JPS61144021A - Semiconductor exposure system - Google Patents
Semiconductor exposure systemInfo
- Publication number
- JPS61144021A JPS61144021A JP59265268A JP26526884A JPS61144021A JP S61144021 A JPS61144021 A JP S61144021A JP 59265268 A JP59265268 A JP 59265268A JP 26526884 A JP26526884 A JP 26526884A JP S61144021 A JPS61144021 A JP S61144021A
- Authority
- JP
- Japan
- Prior art keywords
- mirror
- pressure
- mask
- semiconductor exposure
- curvature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 12
- 230000003287 optical effect Effects 0.000 claims description 14
- 238000001816 cooling Methods 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 230000007246 mechanism Effects 0.000 abstract description 5
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 abstract 2
- 235000012431 wafers Nutrition 0.000 description 19
- 101100269850 Caenorhabditis elegans mask-1 gene Proteins 0.000 description 15
- 238000000034 method Methods 0.000 description 7
- 238000005286 illumination Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
- G03F7/70883—Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Atmospheric Sciences (AREA)
- Toxicology (AREA)
- Environmental & Geological Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、半導体露光装置に関し、特に、集積回路製造
過程においてフォトマスクのパターンをシリコンウェハ
上に転写する際の前工程パターンに対する倍率誤差を除
去するようにした半導体露光装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor exposure apparatus, and particularly to a method for reducing magnification errors with respect to a pre-process pattern when transferring a photomask pattern onto a silicon wafer in the integrated circuit manufacturing process. The present invention relates to a semiconductor exposure apparatus that removes the light.
[従来技術の説明]
半導体集積回路を製造する過程ではマスクパターンをウ
ェハ基板上に投影転写する工程が複数回存在する。従っ
て前工程でウェハ上に転写されたマスクパターンに次工
程のマスクパターンを高精度で位置整合させることが高
集積化や歩留り向上の為の重要な要因となる。[Description of Prior Art] In the process of manufacturing a semiconductor integrated circuit, there are multiple steps of projecting and transferring a mask pattern onto a wafer substrate. Therefore, aligning the mask pattern of the next process with the mask pattern transferred onto the wafer in the previous process with high precision is an important factor for achieving high integration and improving yield.
しかしながら、従来のミラー投影露光装置におてはミラ
ー面精度による倍率誤差やマスクおよびウェハの製作誤
差により高精度の位置合わせが困難であった。However, in conventional mirror projection exposure apparatuses, highly accurate positioning is difficult due to magnification errors due to mirror surface precision and manufacturing errors of masks and wafers.
[発明の目的]
本発明は、上述の従来形における問題点に鑑みてなされ
たもので、反射光学系を有する半導体露光装置において
、反射光学系を構成するミラーの面精度または曲率を補
正または1.!J telすることで面精度による倍率
誤差、マスクおよびウェハの製作誤差、さらには露光装
置相互での倍率誤差を取り除くことを目的とする。[Object of the Invention] The present invention has been made in view of the above-mentioned problems with the conventional type, and is a semiconductor exposure apparatus having a reflective optical system. .. ! The purpose of J tel is to eliminate magnification errors due to surface accuracy, manufacturing errors of masks and wafers, and magnification errors between exposure devices.
[実施例] 以下、図面を用いて本発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail using the drawings.
第1図は、本発明の一実施例に係る半導体露光装置の投
影光学系の構成を示す。同図の光学系において、凹面ミ
ラー5と凸面ミラー4との2枚の球面反射鏡は垂直に配
置され、マスク1とウェハ2は台形ミラー3を挟んで上
下に対面配置され、マスク1とウェハ2とが図示しない
キャリッジによりエアベアリングガイド等のガイド機構
(図示せず)に沿って球面鏡4.5の光軸方向に一体的
に直線走査移動されるようになっている。台形ミラー3
の両反射面(ミラー面)3a、3bは照明光束6をマス
ク1を介して受けてそれを直角に凹面15へ反射させ、
また四面15からの光束を直角にウェハ2へ向けて反射
させるものである。照明系はマスク1の上方に配置され
ており、例えば超高圧水銀ランプ等からの光束を幅方向
(第1図で紙面の表裏方向)に延びるスリット光束にし
てマスク1を照射するようになっている。また、照明系
からマスク1を通過した光6は台形ミラー3(ミラー面
3a)、凹面ミラー5、凸面ミラー4、さらに凹面ミラ
ー5および台形ミラー3(ミラー面3b)の各ミラー面
で反射され、ウェハ2上にマスク1のパターンをスリッ
ト状に転写する。このスリット状の照明光束6をマスク
1に照射しマスク1からのスリット状のパターン像をウ
ェハ2上に投影した状態で光学系を固定してマスク1と
ウェハ2とを上記キャリッジにより上記球面!114゜
5の光軸方向に等速移動させることにより、マスク1の
パターンをウェハ2の全面に転写することができる。FIG. 1 shows the configuration of a projection optical system of a semiconductor exposure apparatus according to an embodiment of the present invention. In the optical system shown in the figure, two spherical reflecting mirrors, a concave mirror 5 and a convex mirror 4, are arranged vertically, a mask 1 and a wafer 2 are arranged vertically facing each other with a trapezoidal mirror 3 in between, and the mask 1 and the wafer 2 are integrally linearly scanned in the optical axis direction of the spherical mirror 4.5 along a guide mechanism (not shown) such as an air bearing guide by a carriage (not shown). Trapezoidal mirror 3
Both reflective surfaces (mirror surfaces) 3a and 3b receive the illumination light beam 6 via the mask 1 and reflect it at right angles to the concave surface 15,
Further, the light beams from the four surfaces 15 are reflected toward the wafer 2 at right angles. The illumination system is arranged above the mask 1, and is designed to irradiate the mask 1 by converting a light beam from, for example, an ultra-high pressure mercury lamp into a slit light beam extending in the width direction (in the front and back directions of the paper in FIG. 1). There is. Furthermore, the light 6 that has passed through the mask 1 from the illumination system is reflected by the trapezoidal mirror 3 (mirror surface 3a), the concave mirror 5, the convex mirror 4, and further by the concave mirror 5 and the trapezoidal mirror 3 (mirror surface 3b). , the pattern of the mask 1 is transferred onto the wafer 2 in the form of slits. The mask 1 is irradiated with this slit-shaped illumination light beam 6, and the slit-shaped pattern image from the mask 1 is projected onto the wafer 2.The optical system is fixed, and the mask 1 and the wafer 2 are moved by the carriage to the above-mentioned spherical surface! The pattern of the mask 1 can be transferred to the entire surface of the wafer 2 by moving the mask 1 at a constant speed in the direction of the optical axis at 114°.
ところで、従来の露光装置においては、投影光学系の各
ミラー面の精度やマスク1およびウェハ2の製作誤差に
よる倍率誤差、あるいは各工程で用いられる露光装置相
互間の倍率誤差等により、マスク1のパターン像とウェ
ハ2上に前工程で形成されているパターン像とを高精度
で位置合せすることが困難であるという不都合があった
。By the way, in conventional exposure apparatuses, the accuracy of each mirror surface of the projection optical system, magnification errors due to manufacturing errors of the mask 1 and wafer 2, or magnification errors between the exposure apparatuses used in each process, etc. There is a problem in that it is difficult to align the pattern image and the pattern image formed on the wafer 2 in the previous process with high precision.
そこで、第1図の装置においては、第2および第3図に
示す様に、台形ミラー3の内部に空間10を設け、この
空間10にサーボ機構付レギュレータ7.7を介して設
備元圧(正圧)8および設備元圧(負圧)9を接続し、
空[910の内圧を変化して台形ミラー3のミラー面3
bの曲率を制御するようにしている。Therefore, in the apparatus shown in FIG. 1, as shown in FIGS. 2 and 3, a space 10 is provided inside the trapezoidal mirror 3, and the equipment source pressure ( Connect positive pressure) 8 and equipment source pressure (negative pressure) 9,
Mirror surface 3 of trapezoidal mirror 3 by changing the internal pressure of empty [910]
The curvature of b is controlled.
上記構成において、サーボ機構付レギュレータ7.7を
制御することにより、空間10内の圧力を正負いずれに
も変化させることができ、ミラー面3bに正負所望の外
力を印加することができる。In the above configuration, by controlling the regulator 7.7 with a servo mechanism, the pressure within the space 10 can be changed to either positive or negative, and a desired positive or negative external force can be applied to the mirror surface 3b.
すなわち、レギュレータ7.7を1jll関して空間1
0を設備元圧8に連絡すれば空71110内の圧力は上
昇し、設備元圧9に連絡すれば空間10内の圧力は下降
する。また、所望の圧力のときレギュレータ7゜7を閉
じれば空間10内の圧力を所定値に保つことができる。That is, the regulator 7.7 is spaced 1 with respect to 1jll.
If 0 is connected to the equipment source pressure 8, the pressure in the space 71110 will rise, and if it is connected to the equipment source pressure 9, the pressure in the space 10 will be decreased. Moreover, if the regulator 7.7 is closed when the desired pressure is reached, the pressure within the space 10 can be maintained at a predetermined value.
このようにして、空間10内の圧力を正圧にすると、ミ
ラー面3bは、第4図に示す様に、凸状となり、マスク
1のパターンがウェハ2に拡大投影される。一方、空間
10内の圧力を負圧にすると、ミラー面3bは、第5図
に示す様に、凹状となり、マスク1のパターンがウェハ
2に縮少投影される。When the pressure in the space 10 is made positive in this manner, the mirror surface 3b becomes convex as shown in FIG. 4, and the pattern of the mask 1 is enlarged and projected onto the wafer 2. On the other hand, when the pressure in the space 10 is made negative, the mirror surface 3b becomes concave, as shown in FIG. 5, and the pattern of the mask 1 is reduced and projected onto the wafer 2.
[実施例の変形例]
なお、上述においては、ミラー面の精度または曲率を制
御するための圧力媒体として空気を用いているが、他の
流体を用いるようにしてもよい。[Modifications of Embodiments] In the above description, air is used as the pressure medium for controlling the precision or curvature of the mirror surface, but other fluids may be used.
あるいは、ミラー面を加熱または冷却することにより、
ミラー面の精度または曲率を制御するようにしてもよい
。また、上述においては、台形ミラー3のミラー面3b
の曲率を制御する例について述べたが、ミラー面3aま
たは他のミラー4.5のミラー面の曲率を制御する様に
してもよいことは勿論である。Alternatively, by heating or cooling the mirror surface,
The precision or curvature of the mirror surface may also be controlled. Further, in the above description, the mirror surface 3b of the trapezoidal mirror 3
Although an example has been described in which the curvature of the mirror surface 3a or the mirror surface of the other mirror 4.5 is controlled, it goes without saying that the curvature of the mirror surface 3a or the other mirror surface 4.5 may be controlled.
−[発明の効果〕
以上説明したように本発明によると、ミラーの面精度お
よび曲率を補正かつ制御するようにしたため、ミラー面
精度による転写像の歪や倍率誤差、マスクおよびウェハ
の製作誤差に基づく倍率誤差や半導体露光装置相互間で
の倍率誤差を取り除く効果がある。- [Effects of the Invention] As explained above, according to the present invention, since the surface precision and curvature of the mirror are corrected and controlled, the distortion of the transferred image due to the mirror surface precision, the magnification error, and the manufacturing error of masks and wafers are reduced. This has the effect of eliminating magnification errors based on the image quality and magnification errors between semiconductor exposure apparatuses.
第1図は、本発明の一実施例に係る投影光学系の全体構
成図、
第2図および第3図は、それぞれ第1図の光学系におけ
る台形ミラーの正面図および側面図、第4図および第5
図は、第2図および第3図における空間に正圧および負
圧を働かせた場合にマスクのパターンがウェハ上にそれ
ぞれ拡大および縮少投影する模様の説明図である。
1:マスク、2:ウェハ、3:台形ミラー、3a、3b
:台形ミラー3のミラー面、4:凸面ミラー、5:凹面
ミラー、6:光路、7:サーボ機構付レギュレータ、8
:設備元圧、(正圧力)、9:設備元圧(負圧力)、1
0:外力を発生させるためミラー内に設けた空間。FIG. 1 is an overall configuration diagram of a projection optical system according to an embodiment of the present invention. FIGS. 2 and 3 are a front view and a side view of a trapezoidal mirror in the optical system of FIG. 1, respectively, and FIG. and the fifth
The figures are explanatory diagrams showing how the mask pattern is enlarged and reduced, respectively, projected onto the wafer when positive pressure and negative pressure are applied to the spaces in FIGS. 2 and 3. 1: Mask, 2: Wafer, 3: Trapezoidal mirror, 3a, 3b
: Mirror surface of trapezoidal mirror 3, 4: Convex mirror, 5: Concave mirror, 6: Optical path, 7: Regulator with servo mechanism, 8
: Equipment source pressure, (positive pressure), 9: Equipment source pressure (negative pressure), 1
0: Space provided within the mirror to generate external force.
Claims (1)
該反射投影光学系を構成するミラー面のうち少なくとも
1つに外力を印加して該ミラー面の曲率を制御すること
によりマスクパターンとウェハパターンの精密な位置整
合を行なうようにしたことを特徴とする半導体露光装置
。 2、前記反射投影光学系を構成するミラーの内部を中空
にし、その中の流体圧を制御することにより前記ミラー
面の曲率を制御する特許請求の範囲第1項記載の半導体
露光装置。 3、前記反射投影光学系を構成するミラーの表面を加熱
もしくは冷却することにより該ミラー面の曲率を制御す
る特許請求の範囲第1項記載の半導体露光装置。[Claims] 1. In a semiconductor exposure apparatus having a reflection projection optical system,
Precise positional alignment between the mask pattern and the wafer pattern is achieved by applying an external force to at least one of the mirror surfaces constituting the reflective projection optical system to control the curvature of the mirror surface. Semiconductor exposure equipment. 2. The semiconductor exposure apparatus according to claim 1, wherein the interior of the mirror constituting the reflective projection optical system is hollow, and the curvature of the mirror surface is controlled by controlling the fluid pressure inside the mirror. 3. A semiconductor exposure apparatus according to claim 1, wherein the curvature of a mirror constituting the reflective projection optical system is controlled by heating or cooling the surface of the mirror.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59265268A JPS61144021A (en) | 1984-12-18 | 1984-12-18 | Semiconductor exposure system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59265268A JPS61144021A (en) | 1984-12-18 | 1984-12-18 | Semiconductor exposure system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61144021A true JPS61144021A (en) | 1986-07-01 |
JPH0572738B2 JPH0572738B2 (en) | 1993-10-12 |
Family
ID=17414866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59265268A Granted JPS61144021A (en) | 1984-12-18 | 1984-12-18 | Semiconductor exposure system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61144021A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006298391A (en) * | 2005-04-15 | 2006-11-02 | Dainippon Printing Co Ltd | Double container |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5833255A (en) * | 1981-05-07 | 1983-02-26 | アプライド・マテリアルズ・インコ−ポレ−テツド | Projective levelling device with special means for curved mirror |
-
1984
- 1984-12-18 JP JP59265268A patent/JPS61144021A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5833255A (en) * | 1981-05-07 | 1983-02-26 | アプライド・マテリアルズ・インコ−ポレ−テツド | Projective levelling device with special means for curved mirror |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006298391A (en) * | 2005-04-15 | 2006-11-02 | Dainippon Printing Co Ltd | Double container |
Also Published As
Publication number | Publication date |
---|---|
JPH0572738B2 (en) | 1993-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5796469A (en) | Exposure apparatus and device manufacturing method using the same | |
US4708465A (en) | Exposure apparatus | |
US5793471A (en) | Projection exposure method and apparatus in which scanning exposure is performed in accordance with a shot layout of mask patterns | |
US7154581B2 (en) | Scanning exposure apparatus, manufacturing method thereof, and device manufacturing method | |
JPH0119252B2 (en) | ||
US7372539B2 (en) | Method for distortion correction in a microlithographic projection exposure apparatus | |
US20020003629A1 (en) | Positioning stage system and position measuring method | |
US6014421A (en) | Radiation reduction exposure apparatus and method of manufacturing semiconductor device | |
US6532056B2 (en) | Alignment system and projection exposure apparatus | |
US5604779A (en) | Optical exposure method and device formed by the method | |
KR100331063B1 (en) | Scanning Lithography System with Reverse Motion | |
US6809798B1 (en) | Stage control method, exposure method, exposure apparatus and device manufacturing method | |
US5907390A (en) | Positioning apparatus, exposure apparatus and method of manufacturing semiconductor device | |
JPH1174181A (en) | X-ray lithography device and x-ray aligning method | |
US6337734B1 (en) | Exposure control method, exposure apparatus and device manufacturing method | |
JPH04235558A (en) | Exposure device | |
US6172739B1 (en) | Exposure apparatus and method | |
KR20190092275A (en) | Projection optical system, exposure apparatus, and method of manufacturing article | |
JPS6235620A (en) | Optical magnifying power correcting device | |
JPS61144021A (en) | Semiconductor exposure system | |
US6630986B2 (en) | Scanning type exposure apparatus and a device manufacturing method using the same | |
EP1471389B1 (en) | Projection optical system | |
JP2001059704A (en) | Positioning stage device, semiconductor aligner and manufacture of device | |
JPH0963923A (en) | X-ray projection aligner | |
US6256085B1 (en) | Exposure apparatus |