JPS61142643A - X-ray source - Google Patents

X-ray source

Info

Publication number
JPS61142643A
JPS61142643A JP59264911A JP26491184A JPS61142643A JP S61142643 A JPS61142643 A JP S61142643A JP 59264911 A JP59264911 A JP 59264911A JP 26491184 A JP26491184 A JP 26491184A JP S61142643 A JPS61142643 A JP S61142643A
Authority
JP
Japan
Prior art keywords
anode
protective film
ray
ray source
evaporating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59264911A
Other languages
Japanese (ja)
Other versions
JPH069133B2 (en
Inventor
Hiroshi Yamauchi
洋 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP59264911A priority Critical patent/JPH069133B2/en
Publication of JPS61142643A publication Critical patent/JPS61142643A/en
Publication of JPH069133B2 publication Critical patent/JPH069133B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/12Cooling non-rotary anodes
    • H01J35/13Active cooling, e.g. fluid flow, heat pipes

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To obtain soft X-ray of low exciting energy at a low cost by forming a protective film made of a material having a boiling point lower than that of an anode surface on the surface of the anode consisting of active metal and evaporating the protective film by heating means after mounting it on an X-ray source. CONSTITUTION:A copper block 4 serving as the base of an anode 2 is provided within an evaporating chamber, an evaporating film made of yttrium, etc. available for the material of the anode 2 is formed, and a protective film 3 made of magnesium, etc. having a boiling point lower than that the anode 2 is vacuum evaporated further thereon. Subsequently, the protective film 3 is mounted on a copper block 6 for cooling an X-ray source 1 to achieve vacuum exhaust, thereafter the protective film 3 is evaporated by heating of a heater 5 to expose a fresh surface of the anode 2 and the X-ray is generated by means of the thermal electron from a filament 8. Therefore, an X-ray can be obtained from a pure anode material with simplified constitution and at a low cost and furthermore analysis by the soft X-ray of low exciting energy can also be achieved at high accuracy.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、E S CA (E 1ectron S 
pectroscopyror Chemical A
nalysis)等のX線分析に用いられるX線源に関
する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is based on the ESC
pectroscopyror Chemical A
This invention relates to an X-ray source used for X-ray analysis such as analysis.

〈従来技術〉 従来、ESCAでは、アノードとして通常Mg(マグネ
ンウム)やAI(アルミニウム)が使用されているが、
分析する深さを浅くしたい場合等には、Y(イツトリウ
ム)やZr(ジルコニウム)のような活性な金属をアノ
ードとしてYMζ線やZrMζ線等の低い励起エネルギ
ーの軟X線を使用する必要がある。ところが、Y等の活
性な金属は、アノードの下地の鋼上に蒸着しても大気中
ですぐに酸化変質してしまい実用に供しえない。このた
め、真空中で回転するアノードにYを真空蒸着し、電子
銃から電子を照射する回転陽極法があるが、この回転陽
極法は、真空と大気との間を隔離するのが技術的に困難
であり、しかも、極めて高価であるために、殆ど実施さ
れていない。
<Prior art> Conventionally, in ESCA, Mg (magnenium) or AI (aluminum) is usually used as an anode.
If you want to reduce the depth of analysis, it is necessary to use soft X-rays with low excitation energy, such as YMζ rays or ZrMζ rays, with an active metal such as Y (yttrium) or Zr (zirconium) as the anode. . However, even if active metals such as Y are deposited on the steel underlying the anode, they are quickly oxidized and deteriorated in the atmosphere, making them impractical. For this reason, there is a rotating anode method in which Y is vacuum-deposited on a rotating anode in a vacuum and irradiated with electrons from an electron gun. It is difficult and extremely expensive, so it is rarely practiced.

〈目的〉 本発明は、上述の点に鑑みて成されたものであって、簡
単な構成で、しかも安価に、低い励起エネルギーの軟X
線を使用できるようにすることを目的とする。
<Purpose> The present invention has been made in view of the above points, and has a simple configuration, low cost, and a low excitation energy soft
The purpose is to be able to use lines.

く構成〉 本発明では、上述の目的を達成するために、活性な金属
から成るアノード表面には、該活性な金属よりも沸点あ
るいは昇華点が低い材料から成る保護膜が形成され、前
記アノードの比較的近傍には加熱手段が設けられている
In the present invention, in order to achieve the above-mentioned object, a protective film made of a material having a boiling point or sublimation point lower than that of the active metal is formed on the surface of the anode made of an active metal. A heating means is provided relatively nearby.

〈実施例〉 以下、図面によって本発明の実施例について詳細に説明
する。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of an embodiment of the present invention.

この実施例のX線源は、ESCAに適用され、分析の際
には、後述のようにしてフィラメント8からの熱電子を
アノード2に衡突させてX線を発生させる。この発生し
たX線は、X線窓11を経て図示しない試料に照射され
、該試料からの光電子が図示しない分析手段で検出分計
される。
The X-ray source of this embodiment is applied to ESCA, and during analysis, thermionic electrons from the filament 8 are made to collide with the anode 2 to generate X-rays as will be described later. The generated X-rays pass through the X-ray window 11 and are irradiated onto a sample (not shown), and photoelectrons from the sample are detected and counted by analysis means (not shown).

本発明のX線源lでは、銅ブロック4の表面のアノード
2はYやZrのような活性な金属から成り、このアノー
ド2の表面には、この活性な金属よりも沸点あるいは昇
華点が低い材料、例えばMg、Se(セレン)、Zn(
亜鉛)から成る保護膜3が形成される。この実施例では
、アノード2はYから成り、保護膜3はMgから成る。
In the X-ray source 1 of the present invention, the anode 2 on the surface of the copper block 4 is made of an active metal such as Y or Zr, and the surface of the anode 2 has a material whose boiling point or sublimation point is lower than that of the active metal. Materials such as Mg, Se (selenium), Zn (
A protective film 3 made of (zinc) is formed. In this embodiment, the anode 2 is made of Y and the protective film 3 is made of Mg.

さらに、本発明ては、アノード2の比較的近傍、この実
施例では冷却用銅ブロック6の周囲に、アノード2の表
面の保護膜3を後述のように蒸発飛散させるための加熱
手段としてのヒータ5が設けられる。
Further, in the present invention, a heater is provided relatively near the anode 2, in this embodiment around the cooling copper block 6, as a heating means for evaporating and scattering the protective film 3 on the surface of the anode 2 as described later. 5 is provided.

なお、7は電極、9はカバー、IOはカバー9内を真空
引きするための開口部、12はヒータ5およびフィラメ
ント8のための電流端子、18は冷却水である。
In addition, 7 is an electrode, 9 is a cover, IO is an opening for evacuating the inside of the cover 9, 12 is a current terminal for the heater 5 and the filament 8, and 18 is cooling water.

X線源lのアノード2および保護膜3は、アノード2の
下地の銅ブロツク4上に第2図に示すように真空蒸着す
ることにより形成される。すなわち、蒸着室13内に銅
ブロック4を配置し、第1蒸着源14からアノード2材
料としてのYを1μm程度の厚さに形成し、次に第2蒸
着源15から保護膜3としてのMgを数百オングストロ
ームの厚さに形成する。この真空蒸着は、蒸着室13内
に銅ブロック4を複数配置し、一度に多数の銅ブロック
にアノード2および保護膜3を形成できるのは勿論であ
る。なお、第2図において■6は、蒸着室13内をバル
ブ17を介して真空引きするための真空ポンプである。
The anode 2 and protective film 3 of the X-ray source 1 are formed by vacuum deposition on the copper block 4 underlying the anode 2, as shown in FIG. That is, a copper block 4 is placed in a vapor deposition chamber 13, Y as an anode 2 material is formed to a thickness of about 1 μm from a first vapor deposition source 14, and then Mg as a protective film 3 is formed from a second vapor deposition source 15. is formed to a thickness of several hundred angstroms. In this vacuum evaporation, a plurality of copper blocks 4 are arranged in the evaporation chamber 13, and it goes without saying that the anode 2 and the protective film 3 can be formed on a large number of copper blocks at the same time. In FIG. 2, reference numeral 6 indicates a vacuum pump for evacuating the inside of the deposition chamber 13 via a valve 17.

このようにしてアノード2および保護膜3が蒸着形成さ
れた銅ブロック4を、蒸着室工3から取出し、第1図に
示されるように冷却用鋼ブロック6に取付ける。蒸着室
13から取出したときに、銅ブロック4は、大気に曝さ
れて表面が酸化するが、保護膜3のMgは、表面が不動
聾皮膜を形成するので、それより内部まで酸化されるこ
とがない。従って、保護M4343内、金属状態のYの
ままである。
The copper block 4 on which the anode 2 and protective film 3 have been deposited in this manner is taken out of the deposition chamber 3 and attached to a cooling steel block 6 as shown in FIG. When taken out from the vapor deposition chamber 13, the surface of the copper block 4 is exposed to the atmosphere and is oxidized, but the Mg of the protective film 3 forms an immovable deaf film on the surface, so that the inside of the copper block 4 is not oxidized. There is no. Therefore, Y remains in the metal state within the protection M4343.

次に、分析を行なう場合には、まず、高真空排気した後
、ヒータ5によって銅ブロック4の部分を加熱する。加
熱が進んで650℃付近になると、保護膜3のMgが昇
華し、X線窓11やカバー9に付着する。このMgの蒸
着厚さは極めて薄いので、昇華する量も少なく、X線窓
11の透過特性を大きく低下させることはない。また、
この加熱温度、すなわち650℃では、アノード2のY
は、変化しない。従って、Mgの昇華後、銅ブロツク4
上には新鮮なY層のみが現われる。このY層は、既に高
真空であるので、長時間そのままの状態が保たれる。そ
の後は、従来と同様にYから成るアノード2にフィラメ
ント8からの熱電子を衡突させて低い励起エネルギーの
軟X線を発生させて試料に照射して分析を行なう。なお
、ヒータ5は、保護膜3を蒸発飛散させるのみではなく
、吸着ガスを除去して真空度を高める機能をも存する。
Next, when performing an analysis, first, after high vacuum evacuation, a portion of the copper block 4 is heated by the heater 5. As the heating progresses to around 650° C., Mg in the protective film 3 sublimates and adheres to the X-ray window 11 and the cover 9. Since the Mg is deposited to a very thin thickness, the amount of Mg sublimated is small, and the transmission characteristics of the X-ray window 11 are not significantly degraded. Also,
At this heating temperature, that is, 650°C, the Y of anode 2
does not change. Therefore, after sublimation of Mg, the copper block 4
Only the fresh Y layer appears on top. Since this Y layer is already in a high vacuum, it remains in that state for a long time. Thereafter, as in the conventional case, thermionic electrons from the filament 8 are made to collide with the anode 2 made of Y to generate soft X-rays with low excitation energy, and the sample is irradiated with the generated soft X-rays for analysis. Note that the heater 5 has the function of not only evaporating and scattering the protective film 3 but also removing adsorbed gas and increasing the degree of vacuum.

このようにして本発明では、上述の回転陽極法に比べて
簡単な構成で、しかも安価に活性な金属アノードを得る
ことができ、低い励起エネルギーの軟X線を使用する分
析が可能となる。
In this way, in the present invention, an active metal anode can be obtained with a simpler structure and at a lower cost than the above-mentioned rotating anode method, and analysis using soft X-rays with low excitation energy becomes possible.

〈効果〉 以上のように本発明によれば、活性な金属から成るアノ
ード表面には、該活性な金属よりも沸点あるいは昇華点
が低い材料から成る保護膜が形成され、前記アノードの
比較的近傍には加熱手段が設けられているので、加熱手
段によって保護膜を蒸発飛散させることにより、比較的
簡単な構成で、しかも、安価に純粋な活性金属から成る
アノードを得ることができ、これによって、従来困難で
あって、活性な金属アノードを用いた低い励起エネルギ
ーの軟X線を使用ケる分野の分析研究が可能になるとと
らに、分析精度が向上する。
<Effects> As described above, according to the present invention, a protective film made of a material having a boiling point or sublimation point lower than that of the active metal is formed on the surface of the anode made of an active metal, and Since the is equipped with a heating means, by evaporating and scattering the protective film using the heating means, it is possible to obtain an anode made of pure active metal with a relatively simple structure and at low cost. This will not only make it possible to conduct analytical research in fields that have traditionally been difficult using soft X-rays with low excitation energy using active metal anodes, but also improve analytical accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の縦断面図、第2図はアノー
ド2および保護膜3の形成手順を説明するための図であ
る。 I・・X線源、2・・・アノード、3・・保護膜、4・
・銅ブロック、5・・ヒータ。
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, and FIG. 2 is a diagram for explaining the procedure for forming an anode 2 and a protective film 3. As shown in FIG. I... X-ray source, 2... Anode, 3... Protective film, 4...
・Copper block, 5... Heater.

Claims (1)

【特許請求の範囲】[Claims] (1)フィラメントからの熱電子をアノードに衡突させ
てX線を発生させるX線源であって、前記アノードは活
性な金属から成り、該アノード表面には、前記活性な金
属よりも沸点あるいは昇華点が低い材料から成る保護膜
が形成され、前記アノードの比較的近傍には加熱手段が
設けられたことを特徴とするX線源。
(1) An X-ray source that generates X-rays by making thermionic electrons from a filament collide with an anode, the anode being made of an active metal, and the surface of the anode having a boiling point or a temperature higher than that of the active metal. An X-ray source characterized in that a protective film made of a material with a low sublimation point is formed, and a heating means is provided relatively close to the anode.
JP59264911A 1984-12-14 1984-12-14 X-ray source Expired - Lifetime JPH069133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59264911A JPH069133B2 (en) 1984-12-14 1984-12-14 X-ray source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59264911A JPH069133B2 (en) 1984-12-14 1984-12-14 X-ray source

Publications (2)

Publication Number Publication Date
JPS61142643A true JPS61142643A (en) 1986-06-30
JPH069133B2 JPH069133B2 (en) 1994-02-02

Family

ID=17409919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59264911A Expired - Lifetime JPH069133B2 (en) 1984-12-14 1984-12-14 X-ray source

Country Status (1)

Country Link
JP (1) JPH069133B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2882886A1 (en) * 2005-03-02 2006-09-08 Commissariat Energie Atomique MONOCHROMATIC X-RAY SOURCE AND X-RAY MICROSCOPE USING SUCH A SOURCE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2882886A1 (en) * 2005-03-02 2006-09-08 Commissariat Energie Atomique MONOCHROMATIC X-RAY SOURCE AND X-RAY MICROSCOPE USING SUCH A SOURCE
WO2006092518A1 (en) * 2005-03-02 2006-09-08 Commissariat A L'energie Atomique Monochromatic x-ray source and x-ray microscope using one such source

Also Published As

Publication number Publication date
JPH069133B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
CA1175309A (en) Method of providing a metal component with a thermally black surface
JPH052100A (en) Electron beam irradiated device and manufacture of electron beam penetration film
JPS61142643A (en) X-ray source
Thomas et al. The effect of adsorption of Cs and coadsorption of Cs and O2 on bombardment-induced light emission from Cu and Al surfaces
US3708325A (en) Process for metal coating boron nitride objects
US2778485A (en) Vacuum tube getter body material
JPH07258832A (en) Electron gun for vacuum deposition device and vacuum deposition device having the same
US4001582A (en) Local surface analysis
Lamartine et al. A model of dispenser cathode activity
JPS5828705B2 (en) Piro Electric Busicon
US3711326A (en) Promethium sources
US5523166A (en) Process for forming thin film having excellent insulating property and metallic substrate coated with insulating material formed by said process
Becker et al. Change in stoichiometry by laser-induced plasma deposition of high-Tc superconducting thin films
JPH05209262A (en) Manufacture of film coating
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
Wormald et al. The preparation of tantalum nitride targets by reactive sputtering
Müller et al. Analysis of sputter deposited and evaporated tantalum oxide layers on SiO 2 by SNMS, XPS, TDS and TRFA
JPH05295522A (en) Formation of thin film
JP2635052B2 (en) Metal film forming method
Benz et al. Suppression of carbon monoxide formation in oxide-coated TZM molybdenum X-ray rotating anodes
JPS63166963A (en) Production of thin film
JPH04337445A (en) Manufacture of microsection
JP2000054114A (en) Film structure excellent in heat and wear resistance
Orlinov et al. Angular distribution and sputtering yield of Al and Al2O3 during 40 key argon ion bombardment
Aaron et al. Preparation of thin films for use in generating neutral particle beams