method in conjunction with single pile formula offshore wind turbine
CN111749836A (en) Floating type wave power generation device based on multi-air-chamber oscillating water column device
JPS6114483A (en) Conversion of wave energy
CN111156126A (en) Tidal current energy power generation device and using method
CN205841083U (en) A kind of Wave power generation device
JPH0419362A (en) Wave power energy converter
JPH0660627B2 (en) Air output intensive wave power generator
CN85108806A (en) Apparatus for generating electricity by wave force
WO1986003261A1 (en) Air flow check valve and check valve device
US20050132700A1 (en) Converting energy from flowing fluids into electrical energy
CN215979674U (en) Embedded double-chamber oscillating water column wave energy device and mounting structure thereof
JP2001020844A (en) Tidal wave power generating method
JP2000087838A (en) Valveless turbine for wave force having air injection port on guide plate
JPS6318782Y2 (en)
CN214698154U (en) Oscillating water column type wave energy power generation device combined with Tesla turbine