JPH0349127B2 - - Google Patents

Info

Publication number
JPH0349127B2
JPH0349127B2 JP26669384A JP26669384A JPH0349127B2 JP H0349127 B2 JPH0349127 B2 JP H0349127B2 JP 26669384 A JP26669384 A JP 26669384A JP 26669384 A JP26669384 A JP 26669384A JP H0349127 B2 JPH0349127 B2 JP H0349127B2
Authority
JP
Japan
Prior art keywords
gap
alloy
thin film
magnetic
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26669384A
Other languages
Japanese (ja)
Other versions
JPS61144711A (en
Inventor
Masayuki Sakai
Masaki Aoki
Hideo Torii
Hideyuki Okinaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26669384A priority Critical patent/JPS61144711A/en
Publication of JPS61144711A publication Critical patent/JPS61144711A/en
Publication of JPH0349127B2 publication Critical patent/JPH0349127B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/147Structure or manufacture of heads, e.g. inductive with cores being composed of metal sheets, i.e. laminated cores with cores composed of isolated magnetic layers, e.g. sheets
    • G11B5/1475Assembling or shaping of elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は合金磁気ヘツドの製造方法に関し、高
密度磁気記録達成のための高抗磁力テープに対応
したセンダスト磁気ヘツドの狭ギヤツプ形成方法
に関するものである。 従来の技術 近年、磁気記録密度向上のためメタルテープ等
の高抗磁力テープが用いられようとしているが、
これに対応する磁気ヘツドとしては磁心ギヤツプ
近傍の磁気飽和の生じにくい高飽和磁束密度磁心
材料が必要とされている。 現在このような高性能磁気ヘツドのコア材とし
てFe−Al−Si系合金を用いた高精度な狭ギヤツ
プを有する磁気ヘツドが最も適したものの一つと
されており、その普及が磁気記録の分野で切望さ
れている。 しかしながら、コア材として用いるFe−Al−
Si系合金の性質上、高精度でかつ機械的強度の高
い狭ギヤツプを形成することが極めて困難であ
り、これが上述の磁気ヘツドの普及を阻んでい
た。フエライトの場合はガラスと極めて強く接合
するのでガラスがフロントギヤツプのスペーサー
材とコアの接合材の両方の役目を兼ねる。しかし
Fe−Al−Si系合金はガラスとの濡れ性が悪く、
ほとんどこのような方法での接合は困難である。 そこで、ギヤツプ部分に要求されるスペーサー
の役目と接合の役目をそれぞれ分けて、フロント
ギヤツプのギヤツプ長を制御するためにスペーサ
ー材料をフロントギヤツプ形成面に薄膜形成しギ
ヤツプ部分の機械的強度を向上させるため巻線窓
の内側面を接合するなどの方法が行なわれている
(例えば特公開56−130811号公報,特公開57−
60525号公報)。 Fe−Al−Si系合金ヘツドのフロントギヤツプ
のスペーサーとしては、通常、石英薄膜(SiO2
が用いられる。Fe−Al−Si系合金コア半体のフ
ロントギヤツプ形成面を蒸着法を用いて石英の薄
膜を形成し、相手となるFe−Al−Si系合金コア
半体のフロントギヤツプ形成面と突き合わせてギ
ヤツプ接合される。この場合、SiO2はFe−Al−
Si系合金に対して濡れ性がわるいので、十分な接
合強度が得られない。強度を得るための接合は、
巻線窓やバツクギヤツプなど、ヘツド性能に悪影
響を及ぼさない位置を選んで、ロウ材や樹脂を用
いて行われる。また、磁気ヘツドは、ギヤツプ接
合後切断及び機械的な研摩といつた行程を経なけ
ればならないため、コアの接合強度を担つている
バツクギヤツプ面の接合強度が極めて高いことが
必要である。このことから通常はセンダストのバ
ツクギヤツプ形成面に溝を形成し、この中に銀ろ
う棒を入れて接着している。(例えば特公開58−
17530号公報) 発明が解決しようとする問題点 フロントギヤツプ面に石英(SiO2)が形成さ
れており、これを突合わせてギヤツプが形成され
ている場合(接合していない場合)は、テープ走
行によつて脱落した磁性粉や埃等がギヤツプ間に
入り込みギヤツプの精度が低下する原因となつて
いた。 またバツクギヤツプ面に用いられている銀ろう
材は、一般にFe−Al−Si系合金との結合力を増
すために低融点のAg−Cu−Cd−Zn系のろう棒
あるいは箔が用いられているが、このろう材はそ
の熱膨張係数が大きく(17〜18×10-6/℃)しか
もギヤツプ形成時にFe−Al−Si系合金との相互
拡散が大きいため銀ろう材が融解後固化する時に
Fe−Al−Si系合金部分にひび割れが生じ、その
影響を受けて、ギヤツプ長の制御や平行性を得る
ことが困難であつた。さらにろう箔を用いた場合
はその厚さが2〜3μmとギヤツプ長(0.3〜0.5μ
m)に比べて非常に大きいため、熱処理による溶
着工程において一対のコアを強く治具で押えて、
余分のろう材を押し出す必要がある。しかしこの
操作によつて一対のコアがろう材の溶融した時に
ずれることからフロントギヤツプのトラツク幅の
精度が低下する原因になつていた。 問題点を解決するための手段 このような欠点を克服し、高精度な狭ギヤツプ
をもち、かつ、そのギヤツプが機械的強度に優れ
たFe−Al−Si系磁気ヘツドを製造することを目
的として、ギヤツプの形成方法を検討してきた。
たとえば、Fe−Al−Si系合金コア半体のフロン
トギヤツプ形成面に、Fe−Al−Si系合金と熱膨
張係数が近似した値をもつ非磁性セラミツク材料
ZrO2薄膜を形成し、バツクギヤツプ形成面には
Ag−Cu−In系合金薄膜を形成した後、Ag−Cu
−In系合金の溶融する温度以上で、これら一対の
コア半体のギヤツプ形成面を突き合わせた状態で
加圧加熱処理し、ギヤツプ接合する方法を考案し
た(特願昭59−171906号)。しかし、Fe−Al−Si
系合金の場合でも、膜の厚み制御の容易さを均一
な平滑膜が得やすいことから、フロントギヤツプ
のスペーサーとしてはSiO2を使用することが望
ましい。われわれはFe−Al−Si系磁性合金を代
表するセンダストに対して、スパツター法により
まずSiO2薄膜を形成し、その上にNa2O−PbO−
SiO2組成のガラス薄膜を形成して真空雰囲気で
加熱処理すると、センダストSiO2界面が強固に
接着されることを見出し、本発明に至つた。 本発明は前記問題点を解決するために、一対の
Fe−Al−Si系合金コア半体のフロントギヤツプ
形成面に均一な厚さでSiO2薄膜を、さらにその
上に鉛含有ガラス薄膜を形成した後、バツクギヤ
ツプ形成面にも、銀ろう合金としては低融点でし
かも比較的熱膨張係数がFe−Al−Si系合金に近
いAg−Cu−In系合金薄膜を高精度に厚みを制御
して形成し、一対のFe−Al−Si系合金コア半体
を突き合わせた状態で非酸化性雰囲気で熱処理す
ることによつてギヤツプ接合し、高精度でかつ機
械的強度の高い磁気ヘツドの製造方法を提供す
る。 作 用 本発明は上記した構成により、一対のFe−Al
−Si系合金コア半体を接合することによつて、
SiO2と鉛含有ガラスの界面は、化学反応により
ごく薄い化合物が形成され機械的にかなり高い強
度を有するギヤツプを得ることが出来る。またこ
のギヤツプ長は反応層がごく表面だけで起こるた
めSiO2薄膜と鉛含有ガラス薄膜の厚さで規定出
来ることになる。次にバツクギヤツプ面のAg−
Cu−In系合金の膜厚は、フロントギヤツプを形
成するSiO2と鉛含有ガラスを合わせた厚さに制
御出来ることから、熱処理時において、箔を用い
た場合のように融解銀ろうの流出がないので一対
の合金コアがズレることが無い。またAg−Cu−
Im系合金は、Fe−Al−Si系合金との接合部分に
おいて極くわずか相互拡散が生じるため強固でか
つ、ひび割れを生じることのないバツクギヤツプ
の接合が可能となる。 実施例 以下実施例を示す。 実施例 1 以下に示すような方法で、第1図に示したよう
なギヤツプを持つFe−Al−Si系合金ヘツドを作
製し、検討した。 まず第2図aのような巾3mm,高さ2mm,長さ
20mmの棒状のFe−Al−Si合金上にダイヤモンド
砥石によつて巾0.35mmの巻線用のミゾ入れを行な
つた一対のヘツドコア半体1,2を用意し、フロ
ントギヤツプ形成面7およびバツクギヤツプ形成
面8を鏡面研摩(最大表面粗さR max×0.01μ
m)した。 次に第2図bのようにそれぞれのフロントギヤ
ツプ形成面にスパツタ法を用いて石英(SiO2
の薄膜3を形成し、さらにその上に同じくスパツ
タ法で鉛含有ガラス薄膜4を形成した。(この場
合バツクギヤツプ形成面には、SiO2および鉛含
有ガラスが入らないようにマスクをほどこした)。
ここで上述の石英薄膜は、厚さが均一に0.10μm
であつた。一方上述の鉛含有ガラス薄膜は、厚さ
が均一に0.05μmで、その組成が、主成分として
SiO2が20重量%、Pboが75重量%およびNa2Oが
5重量%からなるガラス薄膜である。次に同じく
スパツタ法にてそれぞれのバツクギヤツプ形成面
にAg−Cu−In系合金薄膜5を形成した。(この
場合フロントギヤツプ形成面にはAg−Cu−In系
合金が付着しないようにマスクをしておく)。こ
こで上述のAg−Cu−In薄膜は、厚さが均一に
0.15μmで、その組成がAg55重量%、Cu重量%、
In15重量%なるものである。これらのスパツタ法
により得られたフロントギヤツプ側(SiO2−鉛
含有ガラス層)及びバツクギヤツプ側(Ag−Cu
−In層)をそれぞれ互いにつき合わせた状態で真
空雰囲気(1×10-4/Torr)中で900℃の温度で
1時間処理を行なつて、ギヤツプ接合した。 このようにして得られた第3図に示すギヤツプ
接合されたコア半体ブロツクを、切断と機械的研
摩により150μmの薄片状に加工してFe−Al−Si
系合金ヘツドチツプを得た。 得られたFe−Al−Si系合金ヘツドチツプのフ
ロントギヤツプ部およびバツクギヤツプ部を研摩
し、ギヤツプ長を光学顕微鏡を用いて測定した。
その結果フロントギヤツプのギヤツプ長もバツク
ギヤツプのバツクギヤツプ長も共に0.30μmであ
り、ギヤツプ端が平行であることが観測された。 しかもフロントギヤツプおよびバツクギヤツプ
ともに接合面のひび割れやカケ等が発生していな
かつた。 さらに、形成されたギヤツプ部の機械的強度を
検討するために、ギヤツプ面の両側のFe−Al−
Si系合金材を10Kg・mm-2の応力で引張り試験した
が、ギヤツプ接合面ではかれず、機械的強度にも
すぐれていることがわかつた。次にフロントヘツ
ドのトラツク巾を25μmに機械的加工した時およ
びこの磁気ヘツドに磁気テープ(保磁力Hc;
1400エールステツド飽和磁束密度Br;3000ガウ
ス)を相対速度3.455m/secで走行させた時ギヤ
ツプ部の「カケ」の発生は認められなかつた。ま
たこのヘツドの巻線窓にコイルを25ターン巻いた
時の5MHzでのヘツドの再生フロント出力電圧は、
240μV(ヒークツーピーク)であつた。 この結果を表1の試料番号1に示す。以下同様
の方法でフロントギヤツプ部に使用する鉛含有ガ
ラスの組成を変えた試料の各種試験結果を表1の
試料番号2〜4に示す。 なお本実施例において、磁気特性に影響をおよ
ぼすFe−Al−Si系合金の組成については、熱処
理の前後で何ら変化していないことが、X線マイ
クロアナライザを用いた分析によつて確認でき
た。の結果Fe−Al−Si系合金の飽和磁束密度BS
は8650ガウス、保磁力HCは0.03エールステツド、
交流初透磁率μは61(ただし200μm厚の場合)で
あり、熱処理による磁気特性の変化も認められな
かつた。また石英膜の組成であるSiのイオンは
0.01μm以上深くFe−Al−Si系合金内部に拡散し
ていないことも確認できた。また比較のために、
従来の形成法によるギヤツプをもつヘツドチツプ
を作製した。すなわちフロントギヤツプ部に石英
膜を形成し、バツクギヤツプ部及び巻線窓部に
Ag−Cu−Zn−Cd系銀ロウ棒を用いてヘツドコ
ア半体を溶着し、第4図に示すものと同じFe−
Al−Si系合金ヘツドチツプを作製した。このヘ
ツドチツプのギヤツプ部分についても実施例と同
様の検査を行なつた。その結果、10Kg・mm-2の外
力による引張り試験でははがれなかつたが、ギヤ
ツプ端の平行性は著しく劣つていた。フロントギ
ヤツプのギヤツプ長は0.50μmであり、バツクギ
ヤツプのギヤツプ長は、0.35μmであつた。次に
実施例と同様にヘツド前部を機械加工した時およ
び磁気テープを走行させた時に、ギヤツプ部分に
欠けが生じた。またこのヘツドの巻線窓にコイル
を25ターン巻いた時の5MHzでのヘツドの再生出
力電圧は60μVp-pであつた。この結果も表1の試
料番号5に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing an alloy magnetic head, and more particularly to a method for forming a narrow gap in a Sendust magnetic head compatible with a high coercive force tape for achieving high-density magnetic recording. Conventional technology In recent years, high coercive force tapes such as metal tapes are being used to improve magnetic recording density.
A magnetic head corresponding to this requirement requires a magnetic core material with a high saturation magnetic flux density that is unlikely to cause magnetic saturation near the magnetic core gap. Currently, a magnetic head with a high precision narrow gap using Fe-Al-Si alloy as the core material for such a high-performance magnetic head is considered to be one of the most suitable, and its widespread use is expected in the field of magnetic recording. coveted. However, Fe-Al- used as core material
Due to the nature of Si-based alloys, it is extremely difficult to form narrow gaps with high precision and high mechanical strength, and this has prevented the spread of the above-mentioned magnetic heads. In the case of ferrite, it bonds extremely strongly to the glass, so the glass serves as both the spacer material for the front gear and the bonding material for the core. but
Fe-Al-Si alloys have poor wettability with glass;
In most cases, joining using this method is difficult. Therefore, in order to separate the role of a spacer and the role of joining required for the gap part, a thin film of spacer material is formed on the front gap forming surface to control the gap length of the front gap, and the spacer material is wound to improve the mechanical strength of the gap part. Methods such as joining the inner surfaces of wire windows are being used (for example, Japanese Patent Publication No. 56-130811, Japanese Patent Publication No. 57-
Publication No. 60525). A thin quartz film (SiO 2 ) is usually used as a spacer for the front gap of a Fe-Al-Si alloy head.
is used. A thin quartz film is formed on the front gap forming surface of the Fe-Al-Si alloy core half using a vapor deposition method, and the gap is joined by butting it against the front gap forming surface of the mating Fe-Al-Si alloy core half. Ru. In this case, SiO2 is Fe−Al−
Because it has poor wettability with Si-based alloys, sufficient bonding strength cannot be obtained. Bonding for strength is
This is done using braze or resin in selected locations such as winding windows and back gaps that will not adversely affect head performance. Furthermore, since the magnetic head must undergo processes such as cutting and mechanical polishing after gap bonding, it is necessary that the bonding strength of the back gap surface, which is responsible for the bonding strength of the core, be extremely high. For this reason, normally a groove is formed on the backgap forming surface of the sendust, and a silver solder rod is inserted into this groove for bonding. (For example, Special Publication 58-
17530 Publication) Problems to be Solved by the Invention If quartz (SiO 2 ) is formed on the front gear surface and a gap is formed by butting these together (if they are not joined), it will be difficult to run the tape. As a result, magnetic powder, dust, etc. that fall off get into the spaces between the gaps, causing a decrease in the accuracy of the gaps. Furthermore, the silver brazing material used on the back gap surface is generally a low melting point Ag-Cu-Cd-Zn brazing rod or foil to increase the bonding strength with the Fe-Al-Si alloy. However, this brazing filler metal has a large coefficient of thermal expansion (17 to 18 x 10 -6 /℃) and also has a large interdiffusion with the Fe-Al-Si alloy during gap formation, so when the silver filler metal solidifies after melting,
Cracks occur in the Fe-Al-Si alloy, and as a result of this, it is difficult to control the gap length and obtain parallelism. Furthermore, when wax foil is used, its thickness is 2 to 3 μm and the gap length is 0.3 to 0.5 μm.
m), so the pair of cores are strongly held down with a jig during the welding process by heat treatment.
It is necessary to push out the excess filler metal. However, this operation causes the pair of cores to shift when the filler metal melts, resulting in a decrease in the accuracy of the track width of the front gear. Means to Solve the Problems The purpose of the present invention is to overcome these drawbacks and manufacture a Fe-Al-Si magnetic head that has a narrow gap with high precision and has excellent mechanical strength. , we have investigated the gap formation method.
For example, the front gap forming surface of the Fe-Al-Si alloy core half is made of a non-magnetic ceramic material with a coefficient of thermal expansion similar to that of the Fe-Al-Si alloy.
A ZrO 2 thin film is formed on the back gap forming surface.
After forming the Ag-Cu-In alloy thin film, Ag-Cu
-We have devised a method of gap joining by pressurizing and heating the pair of core halves with their gap-forming surfaces butted against each other at a temperature higher than the melting temperature of the In-based alloy (Japanese Patent Application No. 171906/1982). However, Fe−Al−Si
Even in the case of alloys, it is desirable to use SiO 2 as the spacer for the front gap because it is easy to control the thickness of the film and it is easy to obtain a uniform and smooth film. We first formed a SiO 2 thin film using the sputtering method on Sendust, which is a representative Fe-Al-Si magnetic alloy, and then deposited Na 2 O-PbO- on top of it.
The present inventors have discovered that when a glass thin film of SiO 2 composition is formed and heat-treated in a vacuum atmosphere, the sendust SiO 2 interface is firmly bonded, leading to the present invention. In order to solve the above problems, the present invention provides a pair of
After forming an SiO 2 thin film with a uniform thickness on the front gap forming surface of the Fe-Al-Si based alloy core half and further forming a lead-containing glass thin film on top of that, a thin SiO 2 film was formed on the back gap forming surface as well. A thin Ag-Cu-In alloy thin film with a melting point and thermal expansion coefficient relatively similar to that of Fe-Al-Si alloys is formed by controlling the thickness with high precision, and a pair of Fe-Al-Si alloy core halves are formed. To provide a method for manufacturing a magnetic head with high precision and high mechanical strength, by performing heat treatment in a non-oxidizing atmosphere while abutting the magnetic heads to form a gap joint. Effect The present invention has a pair of Fe-Al
-By joining the Si-based alloy core halves,
At the interface between SiO 2 and lead-containing glass, a very thin compound is formed by a chemical reaction, and a gap with considerably high mechanical strength can be obtained. Furthermore, since the reaction layer occurs only on the very surface, this gap length can be determined by the thickness of the SiO 2 thin film and the lead-containing glass thin film. Next, Ag− on the back gap surface.
Since the film thickness of the Cu-In alloy can be controlled to the combined thickness of the SiO 2 and lead-containing glass that form the front gap, there is no leakage of molten silver solder during heat treatment, unlike when using foil. Therefore, the pair of alloy cores will not shift. Also, Ag−Cu−
Im-based alloys cause very slight interdiffusion at the joints with Fe-Al-Si-based alloys, making it possible to form strong, crack-free backgap joints. Examples Examples will be shown below. Example 1 A Fe--Al--Si alloy head having a gap as shown in FIG. 1 was manufactured and examined using the method shown below. First, the width is 3 mm, the height is 2 mm, and the length is as shown in Figure 2 a.
A pair of head core halves 1 and 2 are prepared on a 20 mm rod-shaped Fe-Al-Si alloy with grooves for winding 0.35 mm in width made using a diamond grindstone, and a front gap forming surface 7 and a back gap forming surface are prepared. Surface 8 is mirror polished (maximum surface roughness R max x 0.01μ
m) did. Next, as shown in Figure 2b, quartz (SiO 2 ) is applied to each front gap forming surface using a sputtering method.
A thin film 3 containing lead was formed thereon, and a lead-containing glass thin film 4 was further formed thereon by the same sputtering method. (In this case, a mask was applied to the backgap forming surface to prevent SiO 2 and lead-containing glass from entering.)
Here, the quartz thin film mentioned above has a uniform thickness of 0.10 μm.
It was hot. On the other hand, the lead-containing glass thin film mentioned above has a uniform thickness of 0.05 μm, and its composition is as follows:
It is a glass thin film consisting of 20% by weight of SiO 2 , 75% by weight of Pbo and 5% by weight of Na 2 O. Next, an Ag--Cu--In alloy thin film 5 was formed on each back gap formation surface using the same sputtering method. (In this case, mask the front gap forming surface to prevent Ag-Cu-In alloy from adhering.) Here, the Ag-Cu-In thin film mentioned above has a uniform thickness.
0.15μm, its composition is Ag55wt%, Cu wt%,
In is 15% by weight. The front gap side (SiO 2 -lead-containing glass layer) and back gap side (Ag-Cu
-In layers) were brought into contact with each other and treated in a vacuum atmosphere (1×10 −4 /Torr) at a temperature of 900° C. for 1 hour to form a gap bond. The gap-jointed core half block shown in Fig. 3 obtained in this way was processed into a 150 μm flake by cutting and mechanical polishing.
An alloy head chip was obtained. The front gap and back gap of the obtained Fe-Al-Si alloy head chip were polished, and the gap length was measured using an optical microscope.
As a result, it was observed that the gap length of the front gap and the back gap of the back gap were both 0.30 μm, and the gap ends were parallel. Moreover, there were no cracks or chips on the joint surfaces of either the front gear or the back gear. Furthermore, in order to examine the mechanical strength of the gap formed, Fe-Al-
A tensile test of the Si-based alloy material under a stress of 10Kg/mm -2 revealed that it did not peel at the gap joint surface and had excellent mechanical strength. Next, when the track width of the front head was mechanically processed to 25 μm, and the magnetic tape was attached to this magnetic head (coercive force Hc;
1400 Oersted saturation magnetic flux density Br; 3000 Gauss) was run at a relative speed of 3.455 m/sec, no "chips" were observed in the gap section. Also, when the coil is wound 25 turns around the winding window of this head, the reproduction front output voltage of the head at 5MHz is:
It was 240μV (heat to peak). The results are shown in sample number 1 in Table 1. Below, the results of various tests on samples with different compositions of lead-containing glass used in the front gap section are shown in sample numbers 2 to 4 in Table 1 using the same method. In this example, analysis using an X-ray microanalyzer confirmed that the composition of the Fe-Al-Si alloy, which affects magnetic properties, did not change at all before and after the heat treatment. . As a result, the saturation magnetic flux density B S of Fe-Al-Si alloy is
is 8650 Gauss, coercive force H C is 0.03 Oersted,
The AC initial magnetic permeability μ was 61 (when the thickness was 200 μm), and no change in magnetic properties was observed due to heat treatment. In addition, the Si ions, which are the composition of the quartz film, are
It was also confirmed that it was not diffused into the Fe-Al-Si alloy to a depth of 0.01 μm or more. Also, for comparison,
A head chip with a gap was fabricated using a conventional forming method. In other words, a quartz film is formed on the front gap, and a quartz film is formed on the back gap and winding window.
The head core halves were welded using an Ag-Cu-Zn-Cd system silver solder rod, and the same Fe-
An Al-Si alloy head chip was fabricated. The gap portion of this head chip was also tested in the same manner as in the example. As a result, in a tensile test using an external force of 10 kg/mm -2 , it did not peel off, but the parallelism of the gap edges was significantly poor. The gap length of the front gap was 0.50 μm, and the gap length of the back gap was 0.35 μm. Next, when the front part of the head was machined and the magnetic tape was run in the same way as in the example, chipping occurred in the gap portion. Furthermore, when the coil was wound 25 turns around the winding window of this head, the reproduced output voltage of the head at 5MHz was 60μV pp . This result is also shown in sample number 5 in Table 1.

【表】 * 比較例
発明の効果 以上の説明および表1から明らかなように、本
発明はFe−Al−Si系合金磁気ヘツドにおいて、
一対のFe−Al−Si系合金コア半体のフロントギ
ヤツプ形成面(磁気テープ走行面)に高精度の厚
みで石英薄膜を形成しさらにその上に均一な厚さ
で鉛含有ガラス薄膜を形成し、バツクギヤツプ形
成面にAg−Cu−In系薄膜を形成した後、ガラス
の軟化点以上でしかも銀ロウが溶融する温度以上
の真空雰囲気の条件で処理して接合した場合のフ
ロントギヤツプは石英薄膜と鉛含有ガラス薄膜が
その接合面で化学反応して機械的に高い強度を有
するギヤツプを得ることが出来る。またバツクギ
ヤツプのAg−Cu−In薄膜とFe−Al−Si系合金は
非常に強固に接合することから高精度な狭ギヤツ
プの形成が容易になり、その結果高密度磁気記録
に適したFe−Al−Si系合金磁気ヘツドを実現す
ることが可能となつた。 また実施例において、Fe−Al−Si系合金溶着
の熱処理雰囲気を真空中で行つたが、別にこれに
限るわけではなく、非酸化性雰囲気(たとえば
ArあるいはH2雰囲気等)であれば全て有効であ
ることが確認されている。
[Table] *Effects of Comparative Example Invention As is clear from the above explanation and Table 1, the present invention provides an Fe-Al-Si alloy magnetic head with
A quartz thin film is formed with a highly accurate thickness on the front gap forming surface (magnetic tape running surface) of a pair of Fe-Al-Si alloy core halves, and a lead-containing glass thin film is further formed with a uniform thickness on top of the quartz thin film. After forming an Ag-Cu-In based thin film on the back gap forming surface, the front gap is bonded by processing in a vacuum atmosphere above the softening point of glass and above the temperature at which silver solder melts.The front gap contains a quartz thin film and lead. A gap with high mechanical strength can be obtained by a chemical reaction between the glass thin film and its joint surfaces. In addition, the Ag-Cu-In thin film of the back gap and the Fe-Al-Si alloy bond very strongly, making it easy to form a narrow gap with high precision. -It has become possible to realize a Si-based alloy magnetic head. In addition, in the examples, the heat treatment atmosphere for Fe-Al-Si alloy welding was performed in a vacuum, but the atmosphere is not limited to this.
It has been confirmed that all methods (such as Ar or H 2 atmosphere) are effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるFe−Al−
Si系合金磁気ヘツドの断面図、第2図a,bは
Fe−Al−Si系合金磁気ヘツドのギヤツプ形成に
用いた一対のFe−Al−Si系合金コア半体を示す
図、第3図はこれらのFe−Al−Si系合金コア半
体を用いて作製したギヤツプ接合されたコア半体
ブロツクを示す図、第4図は従来の磁気ヘツドチ
ツプの断面図である。 1,2……Fe−Al−Si系合金コア半体、3…
…石英層、4……鉛含有ガラス層、5……Ag−
Cu−In層、6……巻線窓、7……フロントギヤ
ツプ部、8……バツクギヤツプ部、9……石英と
鉛含有ガラスで接合された非磁性薄膜部、10…
…Ag−Cu−In系合金薄膜を用いた溶着部。
Figure 1 shows Fe-Al- in one embodiment of the present invention.
Cross-sectional views of the Si-based alloy magnetic head, Figures 2a and b are
Figure 3 shows a pair of Fe-Al-Si alloy core halves used to form a gap in an Fe-Al-Si alloy magnetic head. FIG. 4 is a cross-sectional view of a conventional magnetic head chip, showing the gap-jointed core half blocks produced. 1, 2...Fe-Al-Si alloy core half, 3...
...Quartz layer, 4...Lead-containing glass layer, 5...Ag-
Cu-In layer, 6... Winding window, 7... Front gap part, 8... Back gap part, 9... Non-magnetic thin film part bonded with quartz and lead-containing glass, 10...
...Welded part using Ag-Cu-In alloy thin film.

Claims (1)

【特許請求の範囲】[Claims] 1 Fe−Al−Si系合金磁心材料よりなる磁気ヘ
ツドにおいて、一対の合金コア半体のフロントギ
ヤツプ形成面に非磁性層として石英(SiO2)と
鉛含有ガラスの二層薄膜を形成し、バツクギヤツ
プ形成面にAg−Cu−In系合金薄膜を形成後、前
記合金コア半体の同種のギヤツプ面同志を突き合
わせた状態で、鉛含有ガラスの軟化温度及びAg
−Cu−In系合金の溶融温度以上の非酸化性雰囲
気において熱処理し、前記一対の合金コア半体を
接合することによつて磁気的なギヤツプを形成す
ることを特徴とする合金磁気ヘツドの製造方法。
1. In a magnetic head made of Fe-Al-Si alloy magnetic core material, a two-layer thin film of quartz (SiO 2 ) and lead-containing glass is formed as a nonmagnetic layer on the front gap forming surfaces of a pair of alloy core halves to form a back gap. After forming an Ag-Cu-In alloy thin film on the surfaces, the softening temperature of the lead-containing glass and the Ag
- Manufacture of an alloy magnetic head characterized by forming a magnetic gap by heat-treating in a non-oxidizing atmosphere at a temperature higher than the melting temperature of the Cu-In alloy and joining the pair of alloy core halves. Method.
JP26669384A 1984-12-18 1984-12-18 Production of alloy magnetic head Granted JPS61144711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26669384A JPS61144711A (en) 1984-12-18 1984-12-18 Production of alloy magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26669384A JPS61144711A (en) 1984-12-18 1984-12-18 Production of alloy magnetic head

Publications (2)

Publication Number Publication Date
JPS61144711A JPS61144711A (en) 1986-07-02
JPH0349127B2 true JPH0349127B2 (en) 1991-07-26

Family

ID=17434374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26669384A Granted JPS61144711A (en) 1984-12-18 1984-12-18 Production of alloy magnetic head

Country Status (1)

Country Link
JP (1) JPS61144711A (en)

Also Published As

Publication number Publication date
JPS61144711A (en) 1986-07-02

Similar Documents

Publication Publication Date Title
US4361860A (en) Magnetic transducer head and method of manufacturing the same
US3795954A (en) Method of making a micro-gap magnetic recording head
JPS62162206A (en) Magnetic head
JPS62145510A (en) Magnetic head
EP0128586A1 (en) Magnetic head
US4811148A (en) Alloy magnetic recording head
JPH0349127B2 (en)
JPH0349124B2 (en)
JPH0223922B2 (en)
EP0138580B1 (en) Alloy magnetic recording head
JPH0222442B2 (en)
JPH0223921B2 (en)
JPH0235619A (en) Floating type composite magnetic head and its manufacture
JPS6267712A (en) Production of alloy magnetic head
JPH03257038A (en) Glass and magnetic head
JPH0328724B2 (en)
JPH0582645B2 (en)
JPS62184613A (en) Production of magnetic head
JPH0334124B2 (en)
JPS61188705A (en) Manufacture of magnetic head
JPH05166126A (en) Manufacture of magnetic head
JPS63103407A (en) Manufacture of magnetic head
JPS58158022A (en) Production of magnetic head core
JPH0425608B2 (en)
JPS61110311A (en) Production of magnetic head