JPS6114338B2 - - Google Patents

Info

Publication number
JPS6114338B2
JPS6114338B2 JP7124578A JP7124578A JPS6114338B2 JP S6114338 B2 JPS6114338 B2 JP S6114338B2 JP 7124578 A JP7124578 A JP 7124578A JP 7124578 A JP7124578 A JP 7124578A JP S6114338 B2 JPS6114338 B2 JP S6114338B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
detection signal
comparison
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7124578A
Other languages
Japanese (ja)
Other versions
JPS54162023A (en
Inventor
Tadashi Hatsutori
Yoshiki Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP7124578A priority Critical patent/JPS54162023A/en
Publication of JPS54162023A publication Critical patent/JPS54162023A/en
Publication of JPS6114338B2 publication Critical patent/JPS6114338B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明はエンジンの排気ガス成分によつて空燃
比を検出する空燃比センサの検出信号に基き空燃
比を所定空燃比に帰還制御する空燃比制御装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control device that performs feedback control of an air-fuel ratio to a predetermined air-fuel ratio based on a detection signal from an air-fuel ratio sensor that detects the air-fuel ratio based on engine exhaust gas components.

この種の空燃比制御装置は空燃比センサが所定
(理論)空燃比を境としてステツプ的に電気的特
性が反転変化することを利用し、この空燃比セン
サの検出信号を比較回路手段を用いて空燃比が所
定空燃比以上(リーン)か以下(リツチ)かを比
較判別し、この比較判別出力により燃料噴射装置
や気化器から供給される混合器の空燃比を負帰還
制御するものである。
This type of air-fuel ratio control device utilizes the fact that the electrical characteristics of the air-fuel ratio sensor change in reverse in a stepwise manner after reaching a predetermined (theoretical) air-fuel ratio, and uses a comparison circuit to compare the detection signal of the air-fuel ratio sensor. It compares and determines whether the air-fuel ratio is above a predetermined air-fuel ratio (lean) or below (rich), and uses the output of this comparison to perform negative feedback control on the air-fuel ratio of the mixer supplied from the fuel injection device or carburetor.

本発明は、空燃比センサの検出信号の出力勾配
が変化する変化点を検出して出力レベルが反転す
る比較手段の出力信号を用いて帰還制御すること
により、帰還制御の応答性を高めるようにし、し
かも上記検出信号の出力勾配が変化する繰り返し
周期に応じて所定の制御パルス信号を形成するこ
とにより、正確かつ安定した帰還制御を実現でき
る空燃比制御装置を提供することを目的とする。
The present invention improves the responsiveness of feedback control by detecting a change point at which the output gradient of the detection signal of an air-fuel ratio sensor changes and performing feedback control using the output signal of the comparison means at which the output level is reversed. Moreover, it is an object of the present invention to provide an air-fuel ratio control device that can realize accurate and stable feedback control by forming a predetermined control pulse signal according to the repetition period in which the output gradient of the detection signal changes.

そのため、本発明では、エンジンの排気ガス成
分に応じて所定空燃比を境としてステツプ的に検
出信号の出力レベルが変化する空燃比センサと、
この空燃比センサの検出信号を遅延する遅延手段
と、この遅延手段の遅延信号と前記空燃比センサ
の検出信号とを比較判別して、この検出信号の出
力勾配が変化する毎に出力レベルが反転する出力
信号を発生する比較手段と、前記空燃比センサの
検出信号の出力勾配が変化する繰り返し周期が所
定周期以上となると前記遅延手段の遅延信号の出
力レベルを実質的に固定する比較レベル制御手段
と、前記比較手段の出力信号に応じて空燃比を制
御する空燃比制御手段とを備えたことを特徴とす
る。
Therefore, the present invention provides an air-fuel ratio sensor in which the output level of a detection signal changes stepwise with a predetermined air-fuel ratio as a boundary, depending on the exhaust gas components of the engine;
A delay means for delaying the detection signal of the air-fuel ratio sensor, and a delay signal of the delay means and a detection signal of the air-fuel ratio sensor are compared and determined, and the output level is inverted every time the output gradient of the detection signal changes. and a comparison level control means for substantially fixing the output level of the delay signal of the delay means when a repetition period in which the output gradient of the detection signal of the air-fuel ratio sensor changes is equal to or greater than a predetermined period. and an air-fuel ratio control means for controlling the air-fuel ratio according to the output signal of the comparison means.

以下本発明を図に示す一実施例につき説明す
る。第1図は構成を示すもので、10はエンジン
の排気ガス中の酸素濃度により空燃比を検出する
空燃比センサ、20はこのセンサ検出信号を増幅
すると共に高周波成分をカツトするローパスフイ
ルタの機能も備えた増幅回路、30は比較回路手
段をなす比較回路で、増幅後のセンサ検出信号が
高レベルから低レベル乃至は低レベルから高レベ
ルに変化する変化点で出力が反転し、空燃比が所
定空燃比以下(リツチ)か以上(リーン)かを比
較判別する。40はこの比較回路の出力を所定空
燃比となるよう積分する公知の積分回路である。
50はこの積分回路40の出力電圧によつて燃料
噴射量を調整して空燃比を所定空燃比に制御する
空燃比制御手段であり、公知であるため詳細説明
は省く。この空燃比制御手段50としては他に気
化器の供給燃料量或いは空気の量を制御するも
の、更にはエンジン排気系に供給する二次空気の
量を制御するもの等種々の公知の手段も適用でき
る。60は比較レベル制御回路で増幅回路20か
らのセンサ検出信号が入力されセンサ検出信号の
所定高レベルと所定低レベルとのくり返し周期が
所定周期以上か否かを判別すると共に所定周期以
上のときは比較回路30の比較レベルを所定空燃
比に対応する値にセツトし比較回路30にてこの
比較レベルとセンサ検出信号とを比較判別させる
働きを持つ。
The present invention will be described below with reference to an embodiment shown in the drawings. Figure 1 shows the configuration, where 10 is an air-fuel ratio sensor that detects the air-fuel ratio based on the oxygen concentration in the engine exhaust gas, and 20 is a low-pass filter that amplifies this sensor detection signal and cuts out high-frequency components. The amplification circuit provided, 30 is a comparison circuit serving as comparison circuit means, and the output is reversed at a change point where the amplified sensor detection signal changes from a high level to a low level or from a low level to a high level, and the air-fuel ratio is maintained at a predetermined level. Compare and determine whether the air-fuel ratio is below (rich) or above (lean). Reference numeral 40 denotes a known integration circuit that integrates the output of this comparison circuit so as to obtain a predetermined air-fuel ratio.
Reference numeral 50 denotes an air-fuel ratio control means for controlling the air-fuel ratio to a predetermined air-fuel ratio by adjusting the fuel injection amount according to the output voltage of the integrating circuit 40, and since it is well known, detailed explanation will be omitted. As the air-fuel ratio control means 50, various other known means can be used, such as one that controls the amount of fuel or air supplied to the carburetor, and one that controls the amount of secondary air supplied to the engine exhaust system. can. Reference numeral 60 denotes a comparison level control circuit which receives the sensor detection signal from the amplifier circuit 20 and determines whether or not the repetition period of a predetermined high level and a predetermined low level of the sensor detection signal is a predetermined period or more. It has the function of setting the comparison level of the comparison circuit 30 to a value corresponding to a predetermined air-fuel ratio, and causing the comparison circuit 30 to compare and discriminate this comparison level with the sensor detection signal.

第2図は第1図に示す増幅回路20、比較回路
30、比較レベル制御回路60の電気回路を示す
もので、増幅回路20は抵抗201,202,2
04、演算増幅器203、並びにローパスフイル
タとしてのコンデンサ205からなる。比較回路
30はダイオード301,302、抵抗303を
介して増幅後のセンサ検出信号が入力されこの信
号を遅延させるコンデンサ304と、センサ検出
信号が遅延され分圧されたこのコンデンサ304
の端子電圧を比較値としてセンサ検出信号を比較
判別する比較器305よりなる。比較レベル制御
回路60は、増幅回路20で増幅後のセンサ検出
信号と所定空燃比に対応する比較レベルとを比較
判別する抵抗601,602,603、比較器6
04と、この比較器604の出力でセンサ検出信
号の高レベル低レベルのくり返し周期が所定周期
以上か否かを比較判別するコンデンサ605,6
12、抵抗606,608,613,614,6
15、トランジスタ610、ダイオード607,
611、比較器616と、この比較器616の出
力により上記くり返し周期が所定周期以上のとき
比較回路30の比較レベルを所定値にする抵抗6
17,618,620,623、比較器619、
ダイオード621,622とからなる。
FIG. 2 shows the electric circuit of the amplifier circuit 20, comparison circuit 30, and comparison level control circuit 60 shown in FIG.
04, an operational amplifier 203, and a capacitor 205 as a low-pass filter. The comparator circuit 30 includes a capacitor 304 to which an amplified sensor detection signal is input via diodes 301, 302 and a resistor 303 and delays this signal, and this capacitor 304 to which the sensor detection signal is delayed and voltage-divided.
The comparator 305 compares and discriminates the sensor detection signal using the terminal voltage of the sensor as a comparison value. The comparison level control circuit 60 includes resistors 601, 602, 603, and a comparator 6 for comparing and determining the sensor detection signal amplified by the amplifier circuit 20 and a comparison level corresponding to a predetermined air-fuel ratio.
04 and capacitors 605 and 6 that compare and determine whether the repetition period of high and low levels of the sensor detection signal is equal to or longer than a predetermined period using the output of the comparator 604.
12, resistance 606, 608, 613, 614, 6
15, transistor 610, diode 607,
611, a comparator 616, and a resistor 6 that sets the comparison level of the comparison circuit 30 to a predetermined value when the repetition period is equal to or more than a predetermined period based on the output of the comparator 616;
17,618,620,623, comparator 619,
It consists of diodes 621 and 622.

次に上記構成装置の作動につき第3図を用いて
説明する。増幅回路20にて高周波成分を除去さ
れ増幅された第3図Aに示す空燃比センサ10の
検出信号Aは比較回路30に導かれる。比較回路
30ではこのセンサ検出信号Aをコンデンサ30
4で遅延させダイオード、抵抗で分圧された後の
第3図Aの破線で示す端子Bの比較レベルとセン
サ検出信号Aとが比較器305にて比較判別され
第3図Cに示す信号Cを出力する。つまり比較回
路30は第3図Aからも明らかなようにセンサ検
出信号Aが高レベルから低レベル、低レベルから
高レベルに変化しようとする変化点で空燃比が所
定空燃比以下(リツチ)か以上(リーン)かを判
別できるため素早くリツチ、リーンの判別がで
き、空燃比センサの検出応答遅れを補償できるこ
とになる。この比較回路30の出力信号Cが高レ
ベル(つまりリーン)のときは積分回路40の出
力は公知の如く増加し空燃比がリツチとなるよう
帰還制御し、低レベルのときは逆にリーンとなる
よう帰還制御する。
Next, the operation of the above-mentioned constituent device will be explained using FIG. The detection signal A of the air-fuel ratio sensor 10 shown in FIG. In the comparator circuit 30, this sensor detection signal A is connected to a capacitor 30.
The comparison level of the terminal B shown by the broken line in FIG. 3A after being delayed in step 4 and divided by the diode and resistor is compared and determined by the sensor detection signal A in the comparator 305, and the signal C shown in FIG. 3C is determined. Output. In other words, as is clear from FIG. 3A, the comparison circuit 30 determines whether the air-fuel ratio is below a predetermined air-fuel ratio (rich) at the change point where the sensor detection signal A is about to change from a high level to a low level or from a low level to a high level. Since it can be determined whether the fuel is rich or lean, it is possible to quickly determine whether the fuel is rich or lean, and the delay in detection response of the air-fuel ratio sensor can be compensated for. When the output signal C of the comparator circuit 30 is at a high level (that is, lean), the output of the integrating circuit 40 increases as is well known, and feedback control is performed so that the air-fuel ratio becomes rich, whereas when the output signal C is at a low level, it becomes lean. Like feedback control.

一方比較回路60の比較器604の比較レベル
Dは第3図Aの一点鎖線で示すように所定空燃比
に対応したレベルにセツトされており、比較器6
04ではセンサ検出信号Aとこの比較レベルDと
を比較判別して第3図Eに示す判別信号Eを出力
している。この判別信号Eはコンデンサ605で
微分されトランジスタ610で波形整形され、ト
ランジスタ610のコレクタ端子Eには第3図F
の如くこの判別信号Eの立下り点で立上る所定時
間幅のパルス信号Fが得られる。コンデンサ61
2は第3図Gの如くこのパルス信号Fの出力期間
充電され、オフ期間抵抗613で放電される端子
電圧Gを出力する。比較616ではこの端子電圧
Gと第3図Gの一点鎖線で示す抵抗614,61
5で決まる比較レベルHとを比較する。通常の場
合は空燃比センサの検出信号Aの高レベル、低レ
ベルのくり返し周期(つまり空燃比のリツチ、リ
ーンの周期)は所定周期以内であるため比較レベ
ルHよりコンデンサ612の端子電圧Gが低下す
ることはないようになつている。
On the other hand, the comparison level D of the comparator 604 of the comparison circuit 60 is set to a level corresponding to a predetermined air-fuel ratio, as shown by the dashed line in FIG.
04, the sensor detection signal A and this comparison level D are compared and determined, and a determination signal E shown in FIG. 3E is output. This discrimination signal E is differentiated by a capacitor 605 and waveform-shaped by a transistor 610, and the collector terminal E of the transistor 610 is
A pulse signal F having a predetermined time width is obtained which rises at the falling point of the discrimination signal E as shown in FIG. capacitor 61
2 outputs a terminal voltage G which is charged during the output period of this pulse signal F and discharged by the resistor 613 during the OFF period, as shown in FIG. 3G. In the comparison 616, this terminal voltage G and the resistances 614 and 61 shown by the dashed line in FIG.
A comparison level H determined by 5 is compared. In normal cases, the repeated cycle of high and low levels of the detection signal A of the air-fuel ratio sensor (that is, the rich and lean cycle of the air-fuel ratio) is within a predetermined cycle, so the terminal voltage G of the capacitor 612 is lower than the comparison level H. It seems like there's nothing to do.

ところで上記の如く比較回路30は比較判別の
応答が早いため比較回路30は空燃比センサ10
の検出信号Aのレベルが充分反転しないときでも
つまり僅かのレベル変化でも敏感に判別する。例
えば第3図Aに示すようにセンサ検出信号Aが高
レベルの付近で僅かながらも変化した場合、比較
回路30は敏感にリツチ、リーンの判別信号を出
力してしまう。このため後段の積分回路は、実際
には空燃比センサ10の検出信号が高レベルでつ
まり空燃比がリツチであり、空燃比をリーンとな
るよう制御せねばならないにもかかわらず、比較
回路30の判別出力が反転する毎にリツチ、リー
ンの制御も反転して行なうことになり、正確な制
御がいつまでもできないことになる。このような
場合は比較レベル制御回路60のコンデンサ61
2の端子電圧Gは第3図Gの如くどんどん低下
し、比較器616の比較レベルHより低くなる。
何故なら第3図Aの如くセンサ検出信号Aが比較
器604の比較レベルDより低くならない期間が
このように続く場合つまりセンサ検出信号の高レ
ベル低レベルのくり返し周期が所定の周期以上と
なつた場合は、トランジスタ610のコレクタ端
子にパルス信号Fが得られず、コンデンサ612
は放電され続け端子電圧Gが比較器616の上記
所定周期に対応する比較レベルHより低下するた
めで、この結果比較器616は第3図Kの如く低
レベル信号Kを出力する。この低レベル信号Kに
より後端の比較器619は高レベルとなつて両ダ
イオード621,622は導通され抵抗620,
623で決まる所定空燃比に対応した電位Lが比
較回路30の端子Bに比較レベルとして与えられ
る。従つてセンサ検出信号の高低レベルくり返し
周期が所定周期より長くなつたときは第3図Aの
破線に示す如く比較回路30の比較レベルは所定
空燃比に対応する電位Lにより与えられるレベル
にとステツプ的に変化するため、比較回路30は
センサ検出信号の微少な変化によつて反転をくり
返し続けるといつたことはなく、誤つた空燃比制
御を行なうといつた問題は生じない。なお、再び
センサ検出信号Aが比較レベル制御回路60の比
較器604の比較レベルDより低下し、ついで比
較レベルDより上昇したときは、第3図Gに示す
如くコンデンサ612は直ぐに充電されるため端
子電圧Gは比較器616の比較レベルHより再び
上昇し、比較器616は第3図Kの如く高レベル
となつて比較回路30の比較レベルはコンデンサ
304の端子Bの電位となる。
By the way, as mentioned above, since the comparison circuit 30 has a quick response in comparison and discrimination, the comparison circuit 30 is connected to the air-fuel ratio sensor 10.
Even when the level of the detection signal A is not sufficiently inverted, that is, even a slight level change is sensitively discriminated. For example, as shown in FIG. 3A, when the sensor detection signal A changes slightly near a high level, the comparator circuit 30 sensitively outputs a rich/lean discrimination signal. For this reason, the integration circuit in the latter stage controls the comparison circuit 30 even though the detection signal of the air-fuel ratio sensor 10 is actually at a high level, that is, the air-fuel ratio is rich, and the air-fuel ratio must be controlled to be lean. Every time the discrimination output is reversed, the rich and lean controls will also be reversed, and accurate control will not be possible forever. In such a case, the capacitor 61 of the comparison level control circuit 60
The terminal voltage G of the terminal 2 gradually decreases as shown in FIG. 3G, and becomes lower than the comparison level H of the comparator 616.
This is because if the period in which the sensor detection signal A does not become lower than the comparison level D of the comparator 604 continues as shown in FIG. In this case, the pulse signal F is not obtained at the collector terminal of the transistor 610, and the capacitor 612
continues to be discharged and the terminal voltage G falls below the comparison level H corresponding to the predetermined period of the comparator 616. As a result, the comparator 616 outputs a low level signal K as shown in FIG. 3K. This low level signal K causes the comparator 619 at the rear end to go high, making both the diodes 621 and 622 conductive, and the resistors 620 and 622 become conductive.
A potential L corresponding to a predetermined air-fuel ratio determined by 623 is applied to terminal B of the comparison circuit 30 as a comparison level. Therefore, when the repetition period of high and low levels of the sensor detection signal becomes longer than a predetermined period, the comparison level of the comparator circuit 30 is stepped to the level given by the potential L corresponding to the predetermined air-fuel ratio, as shown by the broken line in FIG. 3A. Therefore, the comparator circuit 30 does not keep repeating inversions due to minute changes in the sensor detection signal, and problems such as incorrect air-fuel ratio control do not occur. Note that when the sensor detection signal A again falls below the comparison level D of the comparator 604 of the comparison level control circuit 60 and then rises above the comparison level D, the capacitor 612 is immediately charged as shown in FIG. 3G. The terminal voltage G rises again above the comparison level H of the comparator 616, the comparator 616 becomes high level as shown in FIG.

上述の実施例では比較レベル制御回路60によ
つて空燃比センサ検出信号の高低レベルくり返し
周期が所定周期以上の条件のときは比較回路30
(比較器305)の比較レベルを所定空燃比に対
応する値にセツトするものであつたが本発明の比
較回路手段としては上記条件のときは上記実施例
における比較レベル制御回路60の比較器604
の比較判別信号Eを比較回路30の出力信号に代
えて積分回路40に供給する構成とすることも可
能である。
In the above embodiment, the comparison level control circuit 60 controls the comparison circuit 30 when the high/low level repetition period of the air-fuel ratio sensor detection signal is equal to or greater than a predetermined period.
The comparison level of the comparator 305 in the above embodiment is set to a value corresponding to a predetermined air-fuel ratio.
It is also possible to adopt a configuration in which the comparison discrimination signal E is supplied to the integration circuit 40 instead of the output signal of the comparison circuit 30.

以上述べたように本発明では、空燃比センサの
検出信号の出力勾配が変化する変化点を検出して
出力レベルが反転する比較手段の出力信号を用い
て帰還制御しているから、従来の如く一定の比較
基準レベルでもつて空燃比センサの検出信号を判
別するものに比べて応答性良く空燃比状態を検出
できるため、帰還制御の応答性を十分高めるよう
にし、しかも上記検出信号の出力勾配が変化する
繰り返し周期が所定周期以上になると、上記検出
信号を遅延した遅延信号と上記検出信号とを比較
判別する比較手段に対し、この遅延信号の出力レ
ベルを実質的に固定しているから、空燃比センサ
出力の上記変化点が実際の空燃比状態に対して誤
つて検出される場合にもそれを防止して、正確か
つ安定した帰還制御を実現できるようになるとい
う優れた効果がある。
As described above, in the present invention, feedback control is performed using the output signal of the comparison means in which the output level is reversed by detecting the change point where the output slope of the detection signal of the air-fuel ratio sensor changes. Even at a constant comparison reference level, the air-fuel ratio state can be detected with better responsiveness than a method that discriminates the detection signal of the air-fuel ratio sensor. When the repeating period of change becomes equal to or greater than a predetermined period, the output level of the delayed signal is substantially fixed for comparison means that compares and discriminates the delayed signal obtained by delaying the detected signal and the detected signal. Even if the above-mentioned change point of the fuel ratio sensor output is mistakenly detected with respect to the actual air-fuel ratio state, this is prevented, and there is an excellent effect that accurate and stable feedback control can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロツク図、
第2図は第1図に示す要部の電気回路図、第3図
は第2図各部の信号波形図である。 10……空燃比センサ、20並びに60……比
較回路手段をなす比較回路並びに比較レベル制御
回路、50……空燃比制御手段。
FIG. 1 is a block diagram showing one embodiment of the present invention;
FIG. 2 is an electrical circuit diagram of the main parts shown in FIG. 1, and FIG. 3 is a signal waveform diagram of each part in FIG. 10...Air-fuel ratio sensor, 20 and 60...Comparison circuit and comparison level control circuit forming comparison circuit means, 50...Air-fuel ratio control means.

Claims (1)

【特許請求の範囲】[Claims] 1 エンジンの排気ガス成分に応じて所定空燃比
を境としてステツプ的に検出信号の出力レベルが
変化する空燃比センサと、この空燃比センサの検
出信号を遅延する遅延手段と、この遅延手段の遅
延信号と前記空燃比センサの検出信号とを比較判
別して、この検出信号の出力勾配が変化する毎に
出力レベルが反転する出力信号を発生する比較手
段と、前記空燃比センサの検出信号の出力勾配が
変化する繰り返し周期が所定周期以上になると前
記遅延手段の遅延信号の出力レベルを実質的に固
定する比較レベル制御手段と、前記比較手段の出
力信号に応じて空燃比を制御する空燃比制御手段
とを備えたことを特徴とする空燃比制御装置。
1. An air-fuel ratio sensor whose output level of a detection signal changes stepwise with a predetermined air-fuel ratio as a boundary depending on the exhaust gas components of the engine, a delay means for delaying the detection signal of this air-fuel ratio sensor, and a delay of this delay means. a comparison means for comparing and determining the signal and the detection signal of the air-fuel ratio sensor and generating an output signal whose output level is inverted every time the output slope of the detection signal changes; and an output of the detection signal of the air-fuel ratio sensor. Comparison level control means that substantially fixes the output level of the delay signal of the delay means when the repetition period of the gradient change becomes equal to or greater than a predetermined period, and air-fuel ratio control that controls the air-fuel ratio according to the output signal of the comparison means. An air-fuel ratio control device comprising: means.
JP7124578A 1978-06-13 1978-06-13 Air fuel ratio controller Granted JPS54162023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7124578A JPS54162023A (en) 1978-06-13 1978-06-13 Air fuel ratio controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7124578A JPS54162023A (en) 1978-06-13 1978-06-13 Air fuel ratio controller

Publications (2)

Publication Number Publication Date
JPS54162023A JPS54162023A (en) 1979-12-22
JPS6114338B2 true JPS6114338B2 (en) 1986-04-18

Family

ID=13455109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7124578A Granted JPS54162023A (en) 1978-06-13 1978-06-13 Air fuel ratio controller

Country Status (1)

Country Link
JP (1) JPS54162023A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161934A (en) * 1979-06-05 1980-12-16 Nippon Denso Co Ltd Controller for fuel-air ratio
JPS6133934U (en) * 1984-07-31 1986-03-01 富士重工業株式会社 Air fuel ratio control device

Also Published As

Publication number Publication date
JPS54162023A (en) 1979-12-22

Similar Documents

Publication Publication Date Title
GB1597752A (en) Fuel/air mixture preparation system for internal combustion engines
US4742808A (en) Method and system for recognizing the readiness for operation of an oxygen measurement sensor
US5140535A (en) Process, use of the same and apparatus for lambda value detection
US4123999A (en) Feedback air-fuel ratio control system for internal combustion engine capable of providing constant control signal at start of fuel feed
US4099491A (en) System controlling any air/fuel ratio with stoichiometric sensor and asymmetrical integration
GB2050003A (en) Regulation of the fuel-air ratio in engine combustion mixture
US4178884A (en) Method and system to control the mixture air-to-fuel ratio
US4519237A (en) Oxygen-sensing system
US4759328A (en) Method and circuit arrangement for detecting the readiness for operation of an oxygen measurement probe
JPS6114338B2 (en)
US4314537A (en) Fuel feedback control system for internal combustion engine
JPH027011B2 (en)
US4553424A (en) Method for detecting an oxygen concentration and a method for controlling an air-to-fuel ratio based on the detected oxygen concentration
US4716760A (en) Air-fuel ratio detection system
JPS6118016B2 (en)
US6055848A (en) Air quality measuring device
JPS60169740A (en) Smoke detector
JPS6114337B2 (en)
JPS6151138B2 (en)
JPS6132489B2 (en)
JPS6354127B2 (en)
JPS59230155A (en) Detecting apparatus of oxygen concentration
JPS6238546B2 (en)
JPS5875916A (en) Integration circuit
US4549149A (en) Current to frequency converter switched to increased frequency when current input low