JPS61144711A - Production of alloy magnetic head - Google Patents

Production of alloy magnetic head

Info

Publication number
JPS61144711A
JPS61144711A JP26669384A JP26669384A JPS61144711A JP S61144711 A JPS61144711 A JP S61144711A JP 26669384 A JP26669384 A JP 26669384A JP 26669384 A JP26669384 A JP 26669384A JP S61144711 A JPS61144711 A JP S61144711A
Authority
JP
Japan
Prior art keywords
alloy
gap
lead
thin
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26669384A
Other languages
Japanese (ja)
Other versions
JPH0349127B2 (en
Inventor
Masayuki Sakai
界 政行
Masaki Aoki
正樹 青木
Hideo Torii
秀雄 鳥井
Hideyuki Okinaka
秀行 沖中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26669384A priority Critical patent/JPS61144711A/en
Publication of JPS61144711A publication Critical patent/JPS61144711A/en
Publication of JPH0349127B2 publication Critical patent/JPH0349127B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/147Structure or manufacture of heads, e.g. inductive with cores being composed of metal sheets, i.e. laminated cores with cores composed of isolated magnetic layers, e.g. sheets
    • G11B5/1475Assembling or shaping of elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To improve gap accuracy by providing two-layered thin films consisting of quartz and lead-contg. glass on the front gap forming surface of an Fe-Al-Si alloy magnetic core and a thin Ag-Cu-In alloy film on the back gap forming surface thereof and subjecting these films to diffusion joining. CONSTITUTION:Chips 1, 2 of a pair of ship-type head pieces formed with winding grooves 6 by a diamond grindstone onto a bar-shaped Fe-Al-Si alloy magnetic core material are manufactured. The front gap surface 7 and the back gap surface 9 thereof are polished to a specular surface. The thin SiO2 films 3 are formed on both surfaces 7 and the thin lead-contg. glass film 4 is formed on the films 3. 7th thin Ag-Cu-In alloy films 5 are formed on both surfaces 8. The chips are subjected to a heat treatment in a non-oxidizing atmosphere of the softening temp. of the lead-contg. glass and the temp. at which the liquid phase of the Ag-Cu-In alloy is produced or above while the surfaces 7 and 8 are held butted to each other. The surfaces are thereby diffusively joined. The magnetic gap is thus formed with good accuracy and the mechanical joint strength is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は合金磁気ヘッドの製造方法に関し、高密度磁気
記録達成のだめの高抗磁力テープ対応の七ンダスト磁気
ヘッドの狭ギヤツプ形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing an alloy magnetic head, and more particularly to a method of forming a narrow gap in a seven-dust magnetic head compatible with a high coercive force tape for achieving high-density magnetic recording.

従来の技術 近年、磁気記録密度面上のためメタルチーブ等の高抗磁
力テープが用いられようとしているが、これに対応する
磁気ヘッドとしては磁心ギャップ近傍の磁気飽和の生じ
にくい高飽和磁束密度磁心材料が必要とされている。
Conventional technology In recent years, high coercive force tapes such as metal tubes are being used to improve magnetic recording density, but magnetic heads compatible with this are using high saturation magnetic flux density magnetic core materials that are less likely to cause magnetic saturation near the core gap. is needed.

現在このような高性能磁気ヘッドのコア材としてFe−
AM−3i系合金を用いた高精度な狭ギャップを有する
磁気ヘッドが最も適したものの一つとされており、その
普及が磁気記録の分野で切望されている。
Currently, Fe-
A magnetic head with a highly accurate narrow gap using an AM-3i alloy is considered to be one of the most suitable, and its widespread use is eagerly awaited in the field of magnetic recording.

しかしながら、コア材として用いるFe −An−8i
系合金の性質上、高精度でかつ機械的強度の高い狭ギャ
ップを形成することが極めて困難であシ、これが上述の
磁気ヘッドの普及を阻んでいた。フェライトの場合はガ
ラスと極めて強く接合するが、   ・Fe −All
−5i系合金はガラスとの濡れ性が悪く、はとんどこの
ような方法での接合は困難であることからギャップ部分
の機械的強度を向上させるため巻線溝の内側面を接合す
るなどの方法が行なわれている。(例えば特公開56−
130811号公報、特公開57−60525号公報)
また、2枚のコアを接合後磁気ヘッドの形状にするため
、接合した棒状のロンドの切断及び機械的な研摩といっ
た行程を経なければならないため、2枚のコアの接合強
度を保っているパックギャップ面の接合強度が極めて高
いことが必要である。このことから通常はセンダストの
パックギャップ形成面に溝を形成し、この中に銀ろう棒
を入れて沈着しtいる。
However, Fe-An-8i used as the core material
Due to the nature of the alloy, it is extremely difficult to form a narrow gap with high precision and high mechanical strength, and this has prevented the spread of the above-mentioned magnetic head. In the case of ferrite, it bonds extremely strongly with glass, but ・Fe −All
-5i alloys have poor wettability with glass, and it is difficult to bond them using this method. Therefore, in order to improve the mechanical strength of the gap area, the inner surface of the winding groove is bonded. method is being used. (For example, Special Publication No. 56-
130811, Japanese Patent Publication No. 57-60525)
In addition, in order to form the shape of a magnetic head after joining the two cores, it is necessary to go through processes such as cutting and mechanically polishing the joined rod-shaped rond, so the pack maintains the joining strength of the two cores. It is necessary that the bonding strength of the gap surface be extremely high. For this reason, normally a groove is formed on the pack gap forming surface of sendust, and a silver solder rod is placed in the groove and deposited.

(例えば特公開58−17530号公報)発明が解決し
ようとする問題点 フロントギャップ面に石英(SiO□)が形成されてお
り、これを突合わせてギャップが形成されている場合(
接合していない場合)は、テープ走行によって脱落した
磁性粉や埃等がギャップ間に入り込みギャップの精度が
低下する原因となっていた。
(For example, Japanese Patent Publication No. 58-17530) Problems to be Solved by the Invention When quartz (SiO□) is formed on the front gap surface and a gap is formed by butting it together (
If the tape is not bonded), magnetic powder, dust, etc. that fall off as the tape runs enters the gap, causing a decrease in gap accuracy.

またパックギャップ面に用いられている銀ろう材は、一
般にFe−AR−8i系合金との結合力を増すために低
融点のAg−Cu−Cd−Zn系のろう棒あるいは箔が
用いられているが、こQろう材はその熱膨張係数が大き
く(17〜18X10−6/°C)しかもギャップ形成
時にFe −A4−Si系合金との相互拡散が大きいた
め銀ろう材が融解後固化する時にFe −Al1−8i
系合金部分にひび割れが生じ、その影響を受けて、ギヤ
ツブ巾の制御や平行性を得ることが困難であった。さら
にろう箔を用いた場合はその厚さが2〜3μmとギャッ
プ長(0,3〜O,Sμm)に比べて非常に大きいため
、熱処理による溶着工程において2枚のコアを強く治具
で押えて、余分のろう材を押し出す必要がある。しかし
この操作によって2枚のコアがろう材の溶融した時にず
れることからフロントギャップのトラック幅の精度が低
下する原因になっていた。
Furthermore, the silver brazing material used on the pack gap surface is generally a low melting point Ag-Cu-Cd-Zn brazing rod or foil in order to increase the bonding strength with the Fe-AR-8i alloy. However, the silver brazing filler metal has a large coefficient of thermal expansion (17 to 18 x 10-6/°C) and also has a large interdiffusion with the Fe-A4-Si alloy when forming the gap, so the silver brazing filler metal solidifies after melting. Sometimes Fe-Al1-8i
Cracks occurred in the system alloy part, and as a result of this, it was difficult to control the gear lubricant width and obtain parallelism. Furthermore, when wax foil is used, its thickness is 2 to 3 μm, which is very large compared to the gap length (0,3 to O, S μm), so the two cores are strongly pressed with a jig during the welding process by heat treatment. It is necessary to press out the excess filler metal. However, this operation causes the two cores to shift when the brazing filler metal melts, resulting in a decrease in the accuracy of the track width of the front gap.

問題点を解決するための手段 本発明は前記問題点を解決するために、合わせれば磁気
ヘッドの形状となる一対のFe −AI!、−8i系合
金チップのテープ走行面となるフロントギャップ形成面
に均一な厚さで8102薄膜を、さらにその上例鉛含有
ガラス薄膜を形成した後、テープ走行面と反対側のバン
クギャップ形成面に、銀ろう合金としては高融点でしか
も比較的熱膨張係数がFe−An−8i系合金に近いA
g−Cu−In系合金薄膜を高精度に厚みを制御して形
成し、上記左右のFe−Ag−Si系合金チップの同一
種のギャップ形成面同志を合わせた状態で非酸化性雰囲
気で熱処理することによって、高精度でかつ機械的強度
の高い磁気ヘッドの製造方法を提供する。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a pair of Fe-AI! After forming an 8102 thin film with a uniform thickness on the front gap forming surface which becomes the tape running surface of the -8i alloy chip, and further forming an example lead-containing glass thin film thereon, the bank gap forming surface opposite to the tape running surface is formed. As a silver solder alloy, A has a high melting point and a relatively similar coefficient of thermal expansion to that of Fe-An-8i alloys.
A g-Cu-In alloy thin film is formed by controlling the thickness with high precision, and heat-treated in a non-oxidizing atmosphere with the gap-forming surfaces of the same type of the left and right Fe-Ag-Si alloy chips aligned. By doing so, a method for manufacturing a magnetic head with high precision and high mechanical strength is provided.

作用 本発明は上記した構成により、2板のFe−Al!、−
8i系合金磁心ブロックを拡散接合することによって得
られた。すなわち、フロントギャップ形成面にS X 
02と鉛含有ガラス薄膜を形成した場合は、S 102
と鉛含有ガラスの界面は、化学反応によりごく薄い化合
物が形成され機械的にかなり高い強度を有するギャップ
を得ることが出来る。またこのギャップ幅は反応層がご
く表面だけで起こるため5i02薄膜と鉛含有ガラス薄
膜の厚さで規定出来ることになる。次にパックギャップ
面のAq−Cu−In系合金の膜厚は、フロントギャッ
プを形成する5in2と鉛含有ガラスを合わせた厚さに
制御出来ることから、熱処理時において、箔を用いた場
合のように融解優ろうの流出がないので2枚の合金磁心
がズレることが無くなった。またAg−Cu−In系合
金は、Fe−An−8i系合金との接合部分において相
互拡散が生じるため強固でかつ、ひび割れを生じること
のないパックギヤングの接合が可能となった。
Function The present invention has two Fe-Al plates with the above-described configuration. ,−
It was obtained by diffusion bonding 8i alloy magnetic core blocks. In other words, S
02 and a lead-containing glass thin film, S102
At the interface between lead-containing glass and lead-containing glass, a very thin compound is formed by a chemical reaction, and a gap with considerably high mechanical strength can be obtained. Furthermore, since the reaction layer occurs only on the surface, this gap width can be defined by the thickness of the 5i02 thin film and the lead-containing glass thin film. Next, since the thickness of the Aq-Cu-In alloy on the pack gap surface can be controlled to the combined thickness of the 5in2 that forms the front gap and the lead-containing glass, during heat treatment, it can be Since there is no outflow of melted wax, the two alloy magnetic cores are no longer misaligned. In addition, since mutual diffusion occurs in the Ag-Cu-In alloy at the joint with the Fe-An-8i alloy, it has become possible to form a strong and crack-free pack-gyoung joint.

実施例 以下実施例を示す。Example Examples are shown below.

実施例1 以下に示すような方法で、第1図に示したようなギャッ
プを持つFe−Ag−8i系合金へソドビースを作製し
、検討した。
Example 1 A sod bead was fabricated using a Fe-Ag-8i alloy having a gap as shown in FIG. 1 by the method shown below, and examined.

まず第2図aのような巾3rrm、高さ2ran、長さ
20WaRの棒状のFe−AX−8i合金上にダイヤモ
ンド砥石によって巾0.35mの巻線用のミゾ入れを行
なった一対の鉛製ヘッドピースのチノグ1,2を用意し
、フロントギャップ面7およびバックギャップ面8を鏡
面研摩(最大表面荒さRmaxxool μm )した
First, as shown in Fig. 2a, a pair of lead made rods of Fe-AX-8i alloy with a width of 3 rrm, a height of 2 ran, and a length of 20 WaR were made with grooves for winding wires of 0.35 m in width using a diamond grindstone. Head piece chinogs 1 and 2 were prepared, and the front gap surface 7 and back gap surface 8 were mirror polished (maximum surface roughness Rmaxxool μm).

次に第2図すのようにフロントギャップ部分の両方にス
パッタ法を用いて石英(S 102 )の薄膜3を形成
し、さらにその上に同じくスパッタ法で鉛含有ガラス薄
膜4を形成したつ(こ場合バックギャップ部には、S 
iO2および鉛含有ガラスが入らないようにマスクをほ
どこしだ。)ここで上述の石英薄膜は、厚さが均一に0
.10μmであった。
Next, as shown in Fig. 2, a thin film 3 of quartz (S 102 ) is formed on both front gap portions using a sputtering method, and a lead-containing glass thin film 4 is further formed thereon using the same sputtering method. In this case, the S
A mask was applied to prevent iO2 and lead-containing glass from entering. ) Here, the above-mentioned quartz thin film has a uniform thickness of 0.
.. It was 10 μm.

一方上述の鉛含有ガラス薄膜は、厚さが均一に0.05
μmで、その組成が、主成分としてS iO2が20重
量% 、PbOが75重量%およびN a 20が5重
量%からなるガラス薄膜である。次に同じくスパッタ法
にてバックギャップ部のはり合わせ部分の両方にAg−
Cu −In系合金薄膜5を形成した。
On the other hand, the lead-containing glass thin film mentioned above has a uniform thickness of 0.05 mm.
It is a glass thin film whose main components are 20% by weight of SiO2, 75% by weight of PbO, and 5% by weight of Na20. Next, using the same sputtering method, Ag-
A Cu-In alloy thin film 5 was formed.

(この場合フロントギヤソゲ部にはAg−Cu−In系
合金が入らないようにマスクをしておく)ここで上述の
Ag−Cu−In薄膜は、厚さが均一に0.15μmで
、その組成がA g 55重量%、Cu30重量%、I
n15重量係な6ものである。これらのスパッタ法によ
り得られたフロントギャップ側(SiO2−鉛含有ガラ
ス層)及びバックギャップ側(Aq−Cu−In層)を
それぞれ互いにつき合わせ一対のセンダストチップとし
た状態で真空雰囲気(1x10−4Torr)中で90
0 °Cの温度で1時間処理を行なって、一対のFe 
−All−Si系合金チップのギャップ部のはり合わせ
部分の薄膜同志を拡散接合処理した。
(In this case, mask the front gear sawn part to prevent Ag-Cu-In alloy from entering.) Here, the Ag-Cu-In thin film mentioned above has a uniform thickness of 0.15 μm. The composition is A g 55% by weight, Cu 30% by weight, I
There are 6 items related to n15 weight. The front gap side (SiO2-lead-containing glass layer) and back gap side (Aq-Cu-In layer) obtained by these sputtering methods were brought into contact with each other to form a pair of Sendust chips, and then placed in a vacuum atmosphere (1 x 10-4 Torr). ) inside 90
A pair of Fe
- Diffusion bonding was performed on the thin films at the bonded portions of the gap portions of the All-Si alloy chips.

このようにして得られた第3図に示す棒状のロッドを、
切断と機械的研摩により160μmの薄片状に切断して
Fe−Al−8i系合金へラドピースを得だ。
The rod-shaped rod shown in FIG. 3 obtained in this way is
Rad pieces of Fe-Al-8i alloy were obtained by cutting into thin pieces of 160 μm by cutting and mechanical polishing.

得られたFe −Art−Si系合金へラドピースのフ
ロントギャップ部およびバックギャップ部を研摩し、ギ
ャップの巾を光学顕微鏡を用いて測定した1゜その結″
果フロ/トギャノプの巾もバックギャップの巾も共に0
.30μmであり、ギャップ面が平行であることが観測
された。
The front gap and back gap of the rad piece of the obtained Fe-Art-Si alloy were polished, and the width of the gap was measured using an optical microscope.
Both the width of Kafuro/Toyanop and the width of the back gap are 0.
.. 30 μm, and the gap planes were observed to be parallel.

しかもフロントギャップおよびバックギャップともに接
合面のひび割れやカケ等が発生していなかった。
Moreover, there were no cracks or chips on the joint surfaces of either the front gap or the back gap.

さらに、形成されたギャップ部の機械的強度を検討する
ために、ギャップ面の両側のFe−Ag−3i系合金材
を1(+KP−H−2の応力で引張り試験したが、ギャ
ップ接合面ではかれず、機械的強度にもすぐれているこ
とがわかった。次にフロントヘッドのトラック巾を26
μmに機械加工した時およびこの磁気ヘッドに磁気テー
プ(保磁力Hc ; 1400工−ルステツド飽和磁束
密度Er;3000ガウス)を相対速度3.45 m 
/secで走行させた時ギャップ部の「カケ」の発生は
認められなかった。またこのヘッドの巻線みぞにコイル
を25タ一ン巻いた時の5MHz  でのヘッドの再生
出力電圧は、240μ■(ヒークツーピーク)であった
Furthermore, in order to examine the mechanical strength of the formed gap, the Fe-Ag-3i alloy material on both sides of the gap surface was subjected to a tensile test with a stress of 1 (+KP-H-2). It was found that the track width of the front head was 26 mm.
When machined to a diameter of μm, the magnetic tape (coercive force Hc; 1400 machining - Lusted saturation magnetic flux density Er; 3000 Gauss) was applied to this magnetic head at a relative speed of 3.45 m.
No "chips" were observed in the gap section when the vehicle was run at a speed of 1/sec. Further, when a coil was wound with 25 turns in the winding groove of this head, the reproduction output voltage of the head at 5 MHz was 240 .mu.cm (heak-to-peak).

この結果を表1の試料番号1に示す。以下同様の方法で
フロントギャップ部分の鉛含有ガラスの組成を変えた試
料の各種試験結果を表1の試料番号2〜4に示す。
The results are shown in sample number 1 in Table 1. Below, various test results of samples in which the composition of the lead-containing glass in the front gap portion was changed in the same manner are shown in sample numbers 2 to 4 in Table 1.

なお本実施例において、磁気特性に影響をおよぼすFe
−Ag1−3i系合金チップの、組成シてついては、熱
処理の前後で1OJら変化していないことが、X線マイ
クロアナライザを用いた分析によって確認できた。その
結果Fe −All−Si系合金の飽和磁束密度Bsは
8650ガウス、保磁力Haは0.03エールステツド
、交流初透磁率μは61(ただし200μm厚の場合)
であシ、熱処理による磁気特性の変化も認められなかっ
た。また石英膜の組成であるSi のイオンは0.01
μm以上深(Fe −Art−8i系合金内部に拡散し
ていないことも確認できた。
In this example, Fe, which affects the magnetic properties, was
Analysis using an X-ray microanalyzer confirmed that the composition of the -Ag1-3i alloy chip did not change by 1 OJ before and after the heat treatment. As a result, the saturation magnetic flux density Bs of the Fe-All-Si alloy is 8650 Gauss, the coercive force Ha is 0.03 Oersted, and the initial AC permeability μ is 61 (however, in the case of 200 μm thickness)
Also, no change in magnetic properties was observed due to heat treatment. In addition, the Si ion, which is the composition of the quartz film, is 0.01
It was also confirmed that there was no diffusion into the interior of the Fe-Art-8i alloy at a depth of more than μm.

また比較のために、従来の形成法によるギャップをもつ
ヘッドピースを作製した。すなわちフロノドギャップ部
に石英膜を形成し、バックギャップ部及び巻線溝部にA
g−Cu−Zn−Cd系銀ロー棒を用いてヘッドピース
を溶着し、第4図に示すものと同じFe−All、−3
i系合金ヘッドを作製した。このヘッドピースのギャッ
プ部分についても実施例と同様の検査を行なった。その
結果、10に2・闘−2の外力による引張り試験ではは
がれなかったが、ギャップ面の平行性は著しく劣ってい
た。フロントギャノプの幅は0.50μmであり、ノく
ツクギャップの幅は、0.35μmであった。次に実施
例と同様にヘッド前部を機械加工した時および磁気テー
プを走行させた時に、ギャップ部分に欠けが生じた。
For comparison, a headpiece with a gap was fabricated using a conventional forming method. That is, a quartz film is formed in the front gap part, and A is formed in the back gap part and the winding groove part.
The head piece was welded using a g-Cu-Zn-Cd based silver brazing rod, and the same Fe-All, -3 as shown in Fig. 4 was welded.
An i-based alloy head was manufactured. The gap portion of this headpiece was also tested in the same way as in the example. As a result, in a tensile test using an external force of 10 to 2 and 2 to 2, the film did not peel off, but the parallelism of the gap plane was significantly poor. The width of the front gap was 0.50 μm, and the width of the gap was 0.35 μm. Next, when the front part of the head was machined and the magnetic tape was run in the same way as in the example, chipping occurred in the gap portion.

まだこのヘッドの巻線みぞにコイルを26タ一ン巻いた
時の5MH2でのヘッドの再生出力電圧は60μV  
であった。この結果も表1の試料番号−p 5に示す。
When the coil is wound with 26 turns in the winding groove of this head, the playback output voltage of the head at 5MH2 is 60 μV.
Met. This result is also shown in sample number-p5 in Table 1.

発明の効果 以上の説明および表1から明らかなように、本発明ばF
e−An−8i系合金磁気気録ヘッドにおいて、合わせ
れば磁気ヘッドの形状となる一対のFe −All−3
i系合金チップのフロントギャップ形成面(磁気テープ
走行面)に高精度の厚みで石英薄膜を形成しさらにその
上に均一な厚さで鉛含有ガラス薄膜を形成し、バックギ
ャップ面に Aq−Cu−1n系薄膜を形成した後、用
いたガラスの軟プは石英薄膜と鉛含有ガラス薄膜がその
接合面で化学反応して機械的に高い強度を有するギャッ
プを得ることが出来る。またバソクギャノグのAq−C
u−In薄膜とF’e −An2−3i系合金は非常に
強固に接合することから高精度な侠ギャップの形成が容
易になり、その結果高密度磁気記録に適したFe−Al
!、−3i系合金磁気ヘッドを実現することが可能とな
った。
Effects of the Invention As is clear from the above explanation and Table 1, the present invention
In the e-An-8i alloy magnetic recording head, a pair of Fe-All-3 which together form the shape of a magnetic head are used.
A thin quartz film with a high precision thickness is formed on the front gap forming surface (magnetic tape running surface) of the i-based alloy chip, a lead-containing glass thin film is further formed on top of it with a uniform thickness, and Aq-Cu is formed on the back gap surface. After forming the -1n-based thin film, the quartz thin film and the lead-containing glass thin film used chemically react at the bonding surface of the glass soft film used to form a gap having high mechanical strength. Also, Basok Gyanog's Aq-C
Since the u-In thin film and the F'e -An2-3i alloy are bonded very strongly, it is easy to form a high-precision gap, and as a result, Fe-Al is suitable for high-density magnetic recording.
! , it has become possible to realize a -3i alloy magnetic head.

また実施例において、Fe −A4−8i系合金溶着の
熱処理雰囲気を真空中で行ったが、別にこれに限るわけ
ではなく、非酸化性雰囲気(たとえばArあるいはHz
雰囲気等)であれば全て有効であることが確認されてい
る。
In addition, in the examples, the heat treatment atmosphere for Fe-A4-8i alloy welding was carried out in vacuum, but the atmosphere is not limited to this.
(atmosphere, etc.) are all confirmed to be effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるFe−AR−8i系
合金磁気ヘッドの断面図、第2図(a) 、 (b)は
Fe−A Q −S i系合金磁気ヘッドのギャップ形
成に用いた一対のFe−An−3i系合金チップを示す
図、第3図はこれらのFe−AR−3i系合金チップを
用いて作製したヘッドピースを示す図、第4図は従来の
磁気ヘッドの断面図である。 1 、2−一一−Fe−AQ−Si系合金チップ、3−
・石英層、4− ・鉛含有ガラス層、5・・ A g 
−Cu −In層、6−・・巻線溝、7−・ −フロン
トギャップ部、8−−バックギャップ部、9・−・・−
石英と鉛含有ガラスで接合された非磁性薄膜部、1o・
−・Ag−Cu−In系合金薄膜を用いた溶着部、11
・・・・・Aqろう溶着部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 /、2−−− FJ層Al−5呵承4ンtテ・ソフ。 3−石英層 4−−一圭曾き膚〃゛う久層 5−−一勺一伍−1.一層 第 2 図                 /、 
2−−− Ft−AノーSん系合金チ、ヂ3−−−石英
眉 4−一一鉛含有力゛ラス層 l            ? 第4図 /、2−−−  Fz−Aノーsi系台金テッフ゛3−
m−石英層 1−−−/9   浮着都 ?
Fig. 1 is a cross-sectional view of a Fe-AR-8i alloy magnetic head according to an embodiment of the present invention, and Fig. 2 (a) and (b) show gap formation in an Fe-A Q-Si alloy magnetic head. Figure 3 shows a pair of Fe-An-3i alloy chips used, Figure 3 shows a head piece made using these Fe-AR-3i alloy chips, and Figure 4 shows a conventional magnetic head. FIG. 1, 2-11-Fe-AQ-Si alloy chip, 3-
・Quartz layer, 4- ・Lead-containing glass layer, 5... A g
-Cu -In layer, 6-... winding groove, 7-- front gap section, 8-- back gap section, 9...-
Non-magnetic thin film part bonded with quartz and lead-containing glass, 1o.
-・Welded part using Ag-Cu-In alloy thin film, 11
...Aq solder welding part. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure/, 2--- FJ layer Al-5 plate 4 t. 3-Quartz layer 4--Ku layer 5--Ikkei Ichigo-1. Figure 2/
2---Ft-A no-S alloy 1, 3---Quartz eyebrow 4-11 Lead-containing strength glass layer 1? Figure 4/, 2--- Fz-A no-Si base metal tuff 3-
m-Quartz layer 1---/9 Floating capital?

Claims (1)

【特許請求の範囲】[Claims] Fe−Al−Si系合金磁心材料よりなる左右突合せ型
磁気ヘッドにおいて、左右の合金磁心のフロントギャッ
プ形成面に非磁性層として石英(SiO_2)と鉛含有
ガラスの二層薄膜を形成し、次に左右の合金磁心のバッ
クギャップ形成面にAg−Cu−In系合金薄膜を形成
後、合金磁心の同一種のギャップ面同志を合わせた状態
で、鉛含有ガラスの軟化温度及びAg−Cu−In系合
金の液相が出現する温度以上の非酸化性雰囲気において
熱処理し、左右の合金磁心ブロックを拡散接合すること
によって磁気的なギャップを形成することを特徴とする
合金磁気ヘッドの製造方法。
In a left-right butt-type magnetic head made of Fe-Al-Si alloy magnetic core material, a two-layer thin film of quartz (SiO_2) and lead-containing glass is formed as a nonmagnetic layer on the front gap forming surfaces of the left and right alloy magnetic cores, and then After forming an Ag-Cu-In based alloy thin film on the back gap forming surfaces of the left and right alloy magnetic cores, the softening temperature of the lead-containing glass and the Ag-Cu-In based A method for manufacturing an alloy magnetic head, characterized by forming a magnetic gap by heat-treating in a non-oxidizing atmosphere at a temperature higher than the temperature at which a liquid phase of the alloy appears, and diffusion bonding left and right alloy magnetic core blocks.
JP26669384A 1984-12-18 1984-12-18 Production of alloy magnetic head Granted JPS61144711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26669384A JPS61144711A (en) 1984-12-18 1984-12-18 Production of alloy magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26669384A JPS61144711A (en) 1984-12-18 1984-12-18 Production of alloy magnetic head

Publications (2)

Publication Number Publication Date
JPS61144711A true JPS61144711A (en) 1986-07-02
JPH0349127B2 JPH0349127B2 (en) 1991-07-26

Family

ID=17434374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26669384A Granted JPS61144711A (en) 1984-12-18 1984-12-18 Production of alloy magnetic head

Country Status (1)

Country Link
JP (1) JPS61144711A (en)

Also Published As

Publication number Publication date
JPH0349127B2 (en) 1991-07-26

Similar Documents

Publication Publication Date Title
JPS61144711A (en) Production of alloy magnetic head
KR0130192B1 (en) Magnetic head and the manufacturing method
US4811148A (en) Alloy magnetic recording head
JPH0349124B2 (en)
JPH0223922B2 (en)
KR890005214B1 (en) Alloy for magnetic head and method of its producing
JPH0222442B2 (en)
JPS6171405A (en) Manufacture of alloy magnetic head
JPS6045910A (en) Production of magnetic head
JPH0582645B2 (en)
JPH01185810A (en) Magnetic head and its manufacture
JPS62184613A (en) Production of magnetic head
JPH0328724B2 (en)
JPH0334124B2 (en)
JPS58158022A (en) Production of magnetic head core
JPS61110311A (en) Production of magnetic head
JPS6157024A (en) Manufacture of magnetic head
JPH0246510A (en) Magnetic head core and production thereof
JPS5837836A (en) Production of magnetic head
JPH01184609A (en) Production of magnetic head
JPS61188705A (en) Manufacture of magnetic head
JPH0214412A (en) Manufacture of composite type magnetic head core block
JPH0425608B2 (en)
JPS61172204A (en) Production of magnetic head
JPS6374104A (en) Composite type magnetic head and its production