JPS61142490A - Apparatus installing section structure and apparatus installing method of roof slab in tank type fast breeder reactor - Google Patents

Apparatus installing section structure and apparatus installing method of roof slab in tank type fast breeder reactor

Info

Publication number
JPS61142490A
JPS61142490A JP59265143A JP26514384A JPS61142490A JP S61142490 A JPS61142490 A JP S61142490A JP 59265143 A JP59265143 A JP 59265143A JP 26514384 A JP26514384 A JP 26514384A JP S61142490 A JPS61142490 A JP S61142490A
Authority
JP
Japan
Prior art keywords
equipment
roof slab
penetration part
peripheral wall
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59265143A
Other languages
Japanese (ja)
Other versions
JPH0233115B2 (en
Inventor
酒井 隆雄
山川 正剛
雅哉 大塚
勝久 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Hitachi Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Hitachi Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP59265143A priority Critical patent/JPS61142490A/en
Publication of JPS61142490A publication Critical patent/JPS61142490A/en
Publication of JPH0233115B2 publication Critical patent/JPH0233115B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、高速増殖炉とその製作方法、さらに詳細には
、タンク型高速増殖炉におけるルーフスラブの機器据付
部構造と機器据付方法との改良に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a fast breeder reactor and a method for manufacturing the same, and more particularly, to an improvement in the structure of a roof slab equipment installation part and equipment installation method in a tank-type fast breeder reactor. It is related to.

〔発明の背景〕[Background of the invention]

ナトリウム冷却タンク型高速増殖炉には、第8図に示す
ように、原子炉主客器1の上部に位置して、炉内と外界
とを隔離するルーフスラブ2が設けられており、また原
子炉主客器1内には、複数基の主中間熱交換器3、複数
基の1次主循環ポンプ4、炉心5が収納されている。炉
心5の上方には、炉の出力を制御する制御棒および炉心
出口の温度と流量とを測定する炉心上部機構6が設置さ
れている。さらに、原子炉主客器1内には、炉心5より
流出する高温ナトリウムと中間熱交換器3より流出する
低温ナトリウムとを分離する隔壁7が設置されており、
この隔壁7により、主容器内は、上部のホットプレナム
8と下部のコールドプレナム9とに分離されている。原
子炉主客器1内のす) IJウム10は、炉心5内で加
熱された後、ホットプレナム8に流出し、中間熱交換器
3に入シ、中間熱交換器3内で2次冷却系ナトリウムに
熱を与えながら下降し、コールドプレナム9内に流出す
る。コールドプレナム9内の低温ナトリウムは、1次主
循環ポンプ4によって炉心5に送られる。
As shown in Figure 8, a sodium-cooled tank type fast breeder reactor is provided with a roof slab 2 located above the reactor main passenger equipment 1 to isolate the inside of the reactor from the outside world. Inside the main passenger unit 1, a plurality of main intermediate heat exchangers 3, a plurality of primary main circulation pumps 4, and a reactor core 5 are housed. Above the core 5, a control rod for controlling the output of the reactor and an upper core mechanism 6 for measuring the temperature and flow rate at the core outlet are installed. Furthermore, a partition wall 7 is installed in the reactor main customer unit 1 to separate high temperature sodium flowing out from the reactor core 5 and low temperature sodium flowing out from the intermediate heat exchanger 3.
This partition wall 7 separates the inside of the main container into an upper hot plenum 8 and a lower cold plenum 9. After being heated in the reactor core 5, IJium 10 flows into the hot plenum 8, enters the intermediate heat exchanger 3, and enters the secondary cooling system within the intermediate heat exchanger 3. It descends while giving heat to the sodium and flows out into the cold plenum 9. The low temperature sodium in the cold plenum 9 is sent to the core 5 by the primary main circulation pump 4.

原子炉主客器1の上部ふたであるルーフスラブ2は、炉
内と外界とを隔離するとともに、第8図に図示した主中
間熱交換器3および1次主循環ポンプ4のほか、コール
ドトラップ、補助中間熱交換器など、多数の機器がルー
フスラブ2を貫通して搭載される。
The roof slab 2, which is the upper lid of the reactor main passenger unit 1, isolates the inside of the reactor from the outside world, and in addition to the main intermediate heat exchanger 3 and the primary main circulation pump 4 shown in FIG. 8, the roof slab 2 serves as a cold trap, A large number of devices, such as an auxiliary intermediate heat exchanger, are mounted through the roof slab 2.

ルーフスラブ機器貫通部の構造を、中間熱交換器3の場
合を例にとって第9図に示す。
The structure of the roof slab equipment penetration part is shown in FIG. 9, taking the intermediate heat exchanger 3 as an example.

第9図において、中間熱交換器3は、ルーフスラブ2の
上天で固定され、ルーフスラブ2を貫通する構造となり
、機器貫通部には、下端開放環状空間11が形成される
。一方、ルー フスラプ2そのものは、当該ルーフスラ
ブ2の上面2′をほぼ室温に近い温度に保つ必要があシ
、また上部方向への放射線量を低くする必要があり、し
たがってルーフスラブ2は、約500Cの高温ナトリウ
ム10およびカバーガス(通常アルゴンガス)層12か
らの熱を遮蔽する熱遮蔽層2aと、冷却層2bと、放射
線遮蔽層2Cとから構成されている。
In FIG. 9, the intermediate heat exchanger 3 is fixed above the roof slab 2 and has a structure that penetrates the roof slab 2, and a lower end open annular space 11 is formed in the device penetration part. On the other hand, for the roof slab 2 itself, it is necessary to maintain the upper surface 2' of the roof slab 2 at a temperature close to room temperature, and it is necessary to reduce the radiation dose in the upper direction. It is composed of a heat shielding layer 2a that shields heat from the 500C high temperature sodium 10 and a cover gas (usually argon gas) layer 12, a cooling layer 2b, and a radiation shielding layer 2C.

以上の記載から明らかなように、原子炉運転中、ルーフ
スラブ2の上面は、はぼ室温に近い値となす、一方ルー
フスラブ2の下方のカバーガス層12は、ホットプレナ
ム8の高温ナトリウム10により高温となる。このため
、上記した機器貫通部における環状空間11の下端開放
部11′付近のカバーガス温度は300〜400C,上
端閉塞部11“付近の温度は5.OC程度となる。この
上下間の温度差により、環状空間11部分において、カ
バーガスの自然対流が発生する。この環状空間11部分
におけるカバーガスの自然対流は、第10図(a)に示
すように、高温の上昇流と低温の下降流とからなる周方
向の循環流となり、円筒状の機器外周壁3′には、第1
0図(b)および(c)K示すような温度分布が生じ、
機器外周壁3′の周方向に沿って温度分布の不均一を生
じることになる。
As is clear from the above description, during nuclear reactor operation, the upper surface of the roof slab 2 is at a temperature close to room temperature, while the cover gas layer 12 below the roof slab 2 is heated to a temperature of about 10% of the high temperature sodium chloride in the hot plenum 8. It becomes high temperature. For this reason, the cover gas temperature near the lower end open part 11' of the annular space 11 in the device penetration part is 300 to 400 C, and the temperature near the upper end closed part 11'' is about 5.OC. As a result, natural convection of the cover gas occurs in the annular space 11.The natural convection of the cover gas in the annular space 11 consists of a high temperature upward flow and a low temperature downward flow, as shown in FIG. The flow becomes a circular flow in the circumferential direction consisting of
A temperature distribution as shown in Figure 0 (b) and (c) K occurs,
This results in non-uniform temperature distribution along the circumferential direction of the device outer peripheral wall 3'.

その結果、機器外周壁3′に1は第1θ図(d)に示す
ような熱変形が生じる。機器外周壁3′に上記したごと
き熱変形が生じると、機器部材に有害な応力がかかった
り、機器内部構造物との接触あるいはルーフスラブ−2
の機器貫通部内周壁2“との接触がおこることになり、
機器構造強度上および機能上重大な障害となる。また、
原子炉停止冷却後、機器のメインテナンスを目的として
、ルーフスラブ2から各機器を引き抜く場合があるが、
運転中に発生した変形が残留すると、機器の引抜ができ
なくなる場合もある。
As a result, thermal deformation occurs on the outer peripheral wall 3' of the device as shown in FIG. 1(d). If the above-mentioned thermal deformation occurs in the equipment outer peripheral wall 3', harmful stress may be applied to the equipment components, contact with the internal structure of the equipment, or damage to the roof slab-2.
Contact with the inner circumferential wall 2" of the device penetration part will occur,
This will cause serious damage to the structural strength and functionality of the equipment. Also,
After the reactor has been shut down and cooled, each piece of equipment may be pulled out from the roof slab 2 for the purpose of equipment maintenance.
If the deformation that occurred during operation remains, it may become impossible to pull out the equipment.

従来、上記した機器貫通部の周方向に発生する温度分布
の不均一をなくすためには、機器貫通部の環状空間11
部分における自然対流(周方向循環流)を防止すればよ
いとの考えから、特開昭54−1403号公報および特
開昭55−121193号公報に示されているように1
環状空間11内に対流防止材を設ける方法の他、環状空
間11のギャップを小さくする方法が考えられている。
Conventionally, in order to eliminate the uneven temperature distribution that occurs in the circumferential direction of the device penetration section, the annular space 11 of the device penetration section has been
Based on the idea that it is sufficient to prevent natural convection (circumferential circulation flow) in the parts, as shown in JP-A-54-1403 and JP-A-55-121193,
In addition to the method of providing a convection prevention material in the annular space 11, methods of reducing the gap of the annular space 11 have been considered.

しかして、前者の場訃、対流防止材とルーフスラブ(さ
らに詳しくは、機器貫通部内周壁)との間のギャップを
できるだけ小さくシ、対流を抑制する必要があるが、対
流防止材とルーフスラブ(機器貫通部内周壁)との間の
ギャップを極端に小さくすることは、製作上の困難をと
もない、しかも機器の挿入・引抜などのメインテナンス
が困難になる。また、後者の場合、貫通機器とルーフス
ラブ(機器貫通部内周壁)との間のギャップは、機器の
挿入作業・引抜作業を考慮すると二少なくとも数■〜十
数■必要となるが、貫通機器−とルーフスラブ(機器貫
通部内周壁)との間にこの程度のギャップが存在すると
、自然対流抑制効果が不十分となる懸念がある。
However, in the former case, it is necessary to suppress convection by minimizing the gap between the convection preventive material and the roof slab (more specifically, the inner circumferential wall of the equipment penetration part). Making the gap between the device (the inner circumferential wall of the device penetrating portion) extremely small causes manufacturing difficulties, and also makes maintenance such as insertion and withdrawal of the device difficult. In the latter case, the gap between the penetrating device and the roof slab (inner circumferential wall of the device penetrating portion) will need to be at least several to several dozen times, considering the insertion and removal work of the device. If a gap of this magnitude exists between the roof slab (inner circumferential wall of the equipment penetration part), there is a concern that the effect of suppressing natural convection may be insufficient.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した従来技術の問題点を解決すべく、種
々検討の結果なされたものであって、その目的とすると
ころは、従来技術では防止し得なかったルーフスラブの
機器貫通部に生じる温度分布の不均一をなくシ、核部に
挿入設置される機器の熱変形、熱応力を低減すると同時
に1上記機器貫通部の構造強度および機能健全性を維持
し、併せてこの種構造物の据付を容易におこなうことの
できるタンク型高速増殖炉におけるルーフスラブの機器
据付部構造と機器据付方法とを提供しようとするもので
ある。
The present invention was made as a result of various studies in order to solve the above-mentioned problems of the prior art, and its purpose is to prevent problems that occur at the equipment penetration part of the roof slab, which could not be prevented with the prior art. It eliminates uneven temperature distribution, reduces thermal deformation and thermal stress of equipment inserted into the core, and at the same time maintains the structural strength and functional integrity of the equipment penetration part, and at the same time It is an object of the present invention to provide a structure of an equipment installation part of a roof slab in a tank-type fast breeder reactor, which can be easily installed, and a method of installing the equipment.

〔発明の概要〕[Summary of the invention]

上記゛目的を達成するため、本発明は、原子炉主容器の
ルーフスラブに円筒状の機器貫通部を有するタンク型高
速増殖炉において、上記ルーフスラブの機器貫通部内周
壁と当該機器貫通部に挿入される円筒状の機器外周壁と
に、それぞれ複数個の縦形フィンを突設し、上記ルーフ
スラブの機器貫通部内周壁に突設した縦形フィンと機器
外周壁に突設した縦形フィンとにより、機器貫通部の環
状空間をその周方向に複数個に縦分割してなることを第
1の特徴とするもの士ある。
In order to achieve the above object, the present invention provides a tank-type fast breeder reactor having a cylindrical equipment penetration part in the roof slab of the reactor main vessel, which is inserted into the inner peripheral wall of the equipment penetration part of the roof slab and the equipment penetration part. A plurality of vertical fins are provided protruding from each of the cylindrical outer circumferential walls of the equipment, and the vertical fins protruding from the inner circumferential wall of the equipment penetration portion of the roof slab and the vertical fins protruding from the outer circumferential wall of the equipment The first feature is that the annular space of the penetration part is vertically divided into a plurality of parts in the circumferential direction.

また、本発明は、原子炉主容器のルーフスラブに円筒状
の機器貫通部を設け、当該機器貫通部に所定の機器を挿
入設置するタンク型高速増殖炉の製作方法において、上
記ルーフスラブの機器貫通部内周壁と当該機器貫通部に
挿入される円筒状の機器外周壁とに、それぞれ複数個の
縦形フィンを突設し、上記ルーフスラブの機器貫通部に
機器をめ離間した状態にセットし、この状態で上記機器
をルーフスラブの機器貫通部に挿入し、機器挿入後、当
該機器を水平方向に回転させて、ルーフスラブの機器貫
通部内周壁に突設されている縦形フィンと機器外周壁3
′側されている縦形フィンとを当接せしめることを第2
の特徴とするものである。
The present invention also provides a method for manufacturing a tank-type fast breeder reactor, in which a cylindrical equipment penetration part is provided in the roof slab of a reactor main vessel, and predetermined equipment is inserted and installed in the equipment penetration part, in which equipment of the roof slab is installed. A plurality of vertical fins are respectively provided protrudingly on the inner peripheral wall of the penetration part and the outer peripheral wall of a cylindrical device inserted into the equipment penetration part, and the equipment is set in the equipment penetration part of the roof slab in a spaced state, In this state, insert the above-mentioned device into the device penetration part of the roof slab, and after inserting the device, rotate the device horizontally to connect the vertical fins protruding from the inner peripheral wall of the device penetration part of the roof slab and the device outer peripheral wall 3.
The second step is to bring the vertical fins into contact with each other.
This is the characteristic of

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を、図面にもとづいて説明すると、第1図
は本発明を適用したタンク型高速増殖炉におけるルーフ
スラブの機器貫通部を、中間熱交換器の場合を例にとっ
て示す要部の縦断面図である。
Hereinafter, the present invention will be explained based on the drawings. Figure 1 is a longitudinal cross-section of the main part showing the equipment penetration part of the roof slab in a tank-type fast breeder reactor to which the present invention is applied, taking the case of an intermediate heat exchanger as an example. It is a front view.

また、wcz図は第1図の横断面図、第3図は第2図の
展開図である。
Further, the wcz diagram is a cross-sectional view of FIG. 1, and FIG. 3 is a developed view of FIG. 2.

第1図ないし第3図から明らかなように1ルーフスラブ
2の機器貫通部内周壁2“と当該機器貫通部に挿入され
る機器外周壁3′とには、それぞれ疲数個の縦形フィン
2dおよび3aが突設されているものであって、上記ル
ーフスラブ20機器貫通部内周壁2“に突設し九縦形フ
ィン2dと機器外周壁3’に突設した縦形フィン3aと
によシ、機器貫通部の環状空間11は、その周方向に複
数個に縦分割されている。なお、図示実施例においては
、ルーフスラブ20慎器貫通部内周壁2“側、機器外周
壁3′側それぞれに4個の縦形フィン2dおよび3aを
突設し、機器貫通部の環状空間11を、その周方晶に4
11Iに縦分割した場合を示した。
As is clear from FIGS. 1 to 3, the inner peripheral wall 2'' of the equipment penetration part of one roof slab 2 and the outer peripheral wall 3' of the equipment inserted into the equipment penetration part each have several vertical fins 2d and 3a protrudes from the roof slab 20, and includes nine vertical fins 2d protruding from the inner circumferential wall 2'' of the equipment penetration part and vertical fins 3a protruding from the equipment outer circumferential wall 3'. The annular space 11 of the section is vertically divided into a plurality of spaces in the circumferential direction. In the illustrated embodiment, four vertical fins 2d and 3a are provided protruding from the inner peripheral wall 2'' side of the roof slab 20 and the equipment outer peripheral wall 3' side, respectively, to form the annular space 11 of the equipment penetration part. 4 in that circumgonal crystal
The case of vertical division into 11I is shown.

しかして、第1図ないし第3図から明らかなように、本
発明においては、ルーフスラブ2部分における機器貫通
部の環状空間11が、その周方向に複数個に縦分割され
ているから、環状空間11の上下方向温度差にともなう
自然対流は、それぞれに分割されたセクタ内での対流と
なり、第10図で示したような周方向循環流が生じるこ
とはない。
As is clear from FIGS. 1 to 3, in the present invention, the annular space 11 of the equipment penetration part in the roof slab 2 portion is vertically divided into a plurality of parts in the circumferential direction. The natural convection caused by the temperature difference in the vertical direction of the space 11 becomes a convection within each divided sector, and a circumferential circulation flow as shown in FIG. 10 does not occur.

本発明の効果を、非圧縮性・粘性流体の流れを取シ扱う
3次元解析プログラムを使用した計算により確認した。
The effects of the present invention were confirmed by calculations using a three-dimensional analysis program that deals with the flow of incompressible and viscous fluids.

この解析プログラムは、非圧縮性・粘性流体について、
質量、運動量およびエネルギの保存式を解くもので、強
制対流および自然対流の双方についてそれぞれ層流域か
ら乱流域までの流れが取シ扱える。このプログラムを使
って、次の仮定を設けて計算体系をモデル化し、環状空
間11の自然対流特性を解析した。
This analysis program deals with incompressible and viscous fluids.
It solves the conservation equations of mass, momentum, and energy, and can handle flows from laminar to turbulent regions for both forced convection and natural convection. Using this program, a calculation system was modeled with the following assumptions, and the natural convection characteristics of the annular space 11 were analyzed.

(1)  ギャップが高さ1円周に比べて十分小さいた
め、第4図に示す「−θ−23次元モデルを採用した(
r方向:側壁、流体、側壁の3メツシ5−)。
(1) Since the gap is sufficiently small compared to the height of one circumference, we adopted the ``-θ-23-dimensional model shown in Figure 4 (
r direction: side wall, fluid, side wall 3 mesh 5-).

(2)密度は、浮力の項を除いて一定とする( 9ou
ss 1nesq近似)。
(2) The density is constant except for the buoyancy term (9ou
ss 1nesq approximation).

(3)  ギャップδの効果は、次式の壁面せん断力F
Kよシ評価した。
(3) The effect of the gap δ is expressed by the wall shear force F
Rated K.

p=fu”/2ga。p=fu”/2ga.

f==64/R。f==64/R.

f:摩擦損失係数 U:流速 g:重力加速度 Ro:レイノルズ数 (4)  環状空間11の内外周112“および3′の
熱的境界条件として、当該周壁2“、3′を介して周囲
への熱伝達を考慮した。
f: Friction loss coefficient U: Flow velocity g: Gravitational acceleration Ro: Reynolds number (4) As a thermal boundary condition of the inner and outer circumferences 112'' and 3' of the annular space 11, the Heat transfer was considered.

上記のモデルを用いて、環状空間11部分における自然
対流特性を評価した。
Using the above model, natural convection characteristics in the 11 portion of the annular space were evaluated.

第5図に%機器貫通部の環状空間11部分における自然
対流による流速ベクトル図の一例を示す。
FIG. 5 shows an example of a flow velocity vector diagram due to natural convection in the annular space 11 of the device penetration portion.

なお、第5図においては、同図(a)に示すごとく、環
状空間をセクタ分割しない場合(従来)と、同図Φ)に
示すごとく、縦形フィン2dおよび38によって環状空
間を周方向にセクタ分割した場合(本発明)との双方を
示し九。
In addition, in FIG. 5, as shown in FIG. 5(a), the annular space is not divided into sectors (conventional), and as shown in FIG. Figure 9 shows both the divided case (this invention) and the divided case (this invention).

第5図(a)に示すように、環状空間をセクタ分割しな
い場合、対流は、周方向で一対の循環流となっている。
As shown in FIG. 5(a), when the annular space is not divided into sectors, convection forms a pair of circulation flows in the circumferential direction.

一方、第5図(b)K示すように、環状空間をセクタ分
割した場合は、第5図(a)K示すような周方向循環流
とはならず、上下方向に2つの渦ができる流れとなる。
On the other hand, when the annular space is divided into sectors as shown in Figure 5(b)K, a circumferential circulating flow as shown in Figure 5(a)K does not occur, but a flow with two vertical vortices. becomes.

すなわち、環状空間部を周方向にセクタ分割することに
より、大きな周方向循環流がなくなるため、周方向に発
生する温度差も小さくなる。
That is, by dividing the annular space into sectors in the circumferential direction, a large circumferential circulation flow is eliminated, and therefore the temperature difference occurring in the circumferential direction is also reduced.

ここで、環状空間の自然対流にともなう周方向の最大温
度層を評価する。なお、周方向の最大温度差として、次
式で得られる無次元温度差ΔT*を温度差の評価指標と
した。
Here, the maximum temperature layer in the circumferential direction due to natural convection in the annular space will be evaluated. In addition, as the maximum temperature difference in the circumferential direction, a dimensionless temperature difference ΔT* obtained by the following equation was used as an evaluation index of the temperature difference.

第6図に、周方向最大温度差ΔTlとレイリ数R,との
関係を示す。ここで、レイリ数R1は、自然対流を支配
すると考えられる無次元数で次式%式% G、:グラスホフ数 P、ニブラントル数 β:体積膨張率 ΔT:上下端温度差 t:代表長さ シ:動粘性係数 なお、第6図においては、環状空間をセクタ分割しない
場合(従来)と、縦形フィンによって環状空間を周方向
にセクタ分割した場合(本発明)との双方の最大無次元
温度差を示した。
FIG. 6 shows the relationship between the circumferential maximum temperature difference ΔTl and the Rayleigh number R. Here, the Rayleigh number R1 is a dimensionless number that is thought to govern natural convection and is expressed by the following formula % G: Grashoff number P, Nybrandtl number β: Volumetric expansion coefficient ΔT: Upper and lower end temperature difference t: Representative length :Kinematic viscosity coefficientIn addition, in Fig. 6, the maximum dimensionless temperature difference between the case where the annular space is not divided into sectors (conventional) and the case where the annular space is divided into sectors in the circumferential direction by vertical fins (invention) is shown. showed that.

W、6図から明らかなよう忙、環状空間を周方向にセク
タ分割した場合、この周方向に発生する温度差は小さく
なっていることが判る。このことがら、本発明によれば
、周方向循環流の低減にともなう熱変形、熱応力の緩和
が可能である。なお、実機にかけるレイリ数は、各機器
忙よって異なるが、1011〜1012の範囲であ”る
。 −ところで、第2図において、ルーフスラブ20機
器貫通部内周壁2“忙突設されている縦形フィン2dと
機器外周壁3′に突設されている縦形フィン3aとの間
の間隙は、環状空間ll内における周方向の循環流をよ
シ効率的忙阻止せしめることを考慮すると、できるだけ
小さい方がよい。
As is clear from FIG. 6, when the annular space is divided into sectors in the circumferential direction, the temperature difference occurring in the circumferential direction becomes smaller. Therefore, according to the present invention, it is possible to alleviate thermal deformation and thermal stress due to a reduction in circumferential circulation flow. The Rayleigh number applied to the actual machine varies depending on the busyness of each equipment, but is in the range of 1011 to 1012. The gap between the fins 2d and the vertical fins 3a protruding from the device outer peripheral wall 3' should be as small as possible in order to more efficiently block the circulation flow in the circumferential direction within the annular space ll. Good.

しかし、ルーフスラブ2の機器貫通部(所定の機器3を
挿入するに際し、当初からルーフスラブ20機器貫通部
内周壁2“K突設されている縦形フィン2dと機器外周
壁3′に突設されている縦形フィン3aとを接近させて
おくと、機器3の挿入途中で上記両フィン2dと33と
が接触し、この種作業をスムーズにおこなうことができ
ない。
However, when inserting the equipment penetration part of the roof slab 2 (predetermined equipment 3), from the beginning, the vertical fins 2d protruding from the equipment penetration part inner peripheral wall 2''K of the roof slab 20 and the equipment outer peripheral wall 3'. If the vertical fins 3a are kept close to each other, the fins 2d and 33 will come into contact with each other during the insertion of the device 3, making it impossible to perform this type of work smoothly.

しかして、上記を考慮して、ルーフスラブ20機器貫通
部に機器3を挿入するに際しては、第7図(a)ItC
示すよ□うに、ルーフスラブ20機器貫通部内周壁2“
に突設されている縦形フィン2dと機器外周壁3′に突
設されている縦形フィン31とをあらかじめ離間した状
態にセットし、この状態で上記機器3をルーフスラブ2
の機器貫通部に挿入し、機器挿入後、当該機器3を水平
方向に回転させて、ルーフスラブ2の縦形フィン2dと
機器外周壁3′の縦形フィン3aとを当接せしめるよう
Kすれば、機器挿入時、機器貫通部内周壁2“の縦形フ
ィン2dと機器外周壁3′の縦形フィン3aとが接触す
るのを未然に防止することができ、ルーフスラブ20機
器貫通部に対する機器3の挿入をスムーズにおこなうこ
とができる。なお、ルーフスラブ2の機器貫通部から機
器3を引き抜く場合は、上記挿入操作と反対の操作をお
こなえばよい。
Therefore, in consideration of the above, when inserting the equipment 3 into the equipment penetration part of the roof slab 20, it is necessary to
As shown □, roof slab 20 equipment penetration inner peripheral wall 2"
The vertical fins 2d protruding from the roof slab 2d and the vertical fins 31 protruding from the device outer peripheral wall 3' are set in advance to be separated from each other, and in this state the device 3 is attached to the roof slab 2.
After inserting the device into the device penetration part, rotate the device 3 horizontally so that the vertical fin 2d of the roof slab 2 and the vertical fin 3a of the device outer peripheral wall 3' come into contact with each other. When inserting the equipment, it is possible to prevent the vertical fins 2d of the inner peripheral wall 2'' of the equipment penetration part from coming into contact with the vertical fins 3a of the equipment outer peripheral wall 3', thereby preventing the insertion of the equipment 3 into the equipment penetration part of the roof slab 20. This can be done smoothly.In addition, when pulling out the equipment 3 from the equipment penetration part of the roof slab 2, it is sufficient to perform the operation opposite to the above-mentioned insertion operation.

〔発明の効果〕〔Effect of the invention〕

本発明は以上のごときであり、本発明によれば従来技術
では防止し得なかったルーフスラブの機器貫通部に生じ
る温度分布の不均一をe<L、、核部に挿入設置される
機器の熱変形、熱応力を低減すると同時に、上記機器貫
通部の構造強度および械能健全性を維持し、併せてこの
種構造物の据付を容易におこなうことのできるタンク型
高速増殖炉におけるルーフスラブの機器据付部構造と機
器据付方法とを得ることができる。
The present invention is as described above, and according to the present invention, uneven temperature distribution occurring at the equipment penetration part of the roof slab, which could not be prevented with the conventional technology, can be prevented when e<L, the equipment inserted into the core part. A roof slab for a tank-type fast breeder reactor that reduces thermal deformation and thermal stress, maintains the structural strength and mechanical integrity of the above-mentioned equipment penetrations, and also facilitates the installation of this type of structure. A device installation part structure and a device installation method can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用したタンク型高速増殖炉の一実施
例を示す要部の縦断面図、第2図は第1図の横断面図、
第3図は第2図の展開図、第4図は本発明の効果を評価
する流体特性解析図、第5図(a)は第4図に示す評価
方法によって解析された従来Wcタンク塁)高速増殖炉
の炉内一部における流体流速ベクトル図、第5図伽)は
第4図に示す評価方法によって解析された本発明構造物
の流体流速ベクトル図、第6図は第5図(a)に示す従
来型構造物と、J 5 +;J(b)K示す本発明構造
物との炉内一部における周方向最大温度差−レイリ数特
性線図、第7図(a)は第1図に示す本発明構造物を炉
内にセツティングする以前の状態を示す横断面図、第7
図(b)は第7図(、I)に示す本発明構造物を炉内に
セツティングした状態の横断面図、第8図はタンク屋高
速増殖炉の全体的な内部構造を示す縦断面図、第9図は
第1図に示す本発明構造物に相当する従来型(タンク型
)高速増殖炉の炉内一部における縦断面図、第1O図(
a)は第9図に示す従来型増殖炉の炉内一部における流
体の対流パターンを示す図、第10図(b)は第9図に
示す従来型増殖炉の炉内一部における軸方向の温度分布
特性線図、第10図(C)は第9図に示す従来型増殖炉
の炉内一部における周方向の温度分布特性線図、第1θ
図(d)は第10図(a)に示す対流パターンならびに
第10図(b)および第1θ図(c)K示す温度分布に
起因して第9図に示す従来型増殖炉の炉内機器に熱変形
をきたした場合の機器変形説明図である。 1・・・原子炉主容器、2・・・ルーフスラブ、2“・
・・機器貫通部内周壁、21・・・熱遮蔽層、2b・・
・冷却層、2C・・・放射線遮蔽層、2d・・・縦形フ
ィン、3・・・機器(−例として、主中間熱交換器を示
す)、3′・・・機器外周壁、3a・・・縦形フィン、
4・・・1次主循環ポンプ、5・・・炉心、6・・・炉
心上部機構、7・・・隔壁、訃・・ホットプレナム、9
・・・コールドプレナム、10・・・ナトリウム、11
・・・環状空間、12・・・カバーガス層。
FIG. 1 is a vertical cross-sectional view of the main parts of an embodiment of a tank-type fast breeder reactor to which the present invention is applied; FIG. 2 is a cross-sectional view of FIG. 1;
Figure 3 is a developed view of Figure 2, Figure 4 is a fluid characteristic analysis diagram for evaluating the effects of the present invention, and Figure 5 (a) is a conventional Wc tank base analyzed by the evaluation method shown in Figure 4). A fluid flow velocity vector diagram in a part of the reactor interior of a fast breeder reactor (Fig. 5) is a fluid flow velocity vector diagram of the structure of the present invention analyzed by the evaluation method shown in Fig. 4, and Fig. 6 is a fluid flow velocity vector diagram ) and the structure of the present invention shown in J 5 +; 7 is a cross-sectional view showing the structure of the present invention shown in FIG. 1 in a state before it is set in a furnace.
Figure (b) is a cross-sectional view of the structure of the present invention shown in Figure 7 (, I) set in the reactor, and Figure 8 is a vertical cross-section showing the overall internal structure of the tanker fast breeder reactor. Figure 9 is a vertical sectional view of a part of the interior of a conventional (tank type) fast breeder reactor corresponding to the structure of the present invention shown in Figure 1, and Figure 1O (
a) is a diagram showing the fluid convection pattern in a part of the reactor interior of the conventional breeder reactor shown in FIG. 9, and FIG. 10(b) is a diagram showing the axial direction in a part of the reactor interior of the conventional breeder reactor shown in FIG. FIG. 10(C) is a temperature distribution characteristic diagram in the circumferential direction in a part of the reactor of the conventional breeder reactor shown in FIG.
Figure (d) shows the internal equipment of a conventional breeder reactor shown in Figure 9 due to the convection pattern shown in Figure 10 (a) and the temperature distribution shown in Figures 10 (b) and 1θ (c). FIG. 3 is an explanatory diagram of equipment deformation when thermal deformation occurs. 1... Reactor main vessel, 2... Roof slab, 2".
・Inner peripheral wall of device penetration part, 21 ・Heat shielding layer, 2b ・・
- Cooling layer, 2C...Radiation shielding layer, 2d...Vertical fin, 3...Equipment (as an example, the main intermediate heat exchanger is shown), 3'...Equipment outer peripheral wall, 3a...・Vertical fin,
4... Primary main circulation pump, 5... Core, 6... Core upper mechanism, 7... Bulkhead, butt... Hot plenum, 9
...cold plenum, 10...sodium, 11
...Annular space, 12...Cover gas layer.

Claims (1)

【特許請求の範囲】 1、原子炉主容器のルーフスラブに円筒状の機器貫通部
を有するタンク量高速増殖炉において、上記ルーフスラ
ブの機器貫通部内周壁と当該機器貫通部に挿入される円
筒状の機器外周壁とに、それぞれ複数個の縦形フィンを
突設し、上記ルーフスラブの機器貫通部内周壁に突設し
た縦形フィンと機器外周壁に突設した縦形フィンとによ
り、機器貫通部の環状空間をその周方向に複数個に縦分
割してなることを特徴とするタンク型高速増殖炉におけ
るルーフスラブの機器据付部構造。 2、原子炉主容器のルーフスラブに円筒状の機器貫通部
を設け、当該機器貫通部に所定の機器を挿入設置するタ
ンク型高速増殖炉の製作方法において、上記ルーフスラ
ブの機器貫通部内周壁と当該機器貫通部に挿入される円
筒状の機器外周壁とに、それぞれ複数個の縦形フィンを
突設し、上記ルーフスラブの機器貫通部に機器を挿入す
るに際しては、ルーフスラブの機器貫通部内周壁に突設
されている縦形フィンと機器外周壁に突設されている縦
形フィンとをあらかじめ離間した状態にセットし、この
状態で上記機器をルーフスラブの機器貫通部に挿入し、
機器挿入後、当該機器を水平方向に回転させて、ルーフ
スラブの機器貫通部内周壁に突設されている縦形フィン
と機器外周壁に突設されている縦形フィンとを当接せし
めることを特徴とするタンク型高速増殖炉におけるルー
フスラブの機器据付方法。
[Scope of Claims] 1. In a tank fast breeder reactor having a cylindrical equipment penetration part in the roof slab of the reactor main vessel, the inner peripheral wall of the equipment penetration part of the roof slab and the cylindrical part inserted into the equipment penetration part. A plurality of vertical fins are provided protruding from the equipment outer peripheral wall of the roof slab. An equipment installation structure of a roof slab in a tank-type fast breeder reactor, characterized in that a space is vertically divided into a plurality of parts in the circumferential direction. 2. In a method for manufacturing a tank-type fast breeder reactor, in which a cylindrical equipment penetration part is provided in the roof slab of the reactor main vessel, and predetermined equipment is inserted and installed in the equipment penetration part, the inner circumferential wall of the equipment penetration part of the roof slab and the A plurality of vertical fins are provided protruding from each of the cylindrical outer peripheral wall of the equipment to be inserted into the equipment penetration part, and when the equipment is inserted into the equipment penetration part of the roof slab, the inner peripheral wall of the equipment penetration part of the roof slab is inserted into the equipment penetration part of the roof slab. The vertical fins protruding from the roof slab and the vertical fins protruding from the outer peripheral wall of the device are set in advance in a separated state, and in this state, the device is inserted into the device penetration part of the roof slab,
After the device is inserted, the device is rotated horizontally so that the vertical fins protruding from the inner wall of the device penetration portion of the roof slab and the vertical fins projecting from the outer wall of the device come into contact with each other. Equipment installation method for roof slab in tank-type fast breeder reactor.
JP59265143A 1984-12-14 1984-12-14 Apparatus installing section structure and apparatus installing method of roof slab in tank type fast breeder reactor Granted JPS61142490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59265143A JPS61142490A (en) 1984-12-14 1984-12-14 Apparatus installing section structure and apparatus installing method of roof slab in tank type fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59265143A JPS61142490A (en) 1984-12-14 1984-12-14 Apparatus installing section structure and apparatus installing method of roof slab in tank type fast breeder reactor

Publications (2)

Publication Number Publication Date
JPS61142490A true JPS61142490A (en) 1986-06-30
JPH0233115B2 JPH0233115B2 (en) 1990-07-25

Family

ID=17413225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59265143A Granted JPS61142490A (en) 1984-12-14 1984-12-14 Apparatus installing section structure and apparatus installing method of roof slab in tank type fast breeder reactor

Country Status (1)

Country Link
JP (1) JPS61142490A (en)

Also Published As

Publication number Publication date
JPH0233115B2 (en) 1990-07-25

Similar Documents

Publication Publication Date Title
JPS61142490A (en) Apparatus installing section structure and apparatus installing method of roof slab in tank type fast breeder reactor
JP3126550B2 (en) Reactor vessel wall cooling mechanism
Usui et al. Combined forced and free convective heat transfer characteristics in a narrow vertical rectangular channel with 2.5 mm in gap heated from both sides
JPS6151593A (en) Shielding plug device for fast breeder reactor
Eggen et al. Effects of spacers on blockage of coolant channels in clad melting accidents
JPS60151587A (en) Main vessel for nuclear reactor
Pasamehmetoglu et al. Heat transfer from a high temperature safety rod placed in a perforated guide tube and surrounded by an array of cold tubes
EP0114052B1 (en) Tank-type fast breeder reactor
JPS5929799B2 (en) Heat exchanger
JPS6147581A (en) Liquid-metal cooling type fast breeder reactor
Hung et al. The investigation of conjugate heat transfer phenomena in advanced fast reactors
JPS6129790A (en) Tank type fast breeder reactor
JPS61260193A (en) Measuring device for temperature of coolant
JPS61196192A (en) Fuel aggregate
JPS604883A (en) Upper mechanism of core
JPS60237389A (en) Tank type fast breeder reactor
JPS5991393A (en) Fast breeder
Krepper et al. Solution of a mixed convection flow benchmark using Computational Fluid Dynamic codes
JPS58198794A (en) Liquid metal cooled fast breeder
Khatib-Rahbar et al. Flow-excursion-induced dryout at low-heat-flux
JPS6022690A (en) Upper shielding body for fast breeder reactor
JPS6170486A (en) Fast breeder reactor
JPH03125994A (en) Reactor vessel of fast breeder
JPS5943388A (en) Lmfbr type reactor
JPS59693A (en) Reactor