JPS6114469B2 - - Google Patents

Info

Publication number
JPS6114469B2
JPS6114469B2 JP7191278A JP7191278A JPS6114469B2 JP S6114469 B2 JPS6114469 B2 JP S6114469B2 JP 7191278 A JP7191278 A JP 7191278A JP 7191278 A JP7191278 A JP 7191278A JP S6114469 B2 JPS6114469 B2 JP S6114469B2
Authority
JP
Japan
Prior art keywords
frequency
transistor
signal
terminal
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7191278A
Other languages
Japanese (ja)
Other versions
JPS54162474A (en
Inventor
Kazuhiko Honjo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7191278A priority Critical patent/JPS54162474A/en
Publication of JPS54162474A publication Critical patent/JPS54162474A/en
Publication of JPS6114469B2 publication Critical patent/JPS6114469B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 本発明はトランジスタ特に超高周波トランジス
タの混変調特性および2信号増幅負荷特性の測定
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for measuring cross-modulation characteristics and two-signal amplification load characteristics of transistors, particularly ultra-high frequency transistors.

超高周波トランジスタの素子評価および応用回
路設計に際しては3次混変調歪みおよび増幅負荷
特性を把握する必要があり、その測定法が問題と
なる。
When evaluating ultra-high frequency transistors and designing applied circuits, it is necessary to understand third-order intermodulation distortion and amplification load characteristics, and the measurement method becomes an issue.

混変調歪みの大きさは出力電力一定のもとでも
トランジスタの負荷インピーダンスに大きく依存
する。通常トランジスタの負荷インピーダンスに
対する混変調歪み特性および2信号増幅負荷特性
はインピーダンス整合器(tuner)により負荷を
変えて負荷インピーダンス対3次混変調歪み比お
よび出力電力の関係を測定するロード・プル
(load−pull)法と称する方法により測定され
る。この測定法においては各測定点での負荷イン
ピーダンスを知る必要があるため、各測定点でチ
ユーナの取りはずしを行なつて負荷インピーダン
スを測定する。しかしこの場合、、特に超高周波
領域で接続の再現性に問題があり、また整合器の
インピーダンスを前もつて測定校正しておく場合
はインピーダンスの機構的再現性が問題となる。
The magnitude of cross-modulation distortion largely depends on the load impedance of the transistor even when the output power is constant. Normally, the intermodulation distortion characteristics and the two-signal amplification load characteristics with respect to the load impedance of a transistor are measured by changing the load using an impedance matching tuner (tuner) and measuring the relationship between the load impedance and the third-order intermodulation distortion ratio and output power. It is measured by a method called -pull method. In this measurement method, it is necessary to know the load impedance at each measurement point, so the tuner is removed at each measurement point and the load impedance is measured. However, in this case, there is a problem with the reproducibility of the connections, especially in the ultra-high frequency range, and when the impedance of the matching box is measured and calibrated in advance, there is a problem with the mechanical reproducibility of the impedance.

さらに一般に、高周波になるほど損失が少くイ
ンピーダンスの機構的再現性に優れた整合器を製
作するのが困難になり、特に超高周波低インピー
ダンスの電力トランジスタの混変調歪み対負荷イ
ンピーダンス特性測定には問題があつた。ここ
で、出力負荷特性測定に関しては「等価ロード・
プル法」なるインピーダンスチユーナを用いない
で電気的に負荷インピーダンスを変えて出力電力
を測定する方法があるが、負荷インピーダンスは
増幅動作している単一の周波数でしか変化させる
ことができず複数の周波数が混在する混変調特性
あるいは2信号増幅負荷特性測定には使用できな
かつた。
Furthermore, in general, the higher the frequency, the more difficult it is to manufacture a matching box with low loss and excellent mechanical reproducibility of impedance, and this is especially problematic when measuring the intermodulation distortion vs. load impedance characteristics of ultra-high frequency, low impedance power transistors. It was hot. Regarding output load characteristic measurement, refer to "equivalent load
There is a method called the "pull method" that measures the output power by electrically changing the load impedance without using an impedance tuner, but the load impedance can only be changed at a single frequency at which the amplification operation is being performed; It could not be used to measure cross-modulation characteristics or two-signal amplification load characteristics where multiple frequencies coexist.

本発明の目的は前記欠点を伴なわない超高周波
トランジスタの混変調特性および2信号増幅負荷
特性測定装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus for measuring cross-modulation characteristics and two-signal amplification load characteristics of ultra-high frequency transistors that does not have the above-mentioned drawbacks.

以下図面を用いて本発明の詳細を説明する。 The details of the present invention will be explained below using the drawings.

第1図は本発明の原理を説明するための図であ
る。図において19は被測定物であるトランジス
タをマウントして超高周波信号入出力端子を備え
た治具、15はトランジスタ入力回路を構成する
整合回路であり、P1jはトランジスタ入力回路へ
の周波数fj、(j=1、2)の入力信号電力、V
2i,V3iおよびVTiはそれぞれトランジスタ出力端
子Aへの周波数fi、(ただしi=1、2、3、
4)の注入波電圧、反射波電圧および端子電圧で
あり、ZOは測定回路系の特性インピーダンスを
表わす。出力端子面Aから負荷を見た周波数fi
における反射係数をΓLi、アドミタンスをYLi
すると、 ΓLi=V2i/V3i=Y−YLi/Y+YLi
i=1、2、3、4(1) の関係があるから次式が成り立つ。
FIG. 1 is a diagram for explaining the principle of the present invention. In the figure, 19 is a jig that mounts the transistor to be measured and is equipped with ultra-high frequency signal input/output terminals, 15 is a matching circuit that constitutes the transistor input circuit, and P 1j is the frequency f j to the transistor input circuit. , (j=1,2) input signal power, V
2i , V 3i and V Ti are the frequencies f i to the transistor output terminal A, respectively (where i=1, 2, 3,
4) are the injected wave voltage, reflected wave voltage, and terminal voltage, and Z O represents the characteristic impedance of the measurement circuit system. Frequency f i when looking at the load from output terminal surface A
Let Γ Li be the reflection coefficient and Y Li be the admittance at
Since there is a relationship of i=1, 2, 3, 4(1), the following equation holds true.

(2)式より各周波数における負荷アドミタンスY
LiはV2i/V3iを変化させることにより変えること
がで きる。
From equation (2), the load admittance Y at each frequency
Li can be changed by changing V 2i /V 3i .

ここで、被測定トランジスタの入力回路に周波
数f1およびf2の信号電力P11およびP12を加える
と、トランジスタのもつ非線形性から出力側には
周波数f1およびf2の出力電力の他に3次混変調歪
み成分である周波数2f1−f2および2f2−f1の出力電
力も同時に生ずる。3次混変調歪み対負荷インピ
ーダンス特性を測定するためには、f1、f2、2f1
f2および2f2−f1の周波数に対するインピーダンス
を同時に制御しなければならない。ここでf3=2f1
−f2、f4=2f2−f1とすれば(2)式より上述の4つの
周波数に対する負荷インピーダンスは適当なV2i
を注入することにより制御できる。
Here, when signal powers P 11 and P 12 at frequencies f 1 and f 2 are added to the input circuit of the transistor under test, due to the nonlinearity of the transistor, in addition to the output powers at frequencies f 1 and f 2 , the output power is Output powers at frequencies 2f 1 -f 2 and 2f 2 -f 1 , which are third-order intermodulation distortion components, are also generated at the same time. To measure the third-order intermodulation distortion versus load impedance characteristics, f 1 , f 2 , 2f 1
The impedance for frequencies f 2 and 2f 2 −f 1 must be controlled simultaneously. Here f 3 = 2f 1
If −f 2 , f 4 = 2f 2 −f 1 , then from equation (2) the load impedance for the above four frequencies is an appropriate V 2i
can be controlled by injecting

各電圧VTi,V2iおよびV3iの振幅をそれぞれV〓
Ti,V〓2iおよびV〓3iとすると出力端子への注入電

2i、反射波電力P3iは各々 P2i=1/2YOV〓 2i i=1、2、3、4(
3) P3i=1/2YOV〓 3i i=1、2、3、4(
4) で与えられる。ただしYO=ZO -1である。
Let the amplitude of each voltage V Ti , V 2i and V 3i be V〓
Ti , V〓 2i and V〓 3i , the power injected into the output terminal P 2i and the reflected wave power P 3i are respectively P 2i = 1/2Y O V〓 2 2i i = 1, 2, 3, 4(
3) P 3i = 1/2Y O V〓 2 3i i=1, 2, 3, 4(
4) is given by. However, Y O =Z O -1 .

ここでGLi=Re(YLi)とするとトランジスタ
の各信号についての出力発生電力PTiは PTi=P3i−P2i=1/2GLiV〓 Ti ただしi=1、2、3、4 (5) で与えられる。ここで添字iはfiの周波数の信
号を意味する。したがつてP11およびP12を等しく
し、かつ全V2iを制御して全YLiを等しくしたと
き、3次混変調歪み比IM3(dB)は次式で与え
られる(YLiの周波数特性を考慮に入れるときは
全Yiを等しくしないでYLiをそれぞれ所望の値に
する。
Here, if G Li = Re (Y Li ), the output generated power P Ti for each signal of the transistor is P Ti = P 3i - P 2i = 1/2 G Li V 〓 2 Ti where i = 1, 2, 3, 4 (5) is given. Here, the subscript i means a signal of frequency f i . Therefore, when P 11 and P 12 are made equal and all V 2i are controlled to make all Y Li equal, the third-order intermodulation distortion ratio IM 3 (d B ) is given by the following equation (where Y Li is When taking frequency characteristics into consideration, all Y i are not made equal, but each Y Li is set to a desired value.

IM3(dB)=10 log10T1/PT3 または10 log10T2/PT4 (6) YLiは注入信号V2iの大きさおよび位相を変え
ることにより全アドミタンス面上を動かすことが
可能であり、この原理に基づいてトランジスタの
混変調特性を測定できることがわかる。またPT
/P11およびPT2/P12により入力された2信号
の各々の利得を知ることができる。さらに(PT1
+PT2)/(P11+P12)を知ることにより通常の
意味(単一周波数のみの場合)での出力負荷特性
を近似的(実際の回路設計においては、入力信号
が複数の増幅器を設計する場合でも、単一周波数
のみの負荷特性から設計する場合が多い)に求め
ることができる。したがつて混変調歪み比だけで
なく増幅負荷特性も同時に測定することができ、
ロード・ブル測定のようにチユーナをはずすこと
なく、等歪み率曲線および等利得曲線を得ること
ができる。第2図は以上に説明した原理による本
発明の一実施例を示す測定装置構成図である。
IM 3 (d B )=10 log 10 P T1 /P T3 or 10 log 10 P T2 /P T4 (6) Y Li can be moved on the entire admittance plane by changing the magnitude and phase of the injection signal V 2i It can be seen that the cross-modulation characteristics of a transistor can be measured based on this principle. Also P T
1 /P 11 and P T2 /P 12 allows the gain of each of the two input signals to be known. Furthermore (P T1
+P T2 )/(P 11 +P 12 ), the output load characteristics in the normal sense (in the case of only a single frequency) can be approximated (in actual circuit design, an amplifier with multiple input signals is designed (in many cases, it is designed from the load characteristics of only a single frequency). Therefore, it is possible to measure not only the intermodulation distortion ratio but also the amplification load characteristics at the same time.
Equal distortion rate curves and equal gain curves can be obtained without removing the tuner unlike load bull measurements. FIG. 2 is a configuration diagram of a measuring device showing an embodiment of the present invention based on the principle explained above.

図において、発振周波数f1のマイクロ波発振器
1と発振周波数f2のマイクロ波発振器2の出力は
ミキサ、増幅器、分波器等から成り3次歪み発生
機構、発生した周波数2f1−f2、2f2−f1の3次混変
調歪み成分およびf1、f2の基本波成分を分波する
機構、および分離された4波を増幅する機構を備
えた信号発生器3に入力する。信号発生器3は周
波数f1の出力端子4、周波数f2の出力端子5、周
波数2f1−f2の出力端子7、および周波数2f2−f1
出力端子6を備え、端子4の出力は、3dB方向性
結合器8によりBおよびCに2分割し、端子5の
出力は3dB方向性結合器9によりDおよびEに2
分割する。分割された信号Dは可変抵抗減衰器1
0を経て信号Bと3dB方向性結合器11により合
成され、可変抵抗減衰器12、電力および周波数
測定用信号分岐用方向性結合器13、バイアスネ
ツトワーク14、インピーダンスチユーナ15を
経て被測定トランジスタ19の入力側に注入され
る。ここで17は入力信号周波数測定用波長計、
18は入力信号電力測定用電力計、16は抵抗減
衰器である。一方、f1の周波数の信号C、f2の周
波数の信号E、2f1−f2の周波数の信号Fおよび
2f2−f1の周波数の信号Gは各々可変位相器20,
21,22および23、可変抵抗減衰器24,2
5,26および27を経て、これらの4信号を合
成するために置かれた3つの3dB方向性結合器2
8,29および30、注入信号スペクトラム測定
用信号分岐に用いる方向性結合器31、アイソレ
ータとして用いるために第3の端子Hが50Ω終端
37により終端されたサーキユレータ36、バイ
アスネツトワーク38、出力波信号分離用サーキ
ユレータ39を経てトランジスタの出力端子Aに
注入される。なお32は可変抵抗減衰器、35は
注入波電力スペクトラム測定用スペクトラムアナ
ライザ、34は注入電力校正用電力計、33は方
向性結合器、40は直流ブロツク、44は出力波
電力スペクトラム測定用スペクトラムアナライ
ザ、41は方向性結合器、42は抵抗減衰器、4
3は反射波電力校正用電力計である。スペクトラ
ムアナライザ35および44の出力は各々周波数
の関数として、また電力計18の出力をデータ集
積器62に入力し、データ集積器62は表示部6
4を備えたミニコンピユータ63に接続され、入
力2波合計信号電力対出力基本2波合計電力の関
係を表示する。トランジスタ出力端子を見たイン
ピーダンスZ2あるいは該出力端子を見た反射系数
Γあるいはその逆数値1/Γを測定するため
に、出力端子Aへ注入される波と反射される波を
分離させるため、2個の方向性結合器74および
45が接続され、注入波を基準信号としてJ端子
に分離し、反射波をI端子に分離している。
In the figure, the outputs of a microwave oscillator 1 with an oscillation frequency f 1 and a microwave oscillator 2 with an oscillation frequency f 2 are composed of a mixer, an amplifier, a duplexer, etc., and a third-order distortion generation mechanism, the generated frequency 2f 1 −f 2 , The signal is input to a signal generator 3 equipped with a mechanism for demultiplexing the third-order intermodulation distortion component of 2f 2 -f 1 and fundamental wave components of f 1 and f 2 , and a mechanism for amplifying the separated four waves. The signal generator 3 has an output terminal 4 with a frequency f 1 , an output terminal 5 with a frequency f 2 , an output terminal 7 with a frequency 2f 1 −f 2 , and an output terminal 6 with a frequency 2f 2 −f 1 , the output of the terminal 4 is divided into two into B and C by the 3d B directional coupler 8, and the output of the terminal 5 is divided into two into D and E by the 3d B directional coupler 9.
To divide. The divided signal D is passed through the variable resistance attenuator 1
0, the signal B is combined with the 3D B directional coupler 11, and the signal to be measured passes through the variable resistance attenuator 12, the signal branching directional coupler 13 for power and frequency measurement, the bias network 14, and the impedance tuner 15. It is injected into the input side of transistor 19. Here, 17 is a wavelength meter for measuring input signal frequency;
18 is a power meter for measuring input signal power, and 16 is a resistance attenuator. On the other hand, a signal C with a frequency of f 1 , a signal E with a frequency of f 2 , a signal F with a frequency of 2f 1 - f 2 , and
The signal G with a frequency of 2f 2 −f 1 is transmitted through a variable phase shifter 20,
21, 22 and 23, variable resistance attenuator 24, 2
5, 26 and 27, three 3D B directional couplers 2 placed to combine these four signals.
8, 29 and 30, a directional coupler 31 used for signal branching for injected signal spectrum measurement, a circulator 36 whose third terminal H is terminated with a 50Ω termination 37 for use as an isolator, a bias network 38, an output wave signal It is injected into the output terminal A of the transistor via the isolation circulator 39. 32 is a variable resistance attenuator, 35 is a spectrum analyzer for measuring the power spectrum of injected waves, 34 is a power meter for calibrating the injected power, 33 is a directional coupler, 40 is a DC block, and 44 is a spectrum analyzer for measuring the power spectrum of output waves. , 41 is a directional coupler, 42 is a resistance attenuator, 4
3 is a power meter for calibrating the reflected wave power. The outputs of the spectrum analyzers 35 and 44 are each input as a function of frequency, and the output of the wattmeter 18 is input to a data integrator 62, which is connected to the display unit 6.
4, and displays the relationship between the input two-wave total signal power and the output fundamental two-wave total signal power. In order to measure the impedance Z 2 looking at the transistor output terminal or the reflection coefficient Γ 2 or its reciprocal value 1/Γ 2 looking at the output terminal, the wave injected into the output terminal A and the wave reflected are separated. Therefore, two directional couplers 74 and 45 are connected to separate the injected wave as a reference signal to the J terminal, and the reflected wave to the I terminal.

ここで反射係数(あるいはインピーダンス)を
測定するためには単一周波数での入射波および反
射波の位相および振幅を比較しなければならない
から振幅・位相比較器に4信号を入力する前に4
信号を分離する必要がある。このとき4信号を周
期的な時系列に並べてやれば1台の振幅位相比較
器で4信号の反射係数(またはインピーダンス)
が測定できる。このためにこれら4信号は分波さ
れるわけであるが、相対的離調度を大きくとり、
分波を確実にするため、I端子、J端子は各々周
波数変換器46,47に接続され中心周波数を下
げ、4信号間の相対的離調度が大きくされてい
る。その後に分波器48により4周波数の出力波
信号を端子50,51,52および53に分離
し、時分割回路58により4出力波信号を周期的
時系列に並べたのち、周波数を下げ測定精度を上
げるためにハーモニツク・コンバータ60に入力
される。同様に、分波器49により4周波数の注
入波信号を端子54,55,56および57に分
離し、時分割回路58に同期した時分割回路59
により4入力波信号を時系列に並べたのちハーモ
ニツク・コンバータ60に入力される。ハーモニ
ツク・コンバータ60から出力された注入波信
号、出力波信号の2波は表示部を備えた振幅・位
相比較器61に入力されている。
In order to measure the reflection coefficient (or impedance), it is necessary to compare the phase and amplitude of the incident wave and reflected wave at a single frequency, so before inputting the four signals to the amplitude/phase comparator,
Need to separate signals. In this case, if the four signals are arranged in a periodic time series, one amplitude phase comparator can calculate the reflection coefficient (or impedance) of the four signals.
can be measured. For this reason, these four signals are demultiplexed, but with a large relative detuning degree,
In order to ensure demultiplexing, the I and J terminals are connected to frequency converters 46 and 47, respectively, to lower the center frequency and increase the relative detuning between the four signals. After that, the output wave signals of four frequencies are separated into terminals 50, 51, 52, and 53 by the splitter 48, and the four output wave signals are arranged in a periodic time series by the time division circuit 58, and then the frequency is lowered to improve measurement accuracy. The signal is input to a harmonic converter 60 for increasing the pitch. Similarly, a splitter 49 separates the injection wave signal of four frequencies into terminals 54, 55, 56, and 57, and a time division circuit 59 synchronized with a time division circuit 58
After the four input wave signals are arranged in time series, they are input to the harmonic converter 60. Two waves, an injection wave signal and an output wave signal, output from the harmonic converter 60 are input to an amplitude/phase comparator 61 equipped with a display section.

なお、トランジスタ出力インピーダンスZ2ある
いはその逆符号値−Z2である等価負荷インピーダ
ンスZL=−Z2を測定するには、基準信号チヤン
ネル(注入波チヤンネル)とテスト信号チヤンネ
ル(出力波チヤンネル)を入れ替えればよい。こ
の測定法においては混変調歪み特性および2信号
増幅負荷を測定するのに出力整合用のインピーダ
ンス整合器を用いず、注入波により等価的に出力
負荷を変えることができ、さらに、混変調歪みお
よび2信号増幅負荷測定動作中のトランジスタの
負荷インピーダンスをそのままの状態で直視でき
る。このような本発明による効果は高精度のイン
ピーダンス整合器の製作が難かしくなるマイクロ
波帯の高周波帯および低インピーダンス素子の測
定において顕著になる。
In addition, to measure the transistor output impedance Z 2 or the equivalent load impedance Z L = -Z 2 which is its opposite sign value -Z 2 , the reference signal channel (injection wave channel) and the test signal channel (output wave channel) are connected. Just replace it. In this measurement method, an impedance matching device for output matching is not used to measure intermodulation distortion characteristics and two-signal amplification load, and the output load can be changed equivalently by injection waves. The load impedance of the transistor during 2-signal amplification load measurement operation can be viewed directly. Such effects of the present invention become noticeable in the measurement of high frequency bands and low impedance elements in the microwave band, where it is difficult to manufacture highly accurate impedance matching devices.

また、本発明の応用装置として第2図の装置構
成図においてトランジスタ出力端子Aへの各周波
数の注入電力P2iおよび反射波電力P3iの差であ
るトランジスタ出力発生電力PTiを検出する手段
を設け、該検出値にもとづいて、該混変調歪み比
が所望の一定値を与える被測定トランジスタの出
力端子インピーダンスあるいはその負値のインピ
ーダンス曲線を表示装置上に描くように減衰器2
4,25,26および27、可変移相器20,2
1,22および23を制御する機構を備え、さら
に上記3次混変調歪み比曲線測定時に2信号増幅
利得のデータを畜積し、第3次混変調歪み曲線お
よび等増幅利得曲線を同時に表示する超高周波ト
ランジスタ特性自動測定装置も得られる。
Further, as an applied device of the present invention, means for detecting the transistor output generated power P Ti , which is the difference between the injected power P 2i of each frequency to the transistor output terminal A and the reflected wave power P 3i , is provided in the device configuration diagram of FIG. and an attenuator 2 so as to draw an impedance curve of the output terminal impedance of the transistor to be measured or its negative value on the display device based on the detected value so that the intermodulation distortion ratio gives a desired constant value.
4, 25, 26 and 27, variable phase shifters 20, 2
1, 22, and 23, and also accumulates data of two-signal amplification gain when measuring the third-order intermodulation distortion ratio curve, and simultaneously displays the third-order intermodulation distortion curve and equal amplification gain curve. A device for automatically measuring ultra-high frequency transistor characteristics can also be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を説明するための図、第
2図は本発明の一実施例を示す構成図である。 図において、19は被測定トランジスタ、15
はインピーダンス整合器、3は隣接した信号との
周波数差が一定の4信号発生器、8,9,11,
28,29および30は3dB方向性結合器、2
0,21,22および23は可変移相器、13,
31,33,41,74および45は方向性結合
器、17は波長計、18,34および43は電力
計、35および44はスペクトラムアナライザ、
40は直流ブロツク、46および47は周波数変
換器、48および49は分波器、58および59
は時分割回路、60はハーモニツク・コンバー
タ、61は位相および振幅比較器、62はデータ
集積器、63はミニコンピユータ、64は表示部
である。
FIG. 1 is a diagram for explaining the principle of the present invention, and FIG. 2 is a configuration diagram showing an embodiment of the present invention. In the figure, 19 is a transistor to be measured, 15
is an impedance matching device, 3 is a four-signal generator with a constant frequency difference between adjacent signals, 8, 9, 11,
28, 29 and 30 are 3d B directional couplers, 2
0, 21, 22 and 23 are variable phase shifters, 13,
31, 33, 41, 74 and 45 are directional couplers, 17 is a wavelength meter, 18, 34 and 43 are power meters, 35 and 44 are spectrum analyzers,
40 is a DC block, 46 and 47 are frequency converters, 48 and 49 are duplexers, 58 and 59
60 is a time division circuit, 60 is a harmonic converter, 61 is a phase and amplitude comparator, 62 is a data integrator, 63 is a minicomputer, and 64 is a display section.

Claims (1)

【特許請求の範囲】 1 各々隣接した信号との周波数差が一定の発振
周波数をもつ4信号を発生する超高周波信号発生
器と、前記信号発生器による4つの信号電力のう
ち最も高い周波数と最も低い周波数の信号電力以
外の2つの信号電力を各々2分割し、分割された
一方の2信号電力を合成する回路と、その合成さ
れた2つの信号電力を被測定トランジスタの入力
端子に接続して加えるための第1の端子と、前記
分割された他方の2つの信号電力と分割されなか
つた最も高い周波数および最も低い周波数の2つ
の信号電力の4信号電力の各々を減衰制御回路お
よび位相制御回路を通した後合成する回路と、そ
の合成された4つの信号電力を被測定トランジス
タの出力端子注入するための第2の端子とを備
え、前記第2の端子に接続されたトランジスタの
前記第2の端子と前記トランジスタ出力端子との
間に各々進行波および後進波をモニタするための
2個の方向性結合器が縦続に接続され、さらに進
行波および後進波がモニタ出力される2個の端子
に各各周波数変換器および前記4信号を分波する
分波器の縦続接続回路が接続され、該分波器に該
分波器から取り出される前記4信号に関する進行
波および後進波合計8波の振幅および位相を独立
に測定する手段を備えたことを特徴とする超高周
波トランジスタ測定装置。 2 各々隣接した信号との周波数差が一定の4つ
の超高周波信号を発生するために、周波数の異な
つた任意の2信号を入力信号とし、ミキサーおよ
び分波器を用いて所望の4信号を分離発生させる
手段を備えた特許請求の範囲第1項記載の超高周
波トランジスタ特性測定測置。 3 検出される4信号の各周波数におけるトラン
ジスタ出力端子からの反射波電力と注入波電力の
差において、最も高い周波数と最も低い周波数に
関する検出電力の和および最も高い周波数と最も
低い周波数を除いた2信号に関する検出電力の和
を各々表示する装置を備えた特許請求の範囲第1
項記載の超高周波トランジスタ特性測定装置。 4 被測定トランジスタの出力端子を見た反射係
数(あるいは該反射係数の逆数値)を測定するた
めの装置の該トランジスタの出力端子への入射波
を基準信号として取り出す第1の端子と、該トラ
ンジスタの出力端子からの反射波を取り出す第2
の端子と、これら第1および第2の端子に接続さ
れ前記4つの信号周波数を分離するための2個の
分波器と、前記入射波回路および反射波回路の両
者に同期した時分割回路とを設け、前記4つの信
号周波数の入射波と反射波の各々を時系列に並べ
て前記4つの信号周波数に関するインピーダンス
(あるいは該インピーダンスの逆符号値)または
反射系数(あるいは該反射係数の逆数値)を測定
するようにした特許請求の範囲第1項記載の超高
周波トランジスタ特性測定装置。 5 特許請求の範囲第4項記載の装置において、
第1の端子および第2の端子と2個の分波器の間
に周波数変換器を備えた超高周波トランジスタ特
性測定装置。
[Claims] 1. An ultra-high frequency signal generator that generates four signals each having an oscillation frequency with a constant frequency difference between adjacent signals; A circuit that divides each of the two signal powers other than the low frequency signal power into two and combines the two divided signal powers, and connects the combined two signal powers to the input terminal of the transistor under test. an attenuating control circuit and a phase control circuit for attenuating each of the four signal powers of the other two divided signal powers and the two signal powers of the highest frequency and the lowest frequency that were not divided; and a second terminal for injecting the combined four signal powers into the output terminal of the transistor under test, the second terminal of the transistor connected to the second terminal. Two directional couplers are connected in cascade between the terminal of the terminal and the transistor output terminal for monitoring the forward wave and the backward wave, respectively, and two terminals to which the forward wave and the backward wave are output for monitoring. A cascade connection circuit of each frequency converter and a duplexer for demultiplexing the four signals is connected to the duplexer, and a total of eight forward waves and backward waves regarding the four signals taken out from the duplexer are connected to the duplexer. An ultra-high frequency transistor measuring device characterized by having means for independently measuring amplitude and phase. 2. In order to generate four ultra-high frequency signals, each with a constant frequency difference between adjacent signals, use two arbitrary signals with different frequencies as input signals, and separate the desired four signals using a mixer and a splitter. An ultra-high frequency transistor characteristic measuring instrument according to claim 1, comprising means for generating ultra-high frequency transistor characteristics. 3 In the difference between the reflected wave power and the injected wave power from the transistor output terminal at each frequency of the four detected signals, the sum of the detected power regarding the highest frequency and the lowest frequency and 2 excluding the highest frequency and the lowest frequency Claim 1, comprising a device for displaying the sum of detected powers for each signal.
The ultra-high frequency transistor characteristic measuring device described in Section 1. 4. A first terminal for extracting a wave incident on the output terminal of the transistor as a reference signal of a device for measuring the reflection coefficient (or the reciprocal value of the reflection coefficient) looking at the output terminal of the transistor to be measured; The second one extracts the reflected wave from the output terminal of
a terminal, two branching filters connected to these first and second terminals for separating the four signal frequencies, and a time division circuit synchronized with both the incident wave circuit and the reflected wave circuit. and arrange each of the incident waves and reflected waves of the four signal frequencies in time series to calculate the impedance (or the opposite sign value of the impedance) or the reflection coefficient (or the reciprocal value of the reflection coefficient) regarding the four signal frequencies. An ultra-high frequency transistor characteristic measuring device according to claim 1, which is adapted to measure ultra-high frequency transistor characteristics. 5. In the device according to claim 4,
An ultra-high frequency transistor characteristic measuring device that includes a frequency converter between a first terminal, a second terminal, and two branching filters.
JP7191278A 1978-06-13 1978-06-13 Measuring unit for ultra-high frequency transistor characteristics Granted JPS54162474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7191278A JPS54162474A (en) 1978-06-13 1978-06-13 Measuring unit for ultra-high frequency transistor characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7191278A JPS54162474A (en) 1978-06-13 1978-06-13 Measuring unit for ultra-high frequency transistor characteristics

Publications (2)

Publication Number Publication Date
JPS54162474A JPS54162474A (en) 1979-12-24
JPS6114469B2 true JPS6114469B2 (en) 1986-04-18

Family

ID=13474213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7191278A Granted JPS54162474A (en) 1978-06-13 1978-06-13 Measuring unit for ultra-high frequency transistor characteristics

Country Status (1)

Country Link
JP (1) JPS54162474A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168960U (en) * 1988-05-19 1989-11-29

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168960U (en) * 1988-05-19 1989-11-29

Also Published As

Publication number Publication date
JPS54162474A (en) 1979-12-24

Similar Documents

Publication Publication Date Title
US6639393B2 (en) Methods and apparatus for time-domain measurement with a high frequency circuit analyzer
US20120007605A1 (en) High frequency measurement system
EP0265073B1 (en) Test arrangement
US7002335B2 (en) Method for measuring a three-port device using a two-port vector network analyzer
Teppati et al. Recent advances in real-time load-pull systems
US20090174415A1 (en) Method for Calibrating a Real-Time Load-Pull System
Hughes et al. Accurate on-wafer power and harmonic measurements of mm-wave amplifiers and devices
RU2687850C1 (en) Measuring device and method of determining complex transfer coefficients of microwave-mixers
US20080278177A1 (en) Method for Direct Measurement of the Mixed-Mode Scattering Matrix With a Vectorial Network Analyser
CN109150332B (en) Device and method for pre-measuring passive intermodulation by using vector harmonics
US11193966B1 (en) Low frequency active load pull tuner
US11041882B1 (en) Active harmonic load pull impedance tuner
Dudkiewicz Vector-receiver load pull measurements
EP0234111B1 (en) Six-port reflectometer test arrangement
JPS6114469B2 (en)
US4072897A (en) Equivalent load-pull characterization of microwave transistors
Gawasawa et al. Vector measurement of nonlinear signals generated in RF SAW/BAW devices
Dengler et al. A compact 600 GHz electronically tunable vector measurement system for submillimeter wave imaging
Dvorak et al. Removal of time-varying errors in network-analyser measurements: signal normalisation and test results
CN116455483B (en) Third-order intermodulation level test system and test method for gyromagnetic device
Saurer et al. Technique for Load-Independent Millimeter-Wave Output Power Monitoring for Mass-Volume Testing
Roth et al. Vector corrected on-wafer power measurements of frequency converting two-ports
Liu et al. Load pull characterization system for differential devices
Husten et al. Microwave frequency measurements and standards
JP2698111B2 (en) Apparatus and method for measuring characteristics of microwave semiconductor device