JPS61143562A - Austenitic ni-cr stainless steel having superior elongation at creep rupture - Google Patents

Austenitic ni-cr stainless steel having superior elongation at creep rupture

Info

Publication number
JPS61143562A
JPS61143562A JP26596884A JP26596884A JPS61143562A JP S61143562 A JPS61143562 A JP S61143562A JP 26596884 A JP26596884 A JP 26596884A JP 26596884 A JP26596884 A JP 26596884A JP S61143562 A JPS61143562 A JP S61143562A
Authority
JP
Japan
Prior art keywords
creep rupture
creep
steel
stainless steel
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26596884A
Other languages
Japanese (ja)
Other versions
JPH0154425B2 (en
Inventor
Takanori Nakazawa
中澤 崇徳
Haruo Shimada
島田 春男
Hajime Komatsu
肇 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26596884A priority Critical patent/JPS61143562A/en
Publication of JPS61143562A publication Critical patent/JPS61143562A/en
Publication of JPH0154425B2 publication Critical patent/JPH0154425B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve the long-time elongation at creep repture by adding pre scribed percentages of C, Si, Mn, P, Ni, Cr and Mo to Fe. CONSTITUTION:The titled stainless steel consists of, by weight, <=0.015% C, <=3% Si, <=3% Mn, 0.045-0.2% P, 7-22% Ni, 14-25% Cr and the balance Fe or further contains <=3% Mo. The steel ahs superior long-time elongation at creep rupture and is used as a heat resistant structural material in a creep region.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はクリープ破断延性のすぐれたNi−Crオース
テナイト系ステンレス鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a Ni--Cr austenitic stainless steel having excellent creep rupture ductility.

(従来の技術) 近年、化学装置の高温化あるいは高速増殖炉の開発に伴
ない、クリープ領域で使用される高温構造物においては
材料のクリーブ変形が無視できなくなりている。このよ
うな高温構造用材料としては、従来の高温引張強さ、タ
リーノ破断強さの他にクリープ破断延性にすぐれること
が必要となる。
(Prior Art) In recent years, with the rise in temperature of chemical equipment and the development of fast breeder reactors, cleave deformation of materials in high-temperature structures used in creep regions cannot be ignored. Such high-temperature structural materials need to have excellent creep rupture ductility in addition to conventional high-temperature tensile strength and Talino rupture strength.

従ってこのような高温構造物用材料としては、たとえば
ステンレス鋼便覧(昭和48年8月30日発行)の17
3頁「2.5.7オーステナイトステンレス鋼」に示さ
れているように、これまで主としてオーステナイト系ス
テンレス鋼が使用されている。しかしながらたとえば代
表的なオーステナイト系ステンレス鋼であるSUS 3
04鋼のクリープ破断伸びは破断時間の増加とともに低
下する傾向を示し、例えば10000時間以上では20
%を下廻るものが現われる。このようなりリープ破断延
性の時間にともなう低下は高温構造物の寿命に制限を加
える要因となる。またクリープ破断延性はクリーブ疲労
特性と相関があり、この点からもクリープ破断延性は重
要な特性である。
Therefore, as materials for such high-temperature structures, for example, 17 of the Stainless Steel Handbook (published August 30, 1970) is recommended.
As shown in "2.5.7 Austenitic Stainless Steel" on page 3, austenitic stainless steels have been mainly used so far. However, for example, SUS 3, which is a typical austenitic stainless steel,
The creep rupture elongation of 04 steel tends to decrease as the rupture time increases; for example, the creep rupture elongation of 04 steel tends to decrease with increasing rupture time.
% will appear. This decrease in leap rupture ductility over time becomes a factor that limits the lifespan of high-temperature structures. In addition, creep rupture ductility has a correlation with cleave fatigue properties, and from this point of view as well, creep rupture ductility is an important property.

(発明が解決しようとする問題点) このように従来鋼はクリープ破断延性が長時間側で低下
する傾向があり、これは主として鋼中に存在するCが炭
化物として結晶粒界に析出し粒界が脆化することによる
と考えられている。−万〇はこれら鋼のクリープ強度を
確保する上で極めて有効な元素でもある。所で日本学術
振興会耐熱金属材料研究会第123委員会の1973年
発行の研究報告Mol 、14. A 1 (D 19
頁によると、C量が0.04−以上の場合KPを添加す
ることによってクリープ破断延性が向上する旨述べられ
ている。しかしながら同報文においてC量が低い場合に
はこのようなPの効果は認められないとされている。一
方本発明者らも1981年発行の鉄と鋼Vo1.67、
ム13の81147頁において、Pが最大0.036%
までの添加において、クリープ破断延性の改善効果はあ
るが、クリープ破断強度の改善効果は認められない事を
明らか忙している。しかしながらこれらの従来の知見は
、前者は長時間側でのクリープ破断延性の低下が生じ、
また後者では十分なりリープ破断強度が得られないこと
から、いずれも高温構造材料の上記した問題を解決する
に充分な対策とはなシ得ない。− (問題点を解決するための手段) そこで本発明者らはその後も検討を進めた結果、5tJ
S 304あるいはSUS 316程度の強度を有し、
長時間側でのクリープ破断延性の低下の少ない鋼を開発
することを目的K、炭化物析出による結晶粒界脆化を防
止するためCを低減しそして粒界脆化を引起さない元素
によるクリーブ強化を検討した。
(Problem to be solved by the invention) As described above, the creep rupture ductility of conventional steel tends to decrease over a long period of time. This is thought to be due to the embrittlement of the -10,000 is also an extremely effective element in ensuring the creep strength of these steels. Research report Mol published in 1973 by the 123rd Committee of the Japan Society for the Promotion of Science Heat-Resistant Metal Materials Study Group, 14. A 1 (D 19
According to the page, it is stated that creep rupture ductility is improved by adding KP when the amount of C is 0.04- or more. However, it is said that such an effect of P is not observed when the amount of C is low in the broadcast text. On the other hand, the present inventors also published Tetsu to Hagane Vol. 1.67 in 1981,
On page 81147 of M13, P is up to 0.036%
It is clear that the addition of up to 10% had an effect of improving creep rupture ductility, but no improvement effect of creep rupture strength was observed. However, these conventional findings suggest that the former causes a decrease in creep rupture ductility on the long-term side;
Furthermore, since the latter method does not provide sufficient leap rupture strength, neither of these methods can be a sufficient measure to solve the above-mentioned problems with high-temperature structural materials. - (Means for solving the problem) Therefore, as a result of further studies, the inventors found that 5tJ
It has the strength of S304 or SUS316,
The purpose is to develop a steel with less deterioration in creep rupture ductility on the long-term side.In order to prevent grain boundary embrittlement due to carbide precipitation, K is reduced and cleave strengthening is performed using elements that do not cause grain boundary embrittlement. It was investigated.

その結果従来の知見と異なり、大量にPを添加すること
が長時間クリープ破断延性及びクリープ破断強度いずれ
の点においても有効でおるという全く新たな知見を得る
に至った。
As a result, unlike conventional knowledge, we have come to the completely new knowledge that adding a large amount of P is effective in terms of both long-term creep rupture ductility and creep rupture strength.

(発明の構成・作用) 本発明は以上のような知見に基いてなされたものであっ
てその要旨とする所は、重量%でC50,015% 、
 Si≦l OTo 、 Mn≦3.0 % 、 P 
O,045超〜0.20% 、Ni 7.O〜22.0
 ’1k 、 Cr 140〜25.0Toを含有し、
又はこれにさらK Me≦3.0q/bを含有し残部が
F6及び不可避不純物からなるクリープ破断延性のすぐ
れたNi−Crオーステナイト系ステンレス鋼にある。
(Structure and operation of the invention) The present invention has been made based on the above knowledge, and its gist is that C50,015% by weight,
Si≦l OTo, Mn≦3.0%, P
More than O,045 to 0.20%, Ni 7. O~22.0
'1k, contains Cr 140-25.0To,
Or, it is a Ni-Cr austenitic stainless steel which further contains KMe≦3.0q/b and has excellent creep rupture ductility, with the remainder being F6 and unavoidable impurities.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

先ず本発明の成分系において、Cは先にも述べたように
有効な強化元素ではあるが、結晶粒界に炭化物として析
出するため延性を損う元素でもある。そこで本発明者ら
は、Cのクリープ破断特性に対する影響をしらぺるため
に次のような実験を行なった。即ち供試鋼としてSl 
O,5% 、Mn 1.0% 、 P 0.08%、 
Ni 1496 、 Cr 18 %の鋼をCの範囲を
種々変えて溶解し、これを熱間圧延により厚さ12mの
鋼板とした後、平行部径6+w、標点間距離30mのク
リープ破断試験片を作成し、JIS Z 2272 K
準拠してクリープ破断試験を行った。
First, in the component system of the present invention, C is an effective strengthening element as described above, but it is also an element that impairs ductility because it precipitates as carbide at grain boundaries. Therefore, the present inventors conducted the following experiment to examine the influence of C on creep rupture characteristics. That is, as the test steel, Sl
O, 5%, Mn 1.0%, P 0.08%,
Steel containing 1496 Ni and 18% Cr was melted with various C ranges, and this was hot rolled into a 12 m thick steel plate. A creep rupture test piece with a parallel part diameter of 6+W and a gauge distance of 30 m was prepared. Created and JIS Z 2272 K
A creep rupture test was conducted in accordance with the following.

その結果を第1図に示す。即ち第1図はクリープ破断強
度及びクリープ破断延性に対するC量の影響を示しだも
ので、同図に見られるように、C3とともに強度は上昇
し破断延性が低下するが、このCKよる破断延性の低下
は0.015%を超えると顕著になることが判る。この
ような理由からC量は0.015 ’A以下と定めた。
The results are shown in FIG. In other words, Figure 1 shows the influence of the amount of C on creep rupture strength and creep rupture ductility.As seen in the figure, the strength increases and the fracture ductility decreases with C3, but the fracture ductility due to CK increases. It can be seen that the decrease becomes significant when it exceeds 0.015%. For these reasons, the amount of C was determined to be 0.015'A or less.

次VcSi及びMnはいずれも脱散剤として必要である
が、3%を超えて過剰に存在すると熱間加工性を損うこ
とからいずれも3qII以下とした。
Both VcSi and Mn are necessary as dispersing agents, but since their presence in excess of more than 3% impairs hot workability, the content of both was set to 3qII or less.

一方、Pはクリープ中&lン化物として結晶粒内に析出
し、クリーブ強化作用を有しかつ結晶粒界には析出しな
いことから粒界脆化が生じない。
On the other hand, P precipitates within the crystal grains as a phosphorus compound during creep, has a cleaving strengthening effect, and does not precipitate at the grain boundaries, so that grain boundary embrittlement does not occur.

そこで本発明者らはPのクリープ破断特性に対する影響
を見るために、次のような実験を行なった。
Therefore, the present inventors conducted the following experiment to examine the influence of P on creep rupture properties.

即ち、供試鋼としてC0,01%、Si0.5%、Mn
1.0%、Ni14%、Cr18%O鋼を、po範囲を
種々変えて溶製し、厚さ125gmの鋼板を作成した後
、平行部径6m、標点間距離30■のクリープ破断試験
片を作成し、JIS Z 2272に準拠してクリープ
破断試験を行った。その結果を第2図に示す。即ち第2
図はクリープ破断強度及びクリープ破断伸びに対する重
量の影響を示したもので、同図に見られるようにP−i
とともにクリープ破断強度は増加するが、クリープ破断
延性はP量が0.045チを超えるとほとんど変化しな
いことが判る。したがってPの添加量としては、従来銅
盤のクリープ破断強度を確保するためには0.0451
超必要である。しかしながら、Pを0.20 %を超え
て添加するとむしろ熱間加工性及び溶接性を著しく損う
ことからその上限を0.20 ’16とした。なお、十
分なりリープ破断強度を確保する点からはPめ範囲とし
ては0,06〜0.20 %がさらに望ましい。
That is, the sample steel contains 0.01% C, 0.5% Si, and Mn.
1.0% Ni, 14% Ni, 18% CrO steel was melted with various po ranges to create a steel plate with a thickness of 125 gm. After that, a creep rupture test piece with a parallel part diameter of 6 m and a gauge distance of 30 cm was prepared. was prepared, and a creep rupture test was conducted in accordance with JIS Z 2272. The results are shown in FIG. That is, the second
The figure shows the influence of weight on creep rupture strength and creep rupture elongation.
It can be seen that although the creep rupture strength increases with P content, the creep rupture ductility hardly changes when the P amount exceeds 0.045 inch. Therefore, the amount of P added is 0.0451 to ensure the creep rupture strength of conventional copper plates.
It's super necessary. However, if more than 0.20% of P is added, the hot workability and weldability are significantly impaired, so the upper limit was set at 0.20'16. In addition, from the point of view of ensuring sufficient leap rupture strength, the P content range is more preferably 0.06 to 0.20%.

さらKNiはオーステナイト生成元素として必要であり
、フェライト生成元素であるCr及びSi量に対し成分
平衡上オー”ステナイト組織鈍するための必要量は7.
0チから22.096の範囲である。またCrは耐酸化
性を向上させる元素であり、そのたメK1−114. 
OTo以上を必要とすルカ、25. O%を超えると高
温長時間加熱による脆化が生じることから上限を25.
0%とした。
Furthermore, KNi is necessary as an austenite-forming element, and the amount required to blunt the austenite structure based on component equilibrium with respect to the amounts of Cr and Si, which are ferrite-forming elements, is 7.
It ranges from 0chi to 22.096. Further, Cr is an element that improves oxidation resistance, and therefore K1-114.
Luka, who needs OTo or more, 25. If it exceeds 0%, embrittlement will occur due to long-term heating at high temperatures, so the upper limit is set at 25%.
It was set to 0%.

以上が本発明における基本成分系であるが、本発明にお
いてはさらに高強度化を計るためMoを所定の範囲で含
有せしめることが有効である。M。
The above is the basic component system in the present invention, but in the present invention, it is effective to contain Mo within a predetermined range in order to further increase the strength. M.

は固溶強化作用のある元素でありクリープ強度を高める
元素であるが、3.(lを超えて添加すると熱間変形抵
抗を高めるため圧延あるいは鍛造が困難になる。したー
がって含有量は3.Os以下とした。
3. is an element that has a solid solution strengthening effect and increases creep strength. (Adding more than 1 liter increases hot deformation resistance, making rolling or forging difficult. Therefore, the content was set to 3.Os or less.

以上の如き成分組成を有する本発明鋼は、各種電気炉等
による製鋼を行なった後、通常の造塊・分塊圧延あるい
は連続鋳造によシ鋼片とし、次いで圧延あるいは鍛造に
より各種形状の鋼材として使用に供されるものである。
The steel of the present invention having the above-mentioned composition is manufactured by various types of electric furnaces, etc., and then made into steel billets by ordinary ingot-forming, blooming rolling, or continuous casting, and then rolled or forged into steel products of various shapes. It is provided for use as a.

以下に本発明の効果を実施例に基いてさらに具体的忙示
す。
The effects of the present invention will be described in more detail below based on Examples.

(実施例) 第1表は本発明鋼と比較鋼の化学成分を示す。(Example) Table 1 shows the chemical composition of the invention steel and comparative steel.

第2表は第1表の鋼について550℃におけるクリープ
破断特性を示したものである。これら特性調査結果から
明らかなように、本発明鋼は比較鋼に比ベクリープ破断
伸とくに長時間側での破断仰がすぐれたものである。
Table 2 shows the creep rupture properties at 550°C for the steels shown in Table 1. As is clear from these property investigation results, the steel of the present invention is superior to the comparison steel in terms of creep elongation at break and particularly in elongation at break on the long-term side.

(発明の効果) 以上述べた如く本発明鋼は、長時間側まですぐれ九クリ
ープ破断延性を有する材料となってシシ、クリープ領域
で使用される高温構造用材料として工業的に極めて有効
なものである。
(Effects of the Invention) As described above, the steel of the present invention is a material that has excellent creep rupture ductility over a long period of time, and is extremely effective industrially as a material for high-temperature structures used in the creep region. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は10000時間クリープ破断特性に対するC量
の影響を示す図、第2図は10000時間クリープ破断
特性に対するP量の影響を示す図である。 第1図 C(%)
FIG. 1 is a diagram showing the influence of the amount of C on the 10,000 hour creep rupture characteristics, and FIG. 2 is a diagram showing the influence of the amount of P on the 10,000 hour creep rupture characteristics. Figure 1 C (%)

Claims (2)

【特許請求の範囲】[Claims] (1)重量%でC≦0.015%、Si≦3.0%、M
n≦3.0%、P0.045%超〜0.20%、Ni7
.0〜22.0%、Cr14.0〜25.0%を含有し
、残部は実質的にFeからなるクリープ破断延性のすぐ
れたNi−Crオーステナイト系ステンレス鋼。
(1) C≦0.015%, Si≦3.0%, M in weight%
n≦3.0%, P over 0.045% to 0.20%, Ni7
.. Ni-Cr austenitic stainless steel with excellent creep rupture ductility, containing 0 to 22.0% of Cr, 14.0 to 25.0% of Cr, and the remainder substantially consisting of Fe.
(2)重量%でC≦0.015%、Si≦3.0%、M
n≦3.0%、P0.045超〜0.20%、Ni7.
0〜22.0%、Cr14.0〜25.0%を含有し、
さらにMo≦3.0%を含有し、残部は実質的にFeか
らなるクリープ破断延性のすぐれたNi−Crオーステ
ナイト系ステンレス鋼。
(2) C≦0.015%, Si≦3.0%, M in weight%
n≦3.0%, P over 0.045 to 0.20%, Ni7.
Contains 0-22.0%, Cr14.0-25.0%,
Further, the Ni-Cr austenitic stainless steel contains Mo≦3.0%, and the remainder is substantially Fe, which has excellent creep rupture ductility.
JP26596884A 1984-12-17 1984-12-17 Austenitic ni-cr stainless steel having superior elongation at creep rupture Granted JPS61143562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26596884A JPS61143562A (en) 1984-12-17 1984-12-17 Austenitic ni-cr stainless steel having superior elongation at creep rupture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26596884A JPS61143562A (en) 1984-12-17 1984-12-17 Austenitic ni-cr stainless steel having superior elongation at creep rupture

Publications (2)

Publication Number Publication Date
JPS61143562A true JPS61143562A (en) 1986-07-01
JPH0154425B2 JPH0154425B2 (en) 1989-11-17

Family

ID=17424544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26596884A Granted JPS61143562A (en) 1984-12-17 1984-12-17 Austenitic ni-cr stainless steel having superior elongation at creep rupture

Country Status (1)

Country Link
JP (1) JPS61143562A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153847A (en) * 1989-11-13 1991-07-01 Nippon Steel Corp Ni-cr austenitic stainless steel having excellent creep rupture property
JPH03153846A (en) * 1989-11-13 1991-07-01 Nippon Steel Corp Ni-cr austenitic stainless steel having excellent creep rupture property
WO2018001093A1 (en) * 2016-06-30 2018-01-04 郑州永通特钢有限公司 Vibration-resistant stainless structural steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TRANSACTIONS OF THE ASM=1961 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153847A (en) * 1989-11-13 1991-07-01 Nippon Steel Corp Ni-cr austenitic stainless steel having excellent creep rupture property
JPH03153846A (en) * 1989-11-13 1991-07-01 Nippon Steel Corp Ni-cr austenitic stainless steel having excellent creep rupture property
WO2018001093A1 (en) * 2016-06-30 2018-01-04 郑州永通特钢有限公司 Vibration-resistant stainless structural steel

Also Published As

Publication number Publication date
JPH0154425B2 (en) 1989-11-17

Similar Documents

Publication Publication Date Title
EP1873270B1 (en) Low alloy steel
JP2696584B2 (en) Ferrite heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance
EP2557189B1 (en) Ferrite stainless steel sheet having high thermal resistance and processability, and method for manufacturing the same
EP2617854B1 (en) Heat-resistant ferritic stainless steel sheet having excellent oxidation resistance
JP2002146470A (en) Low quenching or normalizing type low alloy steel sheet for boiler steel tube having excellent toughness and method for producing steel tube using the steel sheet
WO2007029687A1 (en) Low alloy steel
EP3502296B1 (en) Steel plate
US2432615A (en) Iron-base alloys
EP0359085B1 (en) Heat-resistant cast steels
JPH11293405A (en) High hardness high corrosion resistance stainless steel
JPS61143562A (en) Austenitic ni-cr stainless steel having superior elongation at creep rupture
JPS5935427B2 (en) Roll materials used in continuous casting equipment
JPH05112850A (en) Precipitation hardening martensitic stainless steel excellent in workability
JP2688392B2 (en) Method for producing martensitic stainless steel with low cracking susceptibility
JP3570288B2 (en) High Cr martensitic heat resistant steel with excellent hot workability
EP1126042A1 (en) A steel
JP3775371B2 (en) Low alloy steel
JPH0711376A (en) Fe-ni base alloy excellent in heat resistance and workability
JPS59211553A (en) High cr steel with superior toughness and superior strength at high temperature
JP2664499B2 (en) Ni-Cr austenitic stainless steel with excellent creep rupture characteristics
JPH09209035A (en) Production of austenitic stainless steel for high temperature use
JPH1068050A (en) Stainless steel for spring excellent in thermal settling resistance
JP2000282147A (en) Manufacture of high strength dual-phase stainless steel strip excellent in resistance to stress corrosion crack sensitivity, and steel strip
US20240271242A1 (en) Austenitic stainless steel and manufacturing method thereof
JPS6123750A (en) Nonmagnetic steel