JPS6114447B2 - - Google Patents

Info

Publication number
JPS6114447B2
JPS6114447B2 JP571680A JP571680A JPS6114447B2 JP S6114447 B2 JPS6114447 B2 JP S6114447B2 JP 571680 A JP571680 A JP 571680A JP 571680 A JP571680 A JP 571680A JP S6114447 B2 JPS6114447 B2 JP S6114447B2
Authority
JP
Japan
Prior art keywords
noise
light
circuit
gain control
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP571680A
Other languages
Japanese (ja)
Other versions
JPS56103330A (en
Inventor
Takashi Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP571680A priority Critical patent/JPS56103330A/en
Publication of JPS56103330A publication Critical patent/JPS56103330A/en
Publication of JPS6114447B2 publication Critical patent/JPS6114447B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】 本発明は赤外線信号によるリモートコントロー
ル装置の信号受信装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a signal receiving device for a remote control device using infrared signals.

従来の赤外信号受信器は、たとえば第1図に示
す構成をもち、赤外光検出素子1に変調された赤
外光が入射されると、赤外光検出素子1には電流
が流れ、赤外光検出素子1に流れた信号電流は送
信信号搬送周波数に同調するLC同調回路2で電
圧に変換され、第1の増巾回路3第2の増巾回路
4で増巾され、検波回路5により復調される。従
来の回路では赤外光検出素子1に信号以外の自然
光、白熱灯光源などからの外乱光が入射した時
に、赤外光検出素子1に雑音電流が流れ、LC同
調回路2に同調した信号周波数成分の雑音は増巾
され、検波回路5に入力される。この雑音が大き
くなると検波回路5の入力が雑音で飽和して信号
と雑音を識別できなくなる。このため赤外光によ
る通信距離を大きくし、信号に対する受信感度を
上げると、つまり増巾回路3,4の利得を上げる
と雑音に対しても敏感になり、赤外光検出素子1
に信号以外の外乱光が少しでも入射すると通信不
能となる欠点を有している。外乱光の最悪条件の
もとで増巾回路3,4の利得を制限すると、実用
外乱光のもとでは通信距離を大きくとるために
は、いたずらに赤外信号の送信エネルギーを上げ
る必要が生じ、送光側の電力消費が大となり、乾
電池などで動作するリモートコントロールには非
常に不利になる。そこで増巾器3,4の出力の雑
音レベルに応じて利得を制限する自動利得制御回
路を設け、常に検波回路5の入力に入る雑音を一
定量以下に押える事が考えられる。この方法は対
自然光及び対白熱灯に対して有効であるが、螢光
灯のパルス状の入射光に対しては、入射光中に含
まれLC同調回路を通過する同調周波数成分の雑
音により、白熱灯と同一照度のもとで強く自動利
得制御がかかりすぎる欠点を有している。検波回
路5にパルス的雑音と信号との弁別能力の高い回
路、例えば螢光等雑音を除去する能力の高い回路
を採用した場合、上記利得制御回路では不要な利
得制御がかかり通信距離をそこなう結果になる。
A conventional infrared signal receiver has the configuration shown in FIG. 1, for example, and when modulated infrared light is incident on the infrared light detection element 1, a current flows through the infrared light detection element 1. The signal current flowing through the infrared light detection element 1 is converted into a voltage by an LC tuning circuit 2 tuned to the transmission signal carrier frequency, amplified by a first amplification circuit 3 and a second amplification circuit 4, and then converted to a voltage by a detection circuit. It is demodulated by 5. In the conventional circuit, when natural light other than the signal, disturbance light from an incandescent light source, etc. enters the infrared light detection element 1, a noise current flows through the infrared light detection element 1, and the signal frequency tuned to the LC tuning circuit 2 is generated. The component noise is amplified and input to the detection circuit 5. When this noise becomes large, the input of the detection circuit 5 becomes saturated with the noise, making it impossible to distinguish between the signal and the noise. Therefore, if the communication distance by infrared light is increased and the reception sensitivity to the signal is increased, that is, if the gain of the amplifier circuits 3 and 4 is increased, the infrared light detection element 1 becomes more sensitive to noise.
It has the disadvantage that communication becomes impossible if even a small amount of disturbance light other than signals is incident on it. If the gains of the amplification circuits 3 and 4 are limited under the worst conditions of disturbance light, it becomes necessary to unnecessarily increase the transmission energy of the infrared signal in order to increase the communication distance under practical disturbance light. , the power consumption on the light transmitting side is large, which is extremely disadvantageous for remote controls that operate on dry batteries, etc. Therefore, it is conceivable to provide an automatic gain control circuit that limits the gain according to the noise level of the outputs of the amplifiers 3 and 4, so as to always suppress the noise entering the input of the detection circuit 5 to a certain amount or less. This method is effective for natural light and incandescent lamps, but for pulsed incident light from fluorescent lamps, it is difficult to use due to the noise of the tuned frequency component contained in the incident light and passing through the LC tuning circuit. It has the disadvantage that automatic gain control is applied too strongly under the same illuminance as incandescent lamps. If a circuit with a high ability to discriminate between pulse noise and signals, for example a circuit with a high ability to remove noise such as fluorescence, is adopted as the detection circuit 5, the gain control circuit described above will perform unnecessary gain control, resulting in a loss of communication distance. become.

本発明の目的は上記した従来技術の欠点をなく
し、螢光灯雑音に強い検波回路と組合せるのに適
した自動利得制御付受信増巾器を提供するにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a receiver amplifier with automatic gain control suitable for combination with a detection circuit that is resistant to fluorescent lamp noise.

上記の目的を達成するため、本発明では赤外検
知素子に流れる電流の大小により外乱光の赤外成
分の大きさを知り、螢光灯雑音と白熱灯雑音等と
を識別し、螢光灯雑音に対しは自動利得制御を働
かせなくする。
In order to achieve the above object, the present invention detects the magnitude of the infrared component of the disturbance light based on the magnitude of the current flowing through the infrared detection element, distinguishes fluorescent lamp noise from incandescent lamp noise, etc. Automatic gain control is disabled for noise.

第2図は本発明の実施例を示すブロツク図であ
る。赤外検知素子1に入射した外乱光により流れ
る直流電流を抵抗6の両端の電圧降下としてとら
え、トランジスタスイツチ7により自動利得制御
回路8を断続する構成となつている。
FIG. 2 is a block diagram showing an embodiment of the present invention. The structure is such that a direct current flowing due to disturbance light incident on the infrared detection element 1 is detected as a voltage drop across a resistor 6, and an automatic gain control circuit 8 is turned on and off by a transistor switch 7.

すなわち、抵抗6を流れる電流が増加し、抵抗
6の両端電圧がトランジスタ7のベース・エミツ
タ間電圧よりも大きくなると、トランジスタ7は
オンになる。
That is, when the current flowing through the resistor 6 increases and the voltage across the resistor 6 becomes larger than the base-emitter voltage of the transistor 7, the transistor 7 is turned on.

ここで、この受信器は信号搬送波周波数
40KHzで変調された1mSecのくりかえし信号を
受信し、これを増巾し、検波した後、1mSecの
くりかえしパルスに復調するものである。検波回
路9はτ=40μSec、τ=400μSecの2つの
時定数で信号を2回積分する。これにより増巾器
4の出力でパルスの振巾は大きくても、くりかえ
し周波数が3〜7KHzである螢光灯雑音は復調出
力としては出力されない。白熱灯等の光の入射に
より増巾器4の出力に出て来た白色雑音は検波回
路9の入力において復調出力に影響しないレベル
になるよう増巾器4の出力雑音で増巾器3の利得
を制御する利得制御回路8を設けている。この利
得制御回路8の働きを螢光灯雑音入力時には停止
することで、赤外検知素子に流れる直流電流を抵
抗6で検出し、自動利得制御回路8を断続してい
る。
Here, this receiver has a signal carrier frequency
It receives a 1 mSec repeated signal modulated at 40KHz, amplifies it, detects it, and demodulates it into a 1 mSec repeated pulse. The detection circuit 9 integrates the signal twice with two time constants: τ 1 =40 μSec and τ 2 =400 μSec. As a result, even if the amplitude of the pulse output from the amplifier 4 is large, fluorescent lamp noise with a repetition frequency of 3 to 7 KHz is not output as demodulated output. The white noise that appears at the output of the amplifier 4 due to the incidence of light such as an incandescent lamp is reduced to a level that does not affect the demodulated output at the input of the detection circuit 9. A gain control circuit 8 for controlling gain is provided. By stopping the operation of the gain control circuit 8 when fluorescent lamp noise is input, the resistor 6 detects the direct current flowing through the infrared detection element, and the automatic gain control circuit 8 is turned on and off.

これは代表的光源により同一照度のもとで赤外
検知素子1に誘起される電流は光源の赤外成分に
比例し、両者の比は概略、白熱灯光源(タングス
テンランプ)を1とすると、螢光灯では約0.1に
なる事を利用している。この結果、同一照度の外
乱光のもとにおいて、螢光灯では利得制御が働か
ず最大利得が得られ、白熱灯では利得制御を受け
た利得が得られる。螢光灯のもとでは雑音はその
まま増巾されるが、螢光灯雑音に強い検波回路9
の性質を利用できる。第3,4,5図に利得制御
のない回路と従来利得制御と本発明による利得制
御をつかつた受信回路とについて通信距離と外乱
光の関係を比較する。通信距離は送信側赤外エネ
ルギと比例するのでlで規格化し、外乱光照度に
対する許容度は増巾器3,4の利得に反比例する
のでEで規格化した。各々同一送信エネルギー
で、最大利得は同一の増巾器を用いている。第3
図に示すように利得固定の場合で、白熱灯下では
照度が高くなると検波回路9の入力が雑音で飽和
して制御不能となる。螢光灯下では検波回路9が
螢光灯雑音に強いため通信距離がそこなわれるこ
とはない。
This means that the current induced in the infrared detection element 1 by a typical light source under the same illuminance is proportional to the infrared component of the light source, and the ratio of the two is approximately, assuming that an incandescent light source (tungsten lamp) is 1. Fluorescent lights take advantage of the fact that it is approximately 0.1. As a result, under ambient light of the same illuminance, a maximum gain is obtained without gain control in a fluorescent lamp, and a gain under gain control is obtained in an incandescent lamp. Under fluorescent lights, the noise is amplified as it is, but the detection circuit 9 is resistant to fluorescent light noise.
can take advantage of the properties of 3, 4, and 5 compare the relationship between communication distance and disturbance light for a circuit without gain control, a receiving circuit using conventional gain control, and a receiving circuit using gain control according to the present invention. Since the communication distance is proportional to the infrared energy on the transmitting side, it is normalized by l, and the tolerance to disturbance light illuminance is inversely proportional to the gain of the amplifiers 3 and 4, so it is normalized by E. Each transmits the same energy and uses an amplifier with the same maximum gain. Third
As shown in the figure, in the case of fixed gain, when the illuminance becomes high under incandescent lamps, the input of the detection circuit 9 becomes saturated with noise and becomes uncontrollable. Under fluorescent light, the detection circuit 9 is resistant to fluorescent light noise, so the communication distance will not be impaired.

第4図は増巾器4の出力から自動利得制御をか
けたものであり、白熱灯に対しては外乱照度に反
比例した通信距離が得られる。螢光灯に対しては
利得制御がかかりすぎ通信距離がそこなわれる。
FIG. 4 shows automatic gain control applied to the output of the amplifier 4, and for incandescent lamps, a communication distance that is inversely proportional to the disturbance illuminance can be obtained. Fluorescent lamps are subjected to too much gain control, which impairs communication distance.

第5図は本発明による受信器の特性を示すもの
で、第3図、第4図で示す良い方の性能を組み合
せたものとなる。
FIG. 5 shows the characteristics of the receiver according to the present invention, which combines the better performances shown in FIGS. 3 and 4.

以上説明したように、本発明によれば、螢光灯
下においても、また、白熱灯下においても、受信
機の能力を最大限に発揮することが可能になり、
外乱光による雑音の影響を受けることのない受信
器を提供することができる。
As explained above, according to the present invention, it is possible to maximize the capabilities of the receiver both under fluorescent light and incandescent light.
It is possible to provide a receiver that is not affected by noise caused by disturbance light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来回路のブロツク図、第2図は本発
明による受信回路の一実施例を示すブロツク図、
第3図、第4図、第5図は特性図である。 1:赤外線検出素子、3,4:増巾器、7:ト
ランジスタ(スイツチ回路)、8:自動利得制御
回路。
FIG. 1 is a block diagram of a conventional circuit, and FIG. 2 is a block diagram showing an embodiment of a receiving circuit according to the present invention.
FIG. 3, FIG. 4, and FIG. 5 are characteristic diagrams. 1: infrared detection element, 3, 4: amplifier, 7: transistor (switch circuit), 8: automatic gain control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 赤外光検出素子と、その出力信号を増巾する
増巾器と、該増巾器の出力雑音の増加に従つて該
増巾器の利得を減少すべく結線された自動利得制
御回路と、該赤外光検出素子を流れる直流電流を
検出してオン・オフするスイツチ回路を具え、ス
イツチ回路の出力により該利得制御回路の動作を
断続すること特徴とする赤外信号受信器。
1. An infrared light detection element, an amplifier for amplifying its output signal, and an automatic gain control circuit connected to reduce the gain of the amplifier as the output noise of the amplifier increases. An infrared signal receiver comprising: a switch circuit that turns on and off by detecting a direct current flowing through the infrared light detection element; and an output of the switch circuit intermittents the operation of the gain control circuit.
JP571680A 1980-01-23 1980-01-23 Infrared signal receiver Granted JPS56103330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP571680A JPS56103330A (en) 1980-01-23 1980-01-23 Infrared signal receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP571680A JPS56103330A (en) 1980-01-23 1980-01-23 Infrared signal receiver

Publications (2)

Publication Number Publication Date
JPS56103330A JPS56103330A (en) 1981-08-18
JPS6114447B2 true JPS6114447B2 (en) 1986-04-18

Family

ID=11618833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP571680A Granted JPS56103330A (en) 1980-01-23 1980-01-23 Infrared signal receiver

Country Status (1)

Country Link
JP (1) JPS56103330A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346940U (en) * 1989-09-12 1991-04-30
JPH0533434U (en) * 1991-10-08 1993-04-30 オムロン株式会社 Flow velocity or flow sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346940U (en) * 1989-09-12 1991-04-30
JPH0533434U (en) * 1991-10-08 1993-04-30 オムロン株式会社 Flow velocity or flow sensor

Also Published As

Publication number Publication date
JPS56103330A (en) 1981-08-18

Similar Documents

Publication Publication Date Title
US4241456A (en) Remote-controlled receiver
KR100198002B1 (en) Wireless receiver
JPS6114447B2 (en)
US3932746A (en) Timing system having infared start-stop gates
JP4007689B2 (en) Receiver circuit power save circuit
JPH03108817A (en) Transmission output controller
JPS6022284B2 (en) optical signal receiver
JPH05145360A (en) Optical reception circuit and optical transformation circuit
JPH02101832A (en) Light receiving unit
JPS623951Y2 (en)
KR101775937B1 (en) Improved ir receiver structure
JPS5918759Y2 (en) squelch circuit
JPH05114887A (en) Light receiving device
JPH04296127A (en) Optical reception circuit
JPH01289328A (en) Receiver for optical signal
JPS5671347A (en) Ssb multiplex multidirection communication device
JPH01108632U (en)
JPH03266577A (en) Light reception device
JPS6226958U (en)
KR0122315Y1 (en) Remote controller
KR19980048008A (en) Pilot signal detection circuit
JPS6259497B2 (en)
JPH0697887A (en) Optical reception equipmnent
JPH0380230A (en) Optical receiving device
JPS61193596A (en) Receiver for remote controlling