JPS6114340A - Earthquake-proof support apparatus - Google Patents

Earthquake-proof support apparatus

Info

Publication number
JPS6114340A
JPS6114340A JP13469284A JP13469284A JPS6114340A JP S6114340 A JPS6114340 A JP S6114340A JP 13469284 A JP13469284 A JP 13469284A JP 13469284 A JP13469284 A JP 13469284A JP S6114340 A JPS6114340 A JP S6114340A
Authority
JP
Japan
Prior art keywords
support
elastic
seismic isolation
buckling
horizontal displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13469284A
Other languages
Japanese (ja)
Other versions
JPH0577829B2 (en
Inventor
芳沢 利和
重信 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP13469284A priority Critical patent/JPS6114340A/en
Publication of JPS6114340A publication Critical patent/JPS6114340A/en
Publication of JPH0577829B2 publication Critical patent/JPH0577829B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、ビルなどの建物や重量建造物などの構造物の
支持構造に関し、特に、基礎から構造物へ伝達される地
震エネルギーを減少させることにより構造物を保護する
免震支持装置に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to support structures for structures such as buildings and heavy structures, and in particular, the present invention relates to support structures for structures such as buildings and heavy structures, and in particular, the present invention relates to support structures for structures such as buildings and heavy structures. It relates to a seismic isolation support device that protects objects.

〔従来技術〕[Prior art]

構造物の耐震性を向上させる方法としては、構造物自体
の耐震強度を向上させる方法の他に、構造物に伝達され
る振動エネルギーを減少させる免震支持方法が採用され
ている。
As methods for improving the seismic resistance of structures, in addition to methods for improving the seismic strength of the structures themselves, seismic isolation support methods for reducing the vibration energy transmitted to the structures have been adopted.

後者の免震支持方法にあっては、構造物を一つの振動系
として動的にとらえ、その振動周期を延ばすことによっ
て、地震等の外部入力に対する構造物の共振を防いで応
答加速度を減少させ、もって、構造物へのエネルギー伝
達を減少させる手法が用いられる。
The latter seismic isolation support method dynamically views the structure as a vibrating system and extends its vibration period to prevent the structure from resonating with external inputs such as earthquakes and reduce response acceleration. , techniques are used to reduce energy transfer to the structure.

このような免震支持方法を実施する装置の従来構造とし
ては、第1図に示すように、基礎1と構造物2との間に
弾性支持体3を所定間隔ごとに配置し、それらの上下端
部を基礎1および構造物2の相対向面に固定する構造が
採用されている。前記弾性支持体3は、通常、ゴムなど
の弾性板4と補強用金属板とを交互に積層して形成され
る。
As shown in Fig. 1, the conventional structure of a device implementing such a seismic isolation support method is to arrange elastic supports 3 at predetermined intervals between a foundation 1 and a structure 2, and A structure is adopted in which the ends are fixed to opposing surfaces of the foundation 1 and the structure 2. The elastic support 3 is usually formed by alternately laminating elastic plates 4 made of rubber or the like and reinforcing metal plates.

ところで、構造物2は、直下型地震でない限り、伝達さ
れるエネルギーに対し、縦方向(鉛直方向)には強固に
作られておシ、地震発時には横方向(水平方向)の強度
が問題になる。
By the way, the structure 2 is made to be strong in the vertical direction (vertical direction) to withstand the energy transmitted, unless it is a direct earthquake, but the strength in the lateral direction (horizontal direction) becomes a problem when an earthquake occurs. Become.

そこで、上記免震支持装置によれば、地震発生時に基礎
1が水平方向に移動する場合、弾性支持3の下部はこれ
に追従して移動するが、該弾性支持体の上部は構造物2
の水平方向慣性力のため直ちに応答せず、弾性支持体3
0弾性変形により構造物の応答加速度が減少し、これに
よって伝達エネルギーが軽減される。
Therefore, according to the seismic isolation support device, when the foundation 1 moves horizontally when an earthquake occurs, the lower part of the elastic support 3 moves to follow this, but the upper part of the elastic support body 2
does not respond immediately due to the horizontal inertia of the elastic support 3.
Zero elastic deformation reduces the response acceleration of the structure, thereby reducing the transmitted energy.

しかし、従来の支持装置では、個々の弾性支持体3を基
礎1および構造物2の間の距離と等しい高さHの単一積
層体で形成していたので、第2図に示すごとく、垂直荷
重を支持する状態で水平方向変位Xが増大すると受圧面
積すなわち弾性体3の上面および下面を鉛直方向に透視
した場合の重なシ面積Aが急速に減少し、鉛直荷重に耐
えられなくなって第3図のように座屈しやすい欠点があ
った。すなわち、座屈限界水平変位XOが小さいという
欠点があった。
However, in conventional support devices, each elastic support 3 is formed of a single laminate with a height H equal to the distance between the foundation 1 and the structure 2, so that the vertical When the horizontal displacement X increases while supporting a load, the pressure-receiving area, that is, the heavy area A when looking through the top and bottom surfaces of the elastic body 3 in the vertical direction, rapidly decreases, making it impossible to withstand the vertical load and causing the As shown in Figure 3, it had the disadvantage of being prone to buckling. That is, there was a drawback that the buckling limit horizontal displacement XO was small.

〔目的〕〔the purpose〕

本発明の目的は、このような従来構造の欠点を解消し、
座屈限界水平変位を増大することによシ座屈強度の向上
が可能であり、横ばね定数も従来構造に比べ小さくする
ことができ、系全体の固有周期を長くすることによシ免
震効果を向上させうる免震支持装置を提供することであ
る。
The purpose of the present invention is to eliminate such drawbacks of the conventional structure,
By increasing the buckling limit horizontal displacement, the buckling strength can be improved, and the lateral spring constant can also be made smaller compared to conventional structures, and by increasing the natural period of the entire system, seismic isolation can be achieved. An object of the present invention is to provide a seismic isolation support device that can improve the effect.

〔構成〕〔composition〕

本発明は基礎および構造物の水平方向相対変位を拘束す
ることなく弾性支持体の中央部の回転を拘束できれば、
同一水平変位に対する受圧面積を増大させることができ
、これによって座屈限界水平変位を増大させうることに
注目して完成されたものである。
If the present invention can restrain the rotation of the central part of the elastic support without restraining the horizontal relative displacement of the foundation and structure,
It was developed with the focus on the ability to increase the pressure-receiving area for the same horizontal displacement, thereby increasing the buckling limit horizontal displacement.

すなわち、本発明は、弾性支持体を少なくとも3角形の
頂点をなす3個所に設け、各弾性体’i″′−g”′″
iK*ih*”11“484162   。
That is, in the present invention, elastic supports are provided at at least three points forming the vertices of a triangle, and each elastic support body 'i''-g''''
iK*ih*”11”484162.

性体の重ね合せ部を実質上剛体である連結材によシ固定
することによシ上記目的を達成するものである。
The above object is achieved by fixing the overlapping portions of the flexible bodies to a substantially rigid connecting member.

〔実施例〕〔Example〕

以下、第4図〜第6図を参照して本発明の詳細な説明す
る。
Hereinafter, the present invention will be explained in detail with reference to FIGS. 4 to 6.

第4図および第5図は一実施例構造を示し、基礎1と構
造物2との間に3個の弾性支持体10が設けられている
。これらの弾性支持体は3角形の頂点をなす位置に配置
されている。
4 and 5 show an exemplary structure, in which three elastic supports 10 are provided between the foundation 1 and the structure 2. FIG. These elastic supports are arranged at the vertices of the triangle.

各弾性支持体10は、商さ方向中央部で分割されそれぞ
れ支持体上部10Aおよび支持体下部10Bから成る積
重ね構造に女っておシ、各弾性体100重ね付せ部は剛
体である一つの連結材6に固定されている。すなわち、
各支持体上部IOAの上下面には支持板7A、8Aが一
体的に設けられ、これらの支持板を介して構造物2の底
面および連結材6の上面に固定され、各支持体下部10
Bの上下面には支持板7B。
Each elastic support 10 is divided at the center in the transverse direction and has a stacked structure consisting of an upper support 10A and a lower support 10B. It is fixed to the connecting member 6. That is,
Support plates 7A and 8A are integrally provided on the upper and lower surfaces of each support upper IOA, and are fixed to the bottom surface of the structure 2 and the upper surface of the connecting member 6 via these support plates, and each support lower part 10
A support plate 7B is provided on the upper and lower surfaces of B.

8Bが一体的に設けられ、これらの支持板を介して連結
材6の下面および基礎1に固定されている。
8B are integrally provided and fixed to the lower surface of the connecting member 6 and the foundation 1 via these support plates.

各支持体上部10Aおよび支持体下部10Bは、第1図
の場合と同様、複数のゴムなどの弾性板4と複数の補強
用金楓板5とを交互に積層した構造を有している。
Each of the upper support member 10A and the lower support member 10B has a structure in which a plurality of elastic plates 4 such as rubber and a plurality of reinforcing gold maple plates 5 are alternately laminated, as in the case of FIG. 1.

以上説明した第4図および第5図の実施例構造によれば
地震等が発生すると座屈限界水平変位以内の変位であれ
ば第6図に示すように連結材6が水平姿勢を維持したま
ま水平変位する。
According to the structure of the embodiment shown in FIGS. 4 and 5 explained above, when an earthquake or the like occurs, if the displacement is within the buckling limit horizontal displacement, the connecting member 6 remains in the horizontal position as shown in FIG. 6. Displace horizontally.

そこで、第1図の従来構造と第4図および第5図の実施
例構造の挙動を比較してみる。
Therefore, the behavior of the conventional structure shown in FIG. 1 and the example structure shown in FIGS. 4 and 5 will be compared.

まず、従来構造の弾性支持体3に′)いて、有効高さを
H1縦ばね定数をKv、横ばね定数をKHとし、座屈限
界水平変位XCでの受圧面積をA、とする。また、実施
例構造の弾性支持体10の有効高さも従来構造と同じH
とする。
First, it is assumed that the user is standing on the elastic support 3 of the conventional structure, the effective height is H1, the vertical spring constant is Kv, the horizontal spring constant is KH, and the pressure receiving area at the buckling limit horizontal displacement XC is A. Further, the effective height of the elastic support 10 in the example structure is also the same as the conventional structure.
shall be.

これらを前提とすれば、支持体上部10Aについては、
高さがH/2、縦ばね定数が2Kv。
Based on these assumptions, regarding the support upper part 10A,
The height is H/2 and the vertical spring constant is 2Kv.

横はね定数が2KHであシ、座屈開始時の受圧面積は前
記弾性支持体3と同じAdであシその時の座屈限界水平
変位も同じ<Xoである。支持体下部10Bについても
、支持体上部10Aの場合と同様、高さがH/2、縦ば
ね定数が2Kv1横ばね定数が2KH,座屈限界受圧面
積がAo、座屈限界水平変位がXoになる。
The lateral spring constant is 2KH, the pressure receiving area at the start of buckling is Ad, which is the same as the elastic support 3, and the buckling limit horizontal displacement at that time is also the same <Xo. As for the support lower part 10B, as in the case of the support upper part 10A, the height is H/2, the vertical spring constant is 2Kv1, the horizontal spring constant is 2KH, the buckling limit pressure receiving area is Ao, and the buckling limit horizontal displacement is Xo. Become.

したがって、実施例構造の弾性支持体10についてみれ
ば、縦ばね定数および横ばね定数は縦来の弾性支持体3
の場合と同じKv(2Kv÷2)およびKH(2KH÷
2)であるが、受圧面積が座屈限界値A、に達するまで
の水平変位は2Xo  (Xo X2 )になシ、縦来
構造に比べ座屈限界水平変位を約2倍にすることができ
る。すなわち、従来構造に比べ、弾性支持体の座屈強度
を約2倍に向上させることができる。
Therefore, when looking at the elastic support 10 of the example structure, the vertical spring constant and the horizontal spring constant are the same as those of the vertical elastic support 3.
Kv (2Kv÷2) and KH (2KH÷
2) However, the horizontal displacement until the pressure-receiving area reaches the buckling limit value A is 2Xo (Xo . In other words, the buckling strength of the elastic support can be approximately doubled compared to the conventional structure.

上記実施例の説明からも明らかなごとく、本発明の骨子
は、水平変位によシ各弾性支持体の中間部の水平断面が
回転しようとする現象すなわち座屈開始時の挙動を連結
部材6で互いに拘束する点にある。一方、地震等による
水平加圧力は一般に任意の方向に作用する。したがって
、本発明の実施に際しては、少なくとも3角形の各頂点
をなす3個所に弾性支持体10を配置しこれらを連結材
6で互いに連結する必要がある。
As is clear from the description of the above embodiments, the gist of the present invention is to use the connecting member 6 to prevent the phenomenon in which the horizontal cross section of the intermediate portion of each elastic support body tends to rotate due to horizontal displacement, that is, the behavior at the start of buckling. The point is that they bind each other. On the other hand, horizontal pressing force due to earthquakes etc. generally acts in any direction. Therefore, in carrying out the present invention, it is necessary to arrange the elastic supports 10 at at least three locations forming each vertex of the triangle and to connect these to each other with the connecting members 6.

第7図は四角形(図示の例では正方形)の各m点をなす
位置に上記実施例の場合と同様の弾性支持体10を配置
し、これらを一枚の連結材6で連結した実施例を示し、
本実施例によっても同様の作用効果を得ることができる
FIG. 7 shows an example in which elastic supports 10 similar to those in the above example are arranged at positions forming m points of a rectangle (a square in the illustrated example), and these are connected by a single connecting member 6. show,
Similar effects can be obtained by this embodiment as well.

基礎1と構造物2との間に多数の弾性支持体10が配置
される場合は、全ての弾性支持体を一枚の連結材6で固
定することも可能であるが、3個以上の適当個数づつを
別々の連結材6で固定することもできる。
When a large number of elastic supports 10 are arranged between the foundation 1 and the structure 2, it is possible to fix all the elastic supports with one connecting member 6, but it is possible to fix all the elastic supports with one connecting member 6. It is also possible to fix each number with separate connecting members 6.

また、図示の例では各弾性支持体10を中央部で分断し
上下2段にしたが、これは必要に応じ3段以上にして2
枚以上の連結材6で固定し多段構造にすることもできる
。3段構造にすれば、縦横のばね定数Kv、に、は同じ
であっても座屈限界水平変位を従来構造の約3倍にでき
、座屈強度を更に向上させることができる。また、  
  12段構造の場合の連結固定位置も中央に限られる
ものではなく、上または下側に片寄らせるとともできる
In addition, in the illustrated example, each elastic support 10 is divided at the center to form two upper and lower stages, but if necessary, it can be divided into three or more stages.
It can also be fixed with more than one connecting member 6 to form a multi-stage structure. With the three-stage structure, even if the vertical and horizontal spring constants Kv are the same, the buckling limit horizontal displacement can be approximately three times that of the conventional structure, and the buckling strength can be further improved. Also,
In the case of a 12-tier structure, the connection and fixing position is not limited to the center, but may be shifted upward or downward.

さらに、以上説明した本発明の構成によれば、従来構造
と同じ寸法、特性の弾性支持体を2段階に積重ね、その
間を連結固定することにより、座屈強度を同等に維持し
ながら縦および横のばね定数をそれぞれ2分の1にする
ことも可能であり、これによって系全体の固有周期を長
くするとともに許容変形能力を2倍にすることができる
Furthermore, according to the configuration of the present invention described above, elastic supports having the same dimensions and characteristics as the conventional structure are stacked in two stages, and by connecting and fixing them, the buckling strength is maintained equally, both vertically and horizontally. It is also possible to halve the spring constants of each, thereby increasing the natural period of the entire system and doubling the allowable deformation capacity.

〔効果〕〔effect〕

以上の説明から明らかなごとく、本発明によれば、弾性
支持体の座屈限界水平変位を増大させることによシ腐屈
強度を向上させることができ、もって免震支持装置の耐
震性を向上させることができる。
As is clear from the above description, according to the present invention, the buckling strength can be improved by increasing the buckling limit horizontal displacement of the elastic support, thereby improving the seismic resistance of the seismic isolation support device. can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の免震支持装置を示す側面図、第2図は第
1図の装置に水平変位が生じ弾性支持体の受圧面積が減
少する状態を示す説明図、第3図は第2図の弾性支持体
が座屈した状Mを示す説明図、第4図は本発明の一実施
例に係る免震支持装置を示す側面図、第5図は第4図中
の線V−■から見た横断面図、第6図は、第4図の免震
支持装置に水平変位が生じたときの状態を示す説明図、
第7図は本発明の他の実施例に係る免震支持装置の第5
図に対応する横断面図である。 1・・・・・・基礎、2・・・・・・構造物、6・・・
・・・連結材。 10・・・・・・弾性支持体、10A・・・・・・支持
体上部。 10B・・・・・・支持体下部。 代理人 弁理士 大  音  康  毅第4図 第5図
Fig. 1 is a side view showing a conventional seismic isolation support device, Fig. 2 is an explanatory diagram showing a state in which the device shown in Fig. 1 undergoes horizontal displacement and the pressure receiving area of the elastic support body decreases, and Fig. 3 FIG. 4 is a side view showing a seismic isolation support device according to an embodiment of the present invention, and FIG. 5 is a line V-■ in FIG. 4. 6 is an explanatory diagram showing the state when horizontal displacement occurs in the seismic isolation support device of FIG. 4,
FIG. 7 shows a fifth example of a seismic isolation support device according to another embodiment of the present invention.
3 is a cross-sectional view corresponding to the figure. 1...Foundation, 2...Structure, 6...
...Connecting material. 10...Elastic support body, 10A... Support upper part. 10B... Lower part of the support. Agent Patent Attorney Yasushi OotoFigure 4Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)基礎と構造物との間に弾性支持体を介在させて該
構造物を支持する免震支持装置において、前記弾性支持
体を少なくとも3角形の頂点をなす3個所に設け、各弾
性支持体を高さ方向に少なくとも2段以上積重ねた構造
にするとともに、各弾性支持体の重ね合せ部を実質上剛
体である連結材により固定することを特徴とする免震支
持装置。
(1) In a seismic isolation support device that supports a structure by interposing elastic supports between a foundation and a structure, the elastic supports are provided at at least three points forming the vertices of a triangle, and each elastic support A seismic isolation support device characterized by having a structure in which bodies are stacked in at least two or more stages in the height direction, and the overlapping portion of each elastic support is fixed by a connecting member that is a substantially rigid body.
JP13469284A 1984-06-29 1984-06-29 Earthquake-proof support apparatus Granted JPS6114340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13469284A JPS6114340A (en) 1984-06-29 1984-06-29 Earthquake-proof support apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13469284A JPS6114340A (en) 1984-06-29 1984-06-29 Earthquake-proof support apparatus

Publications (2)

Publication Number Publication Date
JPS6114340A true JPS6114340A (en) 1986-01-22
JPH0577829B2 JPH0577829B2 (en) 1993-10-27

Family

ID=15134353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13469284A Granted JPS6114340A (en) 1984-06-29 1984-06-29 Earthquake-proof support apparatus

Country Status (1)

Country Link
JP (1) JPS6114340A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439440A (en) * 1987-08-06 1989-02-09 Fujita Corp Multistage connection damper
JPH0264604U (en) * 1988-11-05 1990-05-15
US4940914A (en) * 1986-05-26 1990-07-10 Bridgestone Corporation Vibration absorbing apparatus
JP2014196812A (en) * 2013-03-29 2014-10-16 中部電力株式会社 Base-isolating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565649A (en) * 1978-11-03 1980-05-17 Jiee Derufuosu Patoritsuku Connected spring assembly for protecting building from impact of earthquake
JPS58207431A (en) * 1982-05-28 1983-12-02 ユニチカ株式会社 Earthquake-proof apparatus
JPS5967653U (en) * 1982-10-28 1984-05-08 日本電子株式会社 Vibration isolation structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565649A (en) * 1978-11-03 1980-05-17 Jiee Derufuosu Patoritsuku Connected spring assembly for protecting building from impact of earthquake
JPS58207431A (en) * 1982-05-28 1983-12-02 ユニチカ株式会社 Earthquake-proof apparatus
JPS5967653U (en) * 1982-10-28 1984-05-08 日本電子株式会社 Vibration isolation structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940914A (en) * 1986-05-26 1990-07-10 Bridgestone Corporation Vibration absorbing apparatus
JPS6439440A (en) * 1987-08-06 1989-02-09 Fujita Corp Multistage connection damper
JPH0264604U (en) * 1988-11-05 1990-05-15
JP2014196812A (en) * 2013-03-29 2014-10-16 中部電力株式会社 Base-isolating device

Also Published As

Publication number Publication date
JPH0577829B2 (en) 1993-10-27

Similar Documents

Publication Publication Date Title
JPS6114340A (en) Earthquake-proof support apparatus
JP3463115B2 (en) 3D seismic isolation method and seismic isolation device
JPH08120973A (en) Design method of base isolation building and special building constructed in the method
JPH02129430A (en) Vibration damping device for structure
JPS62141330A (en) Earthquake-force reducing device
JPS6114338A (en) Vibration attenuator of structure
JPS60223577A (en) Earthquake dampening apparatus
JPH0346123Y2 (en)
JPH04343982A (en) Dynamic vibration reducer
JPS62220734A (en) Vibrational energy absorbing device
JPH0262668B2 (en)
JPS58156648A (en) Brace structure
JPH10115123A (en) Vibration isolation device
JPS59210166A (en) Earthquake-proof apparatus
JP2801693B2 (en) Laminated rubber bearing
JPH0421982Y2 (en)
JPH09151622A (en) Base isolation device for building
JPH04189969A (en) Base isolation
JPH0464391B2 (en)
JP2804465B2 (en) Seismic isolation device
JPH04130675U (en) Multilayer vibration damping device
JPS6259745A (en) Floor structure
JPH09328927A (en) Multi-stage shearing type elasto-plastic damper
JPH0512791U (en) Inverted pendulum type vibration control device
JP3844265B2 (en) Steel structure shock absorber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term