JPS61144293A - Mending method of crack caused on pressure container shell - Google Patents

Mending method of crack caused on pressure container shell

Info

Publication number
JPS61144293A
JPS61144293A JP26584784A JP26584784A JPS61144293A JP S61144293 A JPS61144293 A JP S61144293A JP 26584784 A JP26584784 A JP 26584784A JP 26584784 A JP26584784 A JP 26584784A JP S61144293 A JPS61144293 A JP S61144293A
Authority
JP
Japan
Prior art keywords
shell
crack
steel
reinforcing plate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26584784A
Other languages
Japanese (ja)
Inventor
Yuji Toyoda
豊田 裕至
Toshinori Yokomaku
俊典 横幕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26584784A priority Critical patent/JPS61144293A/en
Publication of JPS61144293A publication Critical patent/JPS61144293A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups

Abstract

PURPOSE:To carry out sure reinforcement based on dynamical ground by mending with welding by the reinforcing plate of the width and thickness according to the equation after welding and mending after gouging the cracked part. CONSTITUTION:The steel made reinforcing plate (practically said quality with the pressure contained shell) in the width and thickness as shown by the equation is reinforced with welding so as to bridge the center part on the crack mending part or the both end parts after mending with welding the cracked part with gouging. However, sigma: shell allowable stress, W: width of the reinforcing plate, B: thickness of reinforcing plate, Bo: shell plate thickness, E: shell Young's modulus, sigmaf: equivalent yield strength of shell (means value of yield strength and tensile strength), upsilon: shell poison ratio, JIC: estimated minimum elastoplastic fracture toughness values around both end parts of shell crack, a: length of shell crack.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は高炉や熱風炉等の圧力容器鉄皮に生じた亀裂を
それ以上進展させない為の力学的に確実でしかも迅速に
補修できる方法に関するものである。 〔従来の技術〕 高炉や熱風炉等の圧力容器鉄皮に亀裂が発生すると、容
器内のガスが外部へ噴出してしまうばかシでなく、放置
しておくと亀裂が進展して大きくなシ、圧力容器鉄皮と
して必要な強度が保持し得なくなって、その結果大規模
な事故を発生させる原因となる。亀裂の進展を阻止する
為には可及的すみやかに補修を行なわなければならない
。従来は第2図(a)〜(f)に示す様な色々の方法で
補修が行なわれていた。まず第2図(a) 、 (b)
に示す方法では鉄皮lの亀裂2をガウジング後溶接し、
該ガクジング溶接部を覆う様に薄肉パイプの半割体或は
薄板の補強材料3をバチ当て溶接するものである。 次に第2図(C) 、 (d)に示す方法では亀裂2を
ガウジング後溶接し、当該ガウジング溶接部へ重ね合わ
せる様にリブ4を溶接して亀裂の再発及び進展を防止し
ている。更に第2図(e) 、 (f)に示す方法は亀
裂2を必要に応じガウジングした後両端にストップホー
ル5を形成し、このストップホール5に該ホール5を埋
める様な円形鋼板を挿入して溶接し亀裂の進展を防ぐ方
法である。 〔発明が解決しようとする問題点〕 上記第2図で示した各々の補修方法では、早いときには
補修後数日或は数カ月で亀裂が再発したシ、該亀裂延長
線上に別の亀裂が発生することが多かった。なぜならば
第2図(a) 、 (b)に示した補修方法では補強材
料として添着した薄肉パイプや薄板上は、亀裂の開口を
抑制する・だけの拘束力がなく、またリブ4を溶接する
第2図(c) p (d)の方法では、リブ4と鉄皮1
との隅肉溶接部の強度不足が原因となシ鉄皮1の三次元
的な熱変形のために、シブ4はずれてしまうことが多く
、亀裂の再発生防止の効果はあまシなかった。更に第2
図(e) 、 (f)で示したストップホールを設ける
方法では亀裂先端の応力集中が緩和されるため、亀裂の
再発生防止には効果があったが、いったん亀裂が発生し
てしまうと補強材を用いていない為、亀裂の抑止効果は
まったく消失してしまうという問題があった。 また上記の各補修方法は亀裂部のまわシに、パイプ等の
構造物が存在して立体的な阻害があるときには亀裂の全
長に亘って補修を施こすことが困難であるという欠点が
あった。そしてやむなく部分的補修で済ませたものでは
言うまでもなく所期の効果は発揮できない。 そこで本発明者らは、亀裂の再発防止効果が優れ、たと
え立体的阻害の為に部分的な補修しかできない場合であ
っても亀裂先端の応力集中の緩和効果と亀裂開口の抑制
効果を十分に発揮することができ、しかもこれらを確実
且つ迅速に行なうことのできる補修方法を完成すべく工
夫研究を積み重ねた結果本発明を完成するに至った。 〔問題点を解決する為の手段〕 上記問題点を解決する為、亀裂部分をガウジングして溶
接補修した後、幅及び厚さが、の不等式で示される鋼製
補強板(圧力容器鉄皮と実質的に同材質)を前記亀裂補
修部上の中央部または両端部をネたぐ様に溶接補強する
点に本発明の要旨が存在する。 ただし W=W/a  (亀裂長さで無次元化した板幅)B=B
/Bo  (鉄皮板厚で無次元化した板幅)J = J
xoπE/4a(1−1’)t((無次元化J積分)?
=σ/σf  (無次元化許容応力)ここで σ:鉄皮許容応力 、 W:補強板の幅B:補強板の厚
さ 、  Bo:鉄皮板厚E:鉄皮ヤング率 。 σf:鉄皮の相当降伏強度(耐力と引張強さの平均値) シ:鉄皮ポアソン比。 Jzo:鉄皮亀裂両端部付近の予想最低弾塑性破壊靭性
値。 a:鉄皮亀裂長さ。 を夫々示す。 なお鉄皮の亀裂先端部からコアボーリング等によって円
板状試験片を採取し、該試験片から求めた弾塑性破壊靭
性値(Jxo)を用いて補強鋼板の厚さ19幅を決定す
る方法を用いても構わない。 〔作用〕 圧力容器鉄皮に第1図(a) 、 (b)K示す様な亀
裂2が発生した場合、亀裂先端部をコアボーリングして
円板状試験片6を採取し、弾塑性破壊靭性試験を実施し
て破壊靭性値(JIO)を求める。ただし亀裂周辺部に
おいて既に破壊靭性値(JIO)が測定されていたシ、
或は破壊靭性値(JXO)をその他の方法によって予測
することが可能な場合には上記円板状試験片の採取試験
工程を省略することができる。そして亀裂部をガウジン
グ溶接し、コアボーリングした孔5には採取試験片と同
形状の鋼板を挿入して溶接補修しておく。ところが、圧
力容器に付設されている冷却盤や冷却部パイプが補強板
7の配置作業にとって障害となる場合がある。そこでこ
れを考慮し、補強板7の配置方法を第1図(C) 、 
(d)に示す様な部分的配置、具体的には亀裂の両端部
に設ける方法(ケース1)か或は第1図(e)。 (f)K示す様に亀裂の中央部に設ける方法(始ス2)
のどちらかを選択する。補強板の寸法は、(ケース1)
及び(ケース2)の夫々について、前述不等式(A式)
を用いて決定するのであるが、該不等式の(A式)設定
根拠は下記の通りである。 「線形破壊学入門、培風#(1976)J及びrDug
daletDes、、J、Mech、Phys、5ol
fdst8(1960,)spiooJによれば、亀裂
を含む完全弾塑性体について、負荷応力の大きさに対す
る亀裂先端の開口量を求めるための一般解が与えられて
いる。これは亀裂先端に生じた塵性域中に亀裂を閉じさ
せる結合力(σf)を作用させることによ〕、完全層性
体の挙動を弾性破壊力学的に取扱うことを可能としたモ
デルである。本発明方法くおいてはこの結合力だけでな
く、補強板を溶接することによって生じる補強部の応力
減少分をもう一つ別の結合力であると解釈するととKよ
り s Dugda 1 eモデルをそのまま適用する
。 即ち(ケー71)及び(ケー72)の補強条件について
、亀裂先端開口変位線鉄皮の負荷応力σ(σ/1ry)
に対し、次式で表わすことができる。 CB−1式) ただし上式においてR及びδ1は次式で定義される。 (B−2式) (B−3式) CB−1式)における右辺第1項は、塑性域が生じない
場合の弾性群、第2項はwi性域中に生じた結合力によ
る閉口量、第3項は補強板による閉口量である。補強板
がない場合には、第8項は零となル、Dugdaleの
モデμと等しくなる。 亀裂先端開口変位δと亀裂先端のエネμギーであるJ積
分との関係は、 J”’i”a      CC式) の関係にあることが知られておシ、亀裂先端のエネμギ
ー1が鉄皮材料固有の値Jxot−越えると、亀裂はそ
れ以上の応力を負荷しなくても進展することになる。従
って亀裂が進展しない限界条件は次式で示される。 δ≦Jxo/σf      (D式)(D式)の左辺
に(B−1式)を代入することによって鉄皮材質(Ix
o及びσf)、補強板寸法(B及びW)及び許容応力σ
の関係を導くことができる。上式を使って種々の許容応
力に対し、圧力容器鉄の厚さが補強板の厚さと同じであ
るB=1場合について(D式)を用いて限界条件を設定
じたグラフを第3図に示す。 東線は(ケース1)t−示し、一点鎖線は(ケー72)
を示している。tた無次元化許容応力が0.5(σ=0
.5)の場合について種々の無次元化板厚′iに対する
限界条件を示すグラフが第4図である。尚この場合の実
線は
[Industrial Field of Application] The present invention relates to a mechanically reliable and quick repair method for preventing further propagation of cracks occurring in the shell of a pressure vessel such as a blast furnace or hot blast furnace. [Prior art] When cracks occur in the shell of a pressure vessel such as a blast furnace or hot blast furnace, the gas inside the vessel does not just blow out to the outside, but if left untreated, the cracks will grow and cause a large problem. , it becomes impossible to maintain the strength required for the pressure vessel shell, resulting in a large-scale accident. Repairs must be made as soon as possible to prevent the crack from growing. Conventionally, repairs have been carried out using various methods as shown in FIGS. 2(a) to 2(f). First, Figure 2 (a) and (b)
In the method shown in Fig. 1, cracks 2 in the steel skin 1 are welded after gouging,
A reinforcing material 3 made of half a thin-walled pipe or a thin plate is welded with a dowel so as to cover the gagging welded part. Next, in the method shown in FIGS. 2(C) and 2(d), the crack 2 is welded after gouging, and the rib 4 is welded so as to overlap the gouged welded part to prevent the recurrence and propagation of the crack. Furthermore, in the method shown in FIGS. 2(e) and 2(f), after gouging the crack 2 as necessary, stop holes 5 are formed at both ends, and a circular steel plate is inserted into the stop hole 5 to fill the hole 5. This is a method to prevent cracks from developing by welding. [Problems to be Solved by the Invention] With each of the repair methods shown in Fig. 2 above, the crack may recur within a few days or months after repair, and another crack may occur along the extension line of the crack. There were many things. This is because, in the repair method shown in Figures 2(a) and (b), the thin-walled pipes and thin plates attached as reinforcing materials do not have sufficient binding force to suppress the opening of cracks, and the ribs 4 are welded. In the method shown in Fig. 2 (c) p (d), the rib 4 and the iron skin 1
Due to the three-dimensional thermal deformation of the sheath 1 caused by the insufficient strength of the fillet weld between the shib 4 and the shib 4, the shib 4 was often displaced and was not very effective in preventing the recurrence of cracks. Furthermore, the second
The method of providing stop holes shown in Figures (e) and (f) was effective in preventing the re-occurrence of cracks because it alleviated the stress concentration at the tip of the crack, but once a crack has occurred, reinforcement is required. Since no material was used, there was a problem in that the effect of inhibiting cracks was completely lost. In addition, each of the above repair methods has the disadvantage that it is difficult to repair the entire length of the crack when there is a three-dimensional obstruction due to the presence of a structure such as a pipe around the crack. . Needless to say, if a partial repair is unavoidable, the desired effect will not be achieved. Therefore, the present inventors have found that the effect of preventing the recurrence of cracks is excellent, and even if only partial repair is possible due to three-dimensional obstruction, the effect of alleviating stress concentration at the crack tip and suppressing crack opening can be sufficiently reduced. The present invention has been completed as a result of repeated efforts to develop a repair method that can perform these functions reliably and quickly. [Means for solving the problem] In order to solve the above problem, after gouging the crack and repairing it by welding, a steel reinforcing plate (with the pressure vessel shell) whose width and thickness are expressed by the inequality The gist of the present invention lies in reinforcing the center portion or both ends of the crack repair portion by welding the crack repair portion (substantially the same material) in a welding manner. However, W=W/a (plate width made dimensionless by crack length) B=B
/Bo (plate width made dimensionless by iron skin plate thickness) J = J
xoπE/4a(1-1')t((dimensionalized J integral)?
= σ/σf (non-dimensional allowable stress) where σ: steel shell allowable stress, W: reinforcing plate width B: reinforcing plate thickness, Bo: steel shell thickness E: steel shell Young's modulus. σf: Equivalent yield strength of steel shell (average value of yield strength and tensile strength) C: Poisson's ratio of steel shell. Jzo: Expected minimum elastic-plastic fracture toughness value near both ends of a steel shell crack. a: Steel skin crack length. are shown respectively. In addition, there is a method in which a disk-shaped test piece is taken from the tip of a crack in the steel shell by core boring, etc., and the elastic-plastic fracture toughness value (Jxo) obtained from the test piece is used to determine the thickness 19 width of the reinforcing steel plate. You may use it. [Operation] When a crack 2 as shown in Fig. 1 (a) and (b) K occurs in the pressure vessel shell, the tip of the crack is core-bored and a disk-shaped test piece 6 is taken and subjected to elastic-plastic fracture. A toughness test is performed to determine the fracture toughness value (JIO). However, if the fracture toughness value (JIO) has already been measured around the crack,
Alternatively, if the fracture toughness value (JXO) can be predicted by another method, the step of collecting and testing the disc-shaped test piece can be omitted. Then, the cracked portion is gouged and welded, and a steel plate having the same shape as the sample specimen is inserted into the core-bored hole 5 and repaired by welding. However, the cooling plate and the cooling section pipe attached to the pressure vessel may become an obstacle to the work of arranging the reinforcing plate 7. Therefore, taking this into consideration, the method of arranging the reinforcing plate 7 is shown in Fig. 1 (C).
Partial arrangement as shown in (d), specifically the method of providing at both ends of the crack (Case 1) or Fig. 1(e). (f) Method of installing in the center of the crack as shown in K (starting step 2)
Choose one. The dimensions of the reinforcing plate are (Case 1)
For each of (Case 2) and (Case 2), the above inequality (Formula A)
The basis for setting the inequality (Formula A) is as follows. “Introduction to Linear Fracture Science, Baifu # (1976) J and rDug
daletDes,,J,Mech,Phys,5ol
According to fdst8 (1960,) SpiooJ, a general solution for determining the opening amount of the crack tip with respect to the magnitude of applied stress is given for a completely elastic-plastic body containing a crack. This is a model that makes it possible to treat the behavior of a fully layered body in terms of elastic fracture mechanics by applying a cohesive force (σf) that closes the crack to the dusty region generated at the tip of the crack. . In the method of the present invention, we interpret not only this bonding force but also the stress reduction in the reinforced part caused by welding the reinforcing plate as another bonding force. Apply as is. That is, for the reinforcement conditions of (K71) and (K72), the load stress σ (σ/1ry) on the crack tip opening displacement line
can be expressed by the following equation. CB-1 formula) However, in the above formula, R and δ1 are defined by the following formula. (Equation B-2) (Equation B-3) Equation CB-1) The first term on the right side is the elastic group when no plastic region occurs, and the second term is the amount of closure due to the bonding force generated in the wi-like region. , the third term is the amount of closure due to the reinforcing plate. If there is no reinforcing plate, the eighth term is zero and equal to Dugdale's model μ. It is known that the relationship between the crack tip opening displacement δ and the J integral, which is the energy μ at the crack tip, is as follows: If the value Jxot- specific to the skin material is exceeded, the crack will propagate without further stress being applied. Therefore, the limit condition under which cracks do not propagate is expressed by the following equation. δ≦Jxo/σf (Formula D) By substituting (Formula B-1) to the left side of (Formula D), the steel skin material (Ix
o and σf), reinforcement plate dimensions (B and W) and allowable stress σ
It is possible to derive the relationship between Figure 3 shows a graph in which limit conditions are set using (D formula) for the case of B = 1, where the thickness of the pressure vessel iron is the same as the thickness of the reinforcing plate, for various allowable stresses using the above formula. Shown below. The east line shows (Case 1) t-, and the dashed line shows (K72)
It shows. t, the dimensionless allowable stress is 0.5 (σ=0
.. FIG. 4 is a graph showing the limit conditions for various dimensionless plate thicknesses 'i' in case 5). In this case, the solid line is

〔実施例〕〔Example〕

本発明方法を用いた(鉄皮厚さ30m)の圧力容器亀裂
補修方法について第5図に沿って説明する。配管つけ根
部の鉄皮より全長2a(5000)の亀裂が鉄皮に発生
した場合、亀裂部2會ガウジングし補修溶接した後、補
強板7を使って亀裂部の補強をしたいと考え九が、亀裂
の中央部に配管がある為全長に亘って補強板Tを溶接す
ることができない、そこで本発明方法を利用して補強板
の所要寸法を求めることとした。該亀裂部2付近で別途
採取したコアボーリング材から、鉄皮の弾塑性破壊靭性
値(JIO)を測定すると7.5恥/厘であり、またヤ
ング*(E)は2100011m” 、相当降伏強度(
σf)は8Q KtJwx” 、ポアソン比は0.8で
あった。以上の数値よ)無次元化J積分(J)は本発明
の計算により0.6Gとなり、容器鉄皮の厚さと同一厚
゛さくB=1)の鋼板を補強板として用いるとすると、
許容応力(σ)が相当降伏強度の1/2(/=0.5)
と定められた本圧力容器では、補強板7の板幅9は(A
式)よjD(128となる。そこで本実施例における補
強板の板幅(2W)は、亀裂部が500Mでおることか
ら0.28X500(m)=140(a)が必要である
との結論に到達した。 即ち厚さ30腸2幅70麿の鋼板を2枚第5図の如く亀
裂両端に溶接して補修を行なえば良いことを意味する。 この決定値を基にして補修を行なった結果、補修してか
ら1年を経過しても亀裂の再発生及び進展は認められず
、本発明方法は有効であることが証明された。 〔発明の効果〕 本発明方法管用いて補強板の寸法を求めることによシ、
圧力容器鉄皮に生じた亀裂の補修に対して力学的根拠に
基づ<at*な補強金施こすことが可能となった。特に
鉄皮表面に冷却盤や冷却パイプが配置され、補強板の溶
接について立体的な制限を受ける箇所であっても、構造
に応じた補強板の寸法を迅速に決定することができ、鉄
皮亀裂補修後で再び亀裂が生じたり、亀裂が進展するこ
とが少なくなった。
A method for repairing cracks in a pressure vessel (with a steel shell thickness of 30 m) using the method of the present invention will be explained with reference to FIG. If a crack with a total length of 2a (5000 mm) occurs in the steel skin at the base of the pipe, after gouging the crack and repair welding, I would like to use the reinforcing plate 7 to reinforce the crack. Since the pipe is located in the center of the crack, it is not possible to weld the reinforcing plate T over its entire length, so the method of the present invention was used to determine the required dimensions of the reinforcing plate. The elastic-plastic fracture toughness (JIO) of the steel shell was measured from the core boring material separately collected near the crack 2, and it was 7.5 mm/rin, and the Young* (E) was 21000011 m'', equivalent yield strength. (
σf) was 8Q KtJwx" and Poisson's ratio was 0.8. Based on the above values, the dimensionless J-integral (J) was 0.6G according to the calculation of the present invention, which is the same thickness as the container shell. If a steel plate with a thickness of B = 1) is used as a reinforcing plate,
Allowable stress (σ) is 1/2 of equivalent yield strength (/=0.5)
In this pressure vessel, the plate width 9 of the reinforcing plate 7 is (A
Equation) is jD (128. Therefore, the width (2W) of the reinforcing plate in this example is determined to be 0.28 x 500 (m) = 140 (a) since the crack area is 500 m. This means that the repair can be carried out by welding two steel plates with a thickness of 30 mm and a width of 70 mm as shown in Figure 5 at both ends of the crack.The repair was carried out based on this determined value. As a result, no re-occurrence or growth of cracks was observed even after one year had passed since the repair, proving that the method of the present invention is effective. [Effects of the Invention] By determining the dimensions,
It has become possible to apply <at* reinforcement metal on mechanical grounds to repair cracks that occur in the steel skin of a pressure vessel. In particular, even in areas where cooling plates and cooling pipes are placed on the surface of the steel shell and there are three-dimensional restrictions on welding the reinforcing plate, it is possible to quickly determine the dimensions of the reinforcing plate according to the structure. After crack repair, cracks are less likely to reoccur or grow.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(f)は本発明方法を用いた代表的な実
施例を示す説明図、第2図(a)〜(f)は従来の亀裂
補修方法を示す説明図、第8,4図線J積分と補強板寸
法の関係を示すグラフ、第5図は本発明方法を用いた補
修例を示す概略図でめる。
FIGS. 1(a) to (f) are explanatory diagrams showing typical embodiments using the method of the present invention, FIGS. 2(a) to (f) are explanatory diagrams showing a conventional crack repair method, and FIG. , 4 is a graph showing the relationship between line J integral and reinforcing plate dimensions, and FIG. 5 is a schematic diagram showing an example of repair using the method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)圧力容器鉄皮に生じた亀裂部分をガウジング後溶
接補修した後、幅及び厚さが下記の不等式で示され、し
かも前記鉄皮と実質的に同材質の鋼製補強板を前記ガウ
ジング補修部の中央部または両端部をまたぐ様に添えて
溶接補修することを特徴とする圧力容器鉄皮に生じた亀
裂の補修方法。 1≧■≧3■−■/(2.1■■/3) ■=W/a(亀裂長さで無次元化した板幅)■=B/B
o(鉄皮板厚で無次元化した板幅)■=J_I_OπE
/4a(1−ν^2)σf(無次元化J積分)■=σ/
σf(無次元化許容応力) ただし σ:鉄皮許容応力、W:補強板の幅 B:補強板の厚さ、Bo:鉄皮板厚 E:鉄皮ヤング率 σf:鉄皮の相当降伏強度(耐力と引張強さの平均値)
、 ν:鉄皮ポアソン比、 J_I_O:鉄皮亀裂両端部付近の予想最低弾塑性破壊
靭性値 a:鉄皮亀裂長さ、
(1) After gouging and welding the cracks that have occurred in the pressure vessel shell, a steel reinforcing plate whose width and thickness are expressed by the following inequality and which is made of substantially the same material as the steel shell is used as the gouge. A method for repairing cracks that have occurred in a pressure vessel shell, which comprises repairing by welding the repaired part so as to straddle the center or both ends of the repaired part. 1≧■≧3■−■/(2.1■■/3) ■=W/a (plate width made dimensionless by crack length)■=B/B
o (plate width made dimensionless by steel plate thickness)■=J_I_OπE
/4a(1-ν^2)σf (dimensionalless J integral) ■=σ/
σf (non-dimensional allowable stress) where σ: steel shell allowable stress, W: reinforcing plate width B: reinforcing plate thickness, Bo: steel shell thickness E: steel shell Young's modulus σf: steel shell equivalent yield strength (Average value of yield strength and tensile strength)
, ν: Steel skin Poisson's ratio, J_I_O: Expected minimum elastic-plastic fracture toughness value near both ends of the steel skin crack a: Steel skin crack length,
(2)特許請求の範囲第1項において、圧力容器鉄皮に
生じた亀裂周辺の鋼材を採取して試験し、弾塑性破壊靭
性値(J_I_O)を求めて、補強板の幅及び厚さを決
定する圧力容器鉄皮に生じた亀裂補修方法。
(2) In claim 1, the steel material around the crack that has occurred in the pressure vessel shell is sampled and tested, the elastic-plastic fracture toughness value (J_I_O) is determined, and the width and thickness of the reinforcing plate are determined. Determine how to repair cracks in the pressure vessel shell.
JP26584784A 1984-12-17 1984-12-17 Mending method of crack caused on pressure container shell Pending JPS61144293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26584784A JPS61144293A (en) 1984-12-17 1984-12-17 Mending method of crack caused on pressure container shell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26584784A JPS61144293A (en) 1984-12-17 1984-12-17 Mending method of crack caused on pressure container shell

Publications (1)

Publication Number Publication Date
JPS61144293A true JPS61144293A (en) 1986-07-01

Family

ID=17422894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26584784A Pending JPS61144293A (en) 1984-12-17 1984-12-17 Mending method of crack caused on pressure container shell

Country Status (1)

Country Link
JP (1) JPS61144293A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329417A (en) * 2004-05-18 2005-12-02 Mazda Motor Corp Joining method
JP2006142367A (en) * 2004-11-24 2006-06-08 Nippon Steel Corp Structure and method for enhancing fatigue performance of weld joint
JP2007016750A (en) * 2005-07-11 2007-01-25 Ebara Corp Pump
JP2009113046A (en) * 2007-11-01 2009-05-28 Kobe Steel Ltd Reinforcing structure excellent in arresting brittle crack propagation
CN108723693A (en) * 2018-04-23 2018-11-02 中国第汽车股份有限公司 2000 tons of mechanical press high speed axle fracture fast repairing methods
JP2019141870A (en) * 2018-02-19 2019-08-29 三菱電機株式会社 Weld repairing method and container
CN111168207A (en) * 2020-01-14 2020-05-19 台州市特种设备检验检测研究院 Repair welding seam method for stress corrosion cracks of ammonia refrigeration container

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329417A (en) * 2004-05-18 2005-12-02 Mazda Motor Corp Joining method
JP4505799B2 (en) * 2004-05-18 2010-07-21 マツダ株式会社 Joining method
JP2006142367A (en) * 2004-11-24 2006-06-08 Nippon Steel Corp Structure and method for enhancing fatigue performance of weld joint
JP2007016750A (en) * 2005-07-11 2007-01-25 Ebara Corp Pump
JP2009113046A (en) * 2007-11-01 2009-05-28 Kobe Steel Ltd Reinforcing structure excellent in arresting brittle crack propagation
JP2019141870A (en) * 2018-02-19 2019-08-29 三菱電機株式会社 Weld repairing method and container
CN108723693A (en) * 2018-04-23 2018-11-02 中国第汽车股份有限公司 2000 tons of mechanical press high speed axle fracture fast repairing methods
CN111168207A (en) * 2020-01-14 2020-05-19 台州市特种设备检验检测研究院 Repair welding seam method for stress corrosion cracks of ammonia refrigeration container
CN111168207B (en) * 2020-01-14 2021-11-16 台州市特种设备检验检测研究院 Repair welding seam method for stress corrosion cracks of ammonia refrigeration container

Similar Documents

Publication Publication Date Title
Perez Linear elastic fracture mechanics
Wang et al. Understanding of fatigue crack growth behavior in welded joint of a new generation Ni-Cr-Mo-V high strength steel
JPS61144293A (en) Mending method of crack caused on pressure container shell
JP3965106B2 (en) Girder structure reinforcement method
Kannengiesser et al. Effects of heat control on the stress build-up during high-strength steel welding under defined restraint conditions
Umekuni et al. Usefulness of undermatched welds for high-strength steels
Mashiri et al. Effects of weld profile on the fatigue life of thin-walled cruciform joint
Olabi et al. Effects of the stress-relief conditions on a martensite stainless-steel welded component
RU2036459C1 (en) Method of evaluation of strength of welded structure
Mičian et al. The repair of foundry defects in steel castings using welding technology
Mikami et al. Through process modeling of the fracture toughness test of multipass welds incorporating residual stress distribution
Mashiri Thin-walled tubular connections under fatigue loading
Josi Reliability-based management of fatigue failures
Balasubramanian et al. Fatigue life prediction of load carrying cruciform joints of pressure vessel steel by statistical tools
Shoji et al. Simulation-Based Design of Girth Welds of High-Pressure Pipeline to Improve Tensile Strain Limit for Leakage from Weld Flaws
Mohr et al. An analysis of a completed temper bead weld repair performed on an amine tower
Sathish et al. Evaluation of stress intensity factor of welded structural steel component
Lahiri et al. Metallurgical Aspects of Welding
JP4304892B2 (en) Welded joint
Chamim et al. Characteristic stress corrosion cracking of GTAW stainless steel grade 304 in corrosion environment
JP3900490B2 (en) Fatigue reinforcement method for girders with flange gussets
Bowman The effect of discontinuities on the fatigue behavior of transverse butt welds in steel
Robin Industrial Challenges Where Computational Welding Mechanics Becomes an Engineering Tool
Wu Fatigue crack propagation behaviour of welded and weld repaired 5083 aluminium alloy joints
Mattila Investigation of the fatigue performance of welded duplex stainless steel