JPS6114235B2 - - Google Patents

Info

Publication number
JPS6114235B2
JPS6114235B2 JP3914282A JP3914282A JPS6114235B2 JP S6114235 B2 JPS6114235 B2 JP S6114235B2 JP 3914282 A JP3914282 A JP 3914282A JP 3914282 A JP3914282 A JP 3914282A JP S6114235 B2 JPS6114235 B2 JP S6114235B2
Authority
JP
Japan
Prior art keywords
zinc
iron
plating layer
plating
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3914282A
Other languages
Japanese (ja)
Other versions
JPS58157990A (en
Inventor
Shigeru Kobayashi
Hajime Kimura
Hiroaki Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3914282A priority Critical patent/JPS58157990A/en
Publication of JPS58157990A publication Critical patent/JPS58157990A/en
Publication of JPS6114235B2 publication Critical patent/JPS6114235B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は主として自動車用の鋼板の表面処理
方法に関し、特に亜鉛系のメツキ処理方法に関す
るものである。 自動車用の表面処理鋼板としては、従来から溶
融亜鉛メツキ鋼板あるいは電気亜鉛メツキ鋼板等
が用いられているが、いずれも一長一短があり、
耐食性や溶接性、塗装性等、自動車等の用途にお
いて要求される諸特性を全て充分に満足し得る表
面処理鋼板は未だ得られていないのが実情であ
る。 例えば溶融亜鉛メツキにおいては、メツキ付着
量が通常は片面で45g/m2以上となつてメツキ層
が相当に厚くならざるを得ず、そのため耐食性に
は優れている反面、溶接性に劣る欠点があり、ま
た溶融亜鉛メツキを施しただけの状態では、その
溶融亜鉛メツキ鋼板を塗装下地材として用いた場
合の塗装密着性、すなわちメツキ層表面とその上
の塗料との密着性が悪く、塗膜のふくれや剥離が
生じたり、塗装耐食性が低下したりする等の問題
がある。そこで溶融亜鉛メツキ後に加熱して素地
鋼板からメツキ層中に鉄を拡散させ、これにより
メツキ層を結晶学的に亜鉛―鉄合金属(δ相)
とすることが従来から行なわれており、この場合
には表面の塗装密着性が大幅に改善される。しか
しながら溶融亜鉛メツキ層を合金化した場合でも
前記同様にメツキ層自体は厚いため溶接性に劣る
欠点は解消されない。さらに上述のようにメツキ
層を合金化するために従来は加熱炉によつてメツ
キ鋼板全体を加熱していたから、その加熱処理に
よつて素地鋼板の機械的特性に悪影響を及ぼし、
特に自動車用高張力鋼板の場合には致命的な欠陥
を招くこともあり、また片面メツキ鋼板の場合に
は加熱時に冷延面が酸化してテンパーカラーが生
じる等の問題もある。 一方、電気亜鉛メツキの場合にはそのメツキ付
着量が20〜30%g/m2でメツキ層が比較的薄く、
そのため溶接性は良好であるが、塗装密着性が劣
り、塗膜の剥離やふくれが生じたり塗装耐食性が
低くなつたりする欠点がある。この欠点を解消す
るためには、合金化溶融亜鉛メツキの場合と同様
に電気メツキ後に加熱してメツキ層を合金化する
ことも考えられるが、この場合も前記同様に加熱
によつて素地鋼板の機械的特性に悪影響を及ぼし
たり、また片面メツキの場合にテンパーカラーを
生じたりする問題がある。 この発明は以上の事情に鑑みてなされたもので
あつて、素地鋼板の機械的特性等に悪影響を及ぼ
すことなく、塗装密着性が良好でしかも溶接性に
優れた亜鉛メツキ系の表面処理鋼板を得る方法を
提供することを目的とするものである。 すなわち本発明者等は、溶接性の点からはメツ
キ層厚みを薄くし得る電気メツキ法が有利である
こと、また塗装密着性を良好にするためにはメツ
キ層を亜鉛―鉄合金相(δ相)とすることが有
効であつてその場合メツキ層表面のみを加熱する
ことにより合金化が可能であれば素地鋼板の機械
的特性等を損うことなく塗装密着性を改善し得る
ことに着目して種々の実験・検討を重ねたとこ
ろ、予め電気メツキにより亜鉛―鉄混合メツキ層
を形成しておけば、その後メツキ鋼板全体を加熱
することなく、メツキ層表面にレーザー光を照射
してその表面部分のみを加熱することによりメツ
キ層の合金化が可能となり、その結果素地鋼板の
機械的特性を損うことなく溶接性および塗装密着
性が優れた表面処理鋼板が得られることを見出
し、この発明をなすに至つたのである。 したがつてこの発明の表面処理方法は、電気メ
ツキにより鋼板表面に鉄―亜鉛混合メツキを施
し、しかる後そのメツキ層の表面にレーザー光を
照射してそのメツキ層を結晶学的に合金化するこ
とを特徴とするものである。 以下この発明の表面処理方法をさらに具体的に
説明する。 この発明の方法を実施するに当つては、先ず鋼
板の表面に亜鉛―鉄混合メツキを電気メツキによ
つて施す。この場合電気メツキは常法にしたがつ
て亜鉛―鉄混合メツキ浴を用いて行えば良い。こ
こで亜鉛―鉄混合メツキ層の組成は、後のレーザ
ー光照射による短時間加熱によつて効率的に亜鉛
―鉄合金(δ相)を生成するように定めること
が望ましく、その観点から、鉄含有量8〜15wt
%、残部実質的に亜鉛となるように設定すること
が望ましい。鉄が8wt%未満では充分な量のδ
相が生成されないため充分な塗装密着性向上効果
が得られず、15wt%を越えればメツキ層自体の
加工密着性が劣る。一方、亜鉛―鉄混合電気メツ
キのメツキ付着量は、溶接性を良好にするため片
面について40g/m2以下とすることが望ましい。
40g/m2を越えれば溶接性が悪くなり、溶接コス
トが上昇する。 上述のように亜鉛―鉄混合電気メツキを施した
状態ではそのメツキ層は結晶学的には未だ塗装密
着性に優れた合金相(δ相)となつておらず、
鉄相と亜鉛相が混在する状態となつている。そこ
でこの後、メツキ層表面にレーザー光を照射し
て、メツキ層のみを短時間加熱し、そのメツキ層
の少くとも表面部分、望ましくは表面から1μm
以上を結晶学的に合金化させ、亜鉛―鉄合金相
(δ相)を生成させる。ここで合金化される厚
みが1μm未満では合金化の効果、すなわち塗装
密着性の向上効果が少なく、したがつて上述のよ
うに1μm以上の厚さを合金化することが望まし
い。またレーザー光照射によるメツキ層表面の短
時間加熱における加熱量温度は、δ相を効率良
く生成させるためには300〜600℃とすることが望
ましい。300℃未満では短時間でδ相を効率的
に生成させることが困難であり、600℃を越えれ
ば鉄素地からの鉄の拡散が起り、合金層中の鉄含
有量が15wt%を越えるおそれがある。 上述のようにレーザー光照射に使用されるレー
ザーは、CO2レーザーなどの気体レーザーあるい
はYAGレーザーなどの固体レーザーなど、いず
れでも良い。またレーザー光照射条件は、前述の
ごとくメツキ層表面温度が300〜600℃程度の範囲
内となるように設定すれば良く、その具体的条件
は被処理体の熱伝導度や光反射率等によつて異な
るが、通常は例えばCO2レーザーの場合出力
400W〜2KW程度、YAGレーザーの場合出力20〜
100W程度とし、1cm2当り0.01〜1秒程度照射す
れば良い。 このようなレーザー光照射による短時間加熱に
よつて得られたδ相は塗装密着性に極めて優れ
ており、またこのレーザー光照射においてメツキ
層のみを短時間加熱するから、素地鋼板の機械的
特性等に悪影響を及ぼすおそれがない。 以下にこの発明の実施例を記す。 実施例 1 板厚0.6mm、幅100mm、長さ200mmの自動車用高
張力鋼板の表面を電解脱脂および酸洗した後、第
1表に示す浴組成の亜鉛―鉄混合メツキ浴を用い
て電流密度60A/dm2、浴温50℃で亜鉛―鉄混合
メツキを施した。ここでメツキ付着量は片面当り
20g/m2であり、また得られたメツキ層の組成は
亜鉛90wt%、鉄10wt%であつた。このようにし
て得られた亜鉛―鉄混合メツキ鋼板にCO2ガスレ
ーザー(出力2KW)を用いてレーザー光照射を
行ない、混合メツキ層を表面から約2μmの厚さ
で合金化させた。但しレーザー光照射時間は1cm2
当り0.1秒程度であり、またメツキ層表面の最高
到達温度は450℃程度と推定された。 上述の実施例1により処理された鋼板の表面に
化成処理を施した後、厚さ17μmのカチオン電着
塗装を行つた。そしてJIS Z 2371にしたがつて
塩水噴霧試験を行ない、30日後におけるクロスカ
ツト部からの塗膜のふくれ幅を調べたところ、第
2表の上段に示す結果が得られた。また比較のた
め、実施例1と同様な条件で亜鉛―鉄混合電気メ
ツキを施した後レーザー光を照射させなかつた鋼
板と、通常の電気亜鉛メツキを行つた鋼板と、メ
ツキを行なわない冷延鋼板とを比較材とし、これ
ら比較材について、前記同様な化成処理およびカ
チオン電着塗装を行ない、塩水噴霧試験を行つた
場合の結果を第2表に併せて示す。 第1表(亜鉛−鉄混合メツキ浴組成)
The present invention mainly relates to a method for surface treatment of steel sheets for automobiles, and in particular to a method for zinc-based plating treatment. Hot-dip galvanized steel sheets or electrogalvanized steel sheets have traditionally been used as surface-treated steel sheets for automobiles, but each has its advantages and disadvantages.
The reality is that a surface-treated steel sheet that satisfactorily satisfies all of the various properties required for applications such as automobiles, such as corrosion resistance, weldability, and paintability, has not yet been obtained. For example, in hot-dip galvanizing, the amount of plating deposited is usually 45 g/m 2 or more on one side, and the plating layer must be considerably thick. Therefore, although it has excellent corrosion resistance, it has the disadvantage of poor weldability. In addition, when hot-dip galvanized steel sheets are used as a base material for coating, the adhesion of the coating between the surface of the galvanized layer and the paint on it is poor, resulting in poor coating film. There are problems such as blistering and peeling of the paint, and a decrease in paint corrosion resistance. Therefore, after hot-dip galvanizing, the iron is diffused from the base steel sheet into the plating layer by heating, and as a result, the plating layer becomes a zinc-iron alloy (δ 1 phase) crystallographically.
Conventionally, this has been done, and in this case, the coating adhesion of the surface is greatly improved. However, even when the hot-dip galvanized layer is alloyed, the disadvantage of poor weldability cannot be overcome because the galvanized layer itself is thick, as described above. Furthermore, as mentioned above, in order to alloy the plating layer, the entire plated steel sheet was conventionally heated in a heating furnace, and the heat treatment adversely affected the mechanical properties of the base steel sheet.
Particularly in the case of high-strength steel sheets for automobiles, fatal defects may occur, and in the case of single-sided plated steel sheets, there are problems such as oxidation of the cold-rolled surface during heating, resulting in temper color. On the other hand, in the case of electrogalvanizing, the plating layer is relatively thin with a plating thickness of 20 to 30% g/ m2 .
Therefore, although the weldability is good, there are drawbacks such as poor paint adhesion, peeling and blistering of the paint film, and low paint corrosion resistance. In order to overcome this drawback, it may be possible to alloy the plating layer by heating after electroplating, as in the case of alloyed hot-dip galvanizing, but in this case as well, the base steel sheet is heated as described above. There are problems in that it adversely affects mechanical properties and in the case of single-sided plating, it causes temper color. This invention was made in view of the above circumstances, and provides a galvanized surface-treated steel sheet that has good paint adhesion and excellent weldability without adversely affecting the mechanical properties of the base steel sheet. The purpose is to provide a method for obtaining In other words, the present inventors found that the electroplating method is advantageous in terms of weldability because it allows the thickness of the plating layer to be reduced, and that in order to improve paint adhesion, the plating layer should be formed of a zinc-iron alloy phase (δ If it is effective to form a single phase) and in that case it is possible to alloy it by heating only the surface of the plating layer, it is possible to improve the paint adhesion without impairing the mechanical properties of the base steel sheet. After conducting various experiments and studies, we found that if a zinc-iron mixed plating layer was formed in advance by electroplating, the surface of the plating layer could be irradiated with laser light without heating the entire plated steel sheet. We discovered that by heating only the surface portion, it is possible to alloy the plating layer, and as a result, a surface-treated steel sheet with excellent weldability and paint adhesion can be obtained without impairing the mechanical properties of the base steel sheet. This led to this invention. Therefore, in the surface treatment method of the present invention, iron-zinc mixed plating is applied to the surface of a steel plate by electroplating, and then the surface of the plating layer is irradiated with laser light to crystallographically alloy the plating layer. It is characterized by this. The surface treatment method of the present invention will be explained in more detail below. In carrying out the method of this invention, first, a zinc-iron mixed plating is applied to the surface of a steel plate by electroplating. In this case, electroplating can be carried out using a zinc-iron mixed plating bath according to a conventional method. Here, it is desirable that the composition of the zinc-iron mixed plating layer be determined so that a zinc-iron alloy (δ 1 phase) can be efficiently produced by short-time heating by subsequent laser light irradiation, and from that point of view, Iron content 8~15wt
%, and the balance is desirably set to be substantially zinc. If iron is less than 8wt%, sufficient amount of δ 1
Since a phase is not generated, a sufficient effect of improving paint adhesion cannot be obtained, and if it exceeds 15 wt%, the processing adhesion of the plating layer itself will be poor. On the other hand, the amount of plating deposited in zinc-iron mixed electroplating is preferably 40 g/m 2 or less on one side in order to improve weldability.
If it exceeds 40 g/m 2 , weldability deteriorates and welding costs increase. As mentioned above, when zinc-iron mixed electroplating is applied, the plating layer has not crystallized into an alloy phase (δ 1 phase) that has excellent paint adhesion.
The iron phase and zinc phase are mixed. Therefore, after this, the surface of the plating layer is irradiated with laser light to heat only the plating layer for a short time, and at least the surface part of the plating layer, preferably 1 μm from the surface, is heated.
The above is alloyed crystallographically to generate a zinc-iron alloy phase (δ 1 phase). If the thickness to be alloyed is less than 1 μm, the effect of alloying, that is, the effect of improving paint adhesion will be small, and therefore, as mentioned above, it is desirable to alloy the thickness to be 1 μm or more. Further, the heating amount temperature during short-time heating of the surface of the plating layer by laser beam irradiation is preferably 300 to 600°C in order to efficiently generate the δ1 phase. At temperatures below 300℃, it is difficult to efficiently generate the δ 1 phase in a short period of time, and at temperatures above 600℃, diffusion of iron from the iron matrix may occur, and the iron content in the alloy layer may exceed 15wt%. There is. As described above, the laser used for laser light irradiation may be any gas laser such as a CO 2 laser or solid laser such as a YAG laser. As mentioned above, the laser beam irradiation conditions should be set so that the surface temperature of the plating layer is within the range of about 300 to 600℃, and the specific conditions will depend on the thermal conductivity and light reflectance of the object to be treated. It varies depending on the case, but usually, for example, in the case of a CO 2 laser, the output
About 400W~2KW, output 20~ for YAG laser
It is sufficient to irradiate at about 100W for about 0.01 to 1 second per 1 cm2. The δ 1 phase obtained by short-time heating with laser light irradiation has extremely excellent paint adhesion, and since only the plating layer is heated for a short time during laser light irradiation, the mechanical strength of the base steel sheet is reduced. There is no risk of adverse effects on characteristics, etc. Examples of this invention are described below. Example 1 After electrolytically degreasing and pickling the surface of a high-tensile steel plate for automobiles with a thickness of 0.6 mm, width of 100 mm, and length of 200 mm, current density was applied using a zinc-iron mixed plating bath with the bath composition shown in Table 1. Zinc-iron mixed plating was applied at 60 A/dm 2 and bath temperature of 50°C. Here, the plating adhesion amount is per one side.
20 g/m 2 , and the composition of the resulting plating layer was 90 wt% zinc and 10 wt% iron. The thus obtained zinc-iron mixed plating steel sheet was irradiated with laser light using a CO 2 gas laser (output 2 KW) to alloy the mixed plating layer to a thickness of about 2 μm from the surface. However, the laser beam irradiation time is 1cm 2
It was estimated that the maximum temperature reached on the surface of the plating layer was about 450℃. After chemical conversion treatment was applied to the surface of the steel plate treated in Example 1 above, cationic electrodeposition coating was applied to a thickness of 17 μm. Then, a salt spray test was conducted in accordance with JIS Z 2371, and the width of the bulge of the coating film from the cross-cut portion after 30 days was examined, and the results shown in the upper row of Table 2 were obtained. For comparison, a steel sheet that was subjected to zinc-iron mixed electroplating under the same conditions as in Example 1 and then not irradiated with laser light, a steel sheet that was subjected to ordinary electrogalvanization, and a cold-rolled steel sheet that was not plated. Table 2 also shows the results of a salt spray test performed on these comparative materials using a steel plate as a comparative material and subjected to the same chemical conversion treatment and cationic electrodeposition coating as described above. Table 1 (zinc-iron mixed plating bath composition)

【表】【table】

【表】 第2表に示す結果から、この発明の方法、した
がつて亜鉛―鉄混合電気メツキ後にレーザー光照
射を行なつたメツキ鋼板においては、他の表面処
理鋼板や冷延鋼板と比較して優れた塗膜密着性、
耐食性を示すことが明らかである。 実施例 2 板厚0.7mm、幅100mm、長さ200mmの一般用冷延
鋼板(SPCC材)の表面を電解脱脂および酸洗し
た後、実施例1で用いたものと同じ組成のメツキ
浴を用いて亜鉛―鉄混合メツキを行つた。但しメ
ツキ付着量およびメツキ層組成は実施例1とほぼ
同じである。このようにして得られた亜鉛―鉄混
合メツキ鋼板にYAGレーザー(出力40W)を用
いてレーザー光照射によるメツキ層短時間加熱処
理を行ない、メツキ層のほぼ全厚み(約3μm)
を合金化させた。但しレーザー光照射時間は1cm2
当り0.05秒程度であり、またメツキ層表面の最高
到達温度は500℃程度と推定された。 上述の実施例2により処理された鋼板の表面に
化成処理を施した後、カチオン電着および中塗
り、上塗りの3層コートを塗膜全厚み約100μm
で行つた。そしてJIS Z 2341にしたがつて塩水
噴霧試験を行ない、90日後におけるクロスカツト
部からの塗膜のふくれ幅を調べるとともに、上述
の3層コート鋼板を50℃の純水中に240時間浸積
した後、表面に2mm角のクロスカツトを入れて
100個のます目を作成し、粘着テープによる剥離
試験(二次密着性試験)を行つて、塗膜が剥離し
なかつたます目の数を調べた。これらの試験結果
を第3表に示す。また比較のため、前述したもの
と同様な比較材について化成処理および3層コー
トを施した後、前記同様な試験を行つた結果を第
3表に併せて記す。
[Table] From the results shown in Table 2, it can be seen that the galvanized steel sheets that were irradiated with laser light after zinc-iron mixed electroplating using the method of the present invention were compared with other surface-treated steel sheets and cold-rolled steel sheets. Excellent coating adhesion,
It is clear that it exhibits corrosion resistance. Example 2 After electrolytically degreasing and pickling the surface of a general-purpose cold-rolled steel plate (SPCC material) with a thickness of 0.7 mm, width of 100 mm, and length of 200 mm, a plating bath with the same composition as that used in Example 1 was used. Then mixed zinc-iron plating was performed. However, the amount of plating deposited and the composition of the plating layer are almost the same as in Example 1. The zinc-iron mixed plated steel sheet obtained in this way was subjected to short-time heat treatment for the plated layer by laser light irradiation using a YAG laser (output 40W), and the plated layer was heated to almost the entire thickness (approximately 3 μm).
was alloyed. However, the laser beam irradiation time is 1cm 2
It was estimated that the maximum temperature reached on the surface of the plating layer was about 500℃. After chemical conversion treatment was applied to the surface of the steel plate treated in Example 2 above, a three-layer coating consisting of cationic electrodeposition, intermediate coating, and top coating was applied to a total thickness of approximately 100 μm.
I went there. A salt spray test was then conducted in accordance with JIS Z 2341 to examine the bulge width of the coating film from the cross-cut portion after 90 days, and the above three-layer coated steel sheet was immersed in pure water at 50°C for 240 hours. , put a 2mm square cross cut on the surface.
100 squares were created and a peel test (secondary adhesion test) using adhesive tape was conducted to determine the number of squares where the coating film did not peel off. The results of these tests are shown in Table 3. For comparison, Table 3 also shows the results of a test similar to that described above performed on a comparative material similar to that described above after chemical conversion treatment and three-layer coating.

【表】 第3表に示す結果から、この発明の方法にした
がつて亜鉛―鉄混合電気メツキ後にレーザー光照
射を行つたメツキ鋼板においては、3層コート後
の塗膜密着性、耐食性が他の表面処理鋼板や冷延
鋼板と比較して格段に優れており、また3層コー
ト後の二次密着性も他の表面処理鋼板と比較して
格段に優れていることが明らかである。 以上の説明で明らかなようにこの発明の表面処
理方法によれば、基本的には電気メツキ法を採用
したものであるから、メツキ層を薄質化すること
により優れた溶接性を得ることができ、しかもメ
ツキ層が亜鉛―鉄合金層となるため優れた塗装密
着性、塗装耐食性を得ることができ、かつまたそ
のメツキ層の合金化にあたつては、素地鋼板から
鉄を拡散させずに、予め亜鉛―鉄混合メツキ層を
形成しておいてその混合メツキ層のみをレーザー
光照射による短時間加熱によつて合金化させるか
ら、素地鋼板の機械的特性に悪影響を及ぼすおそ
れがなく、また片面メツキの場合にも合金化のた
めの処理により冷延面が酸化してテンパーカラー
が生じるような事態の発生を有効に防止できる
等、従来の亜鉛メツキ系表面処理と比較して格段
に優れた種々の効果を得ることができる。
[Table] From the results shown in Table 3, it can be seen that the plated steel sheets that were subjected to laser beam irradiation after zinc-iron mixed electroplating according to the method of the present invention had better coating adhesion and corrosion resistance after three-layer coating. It is clear that the secondary adhesion after the three-layer coating is also much better than that of other surface-treated steel sheets. As is clear from the above explanation, since the surface treatment method of the present invention basically adopts the electroplating method, excellent weldability can be obtained by making the plating layer thinner. Moreover, since the plating layer is a zinc-iron alloy layer, it is possible to obtain excellent paint adhesion and paint corrosion resistance, and when alloying the plating layer, iron is not diffused from the base steel sheet. Since a zinc-iron mixed plating layer is formed in advance and only the mixed plating layer is alloyed by short-term heating with laser light irradiation, there is no risk of adversely affecting the mechanical properties of the base steel sheet. In addition, even in the case of single-sided plating, it is possible to effectively prevent the occurrence of temper color caused by oxidation of the cold-rolled surface due to alloying treatment, which is much more effective than conventional galvanized surface treatments. Various excellent effects can be obtained.

Claims (1)

【特許請求の範囲】 1 鋼板の表面に電気メツキにより亜鉛―鉄混合
メツキを施し、しかる後その亜鉛―鉄混合メツキ
層の表面にレーザー光を照射してその混合メツキ
層の少くとも表面を結晶学的に合金化することを
特徴とする鋼板の表面処理方法。 2 前記亜鉛―鉄混合メツキを、その混合メツキ
層の組成が鉄8〜15wt%、残部亜鉛となるよう
に施す特許請求の範囲第1項記載の表面処理方
法。 3 前記亜鉛―鉄混合メツキにおけるメツキ付着
量が鋼板の片面あたり40g/m2以下となるように
亜鉛―鉄混合メツキを施す特許請求の範囲第1項
記載の表面処理方法。 4 前記レーザー光照射による混合メツキ層の合
金化を、メツキ表面から1μm以上の厚さにわた
つて行う特許請求の範囲第1項記載の表面処理方
法。
[Claims] 1. Applying zinc-iron mixed plating to the surface of a steel plate by electroplating, and then irradiating the surface of the zinc-iron mixed plating layer with laser light to crystallize at least the surface of the mixed plating layer. A method for surface treatment of steel sheets characterized by chemical alloying. 2. The surface treatment method according to claim 1, wherein the zinc-iron mixed plating is applied so that the composition of the mixed plating layer is 8 to 15 wt% iron and the balance is zinc. 3. The surface treatment method according to claim 1, wherein zinc-iron mixed plating is applied so that the amount of plating deposited in the zinc-iron mixed plating is 40 g/m 2 or less per side of the steel sheet. 4. The surface treatment method according to claim 1, wherein the mixed plating layer is alloyed by the laser beam irradiation over a thickness of 1 μm or more from the plating surface.
JP3914282A 1982-03-12 1982-03-12 Surface treatment of steel plate Granted JPS58157990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3914282A JPS58157990A (en) 1982-03-12 1982-03-12 Surface treatment of steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3914282A JPS58157990A (en) 1982-03-12 1982-03-12 Surface treatment of steel plate

Publications (2)

Publication Number Publication Date
JPS58157990A JPS58157990A (en) 1983-09-20
JPS6114235B2 true JPS6114235B2 (en) 1986-04-17

Family

ID=12544851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3914282A Granted JPS58157990A (en) 1982-03-12 1982-03-12 Surface treatment of steel plate

Country Status (1)

Country Link
JP (1) JPS58157990A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364494A (en) * 1989-07-31 1991-03-19 Yazaki Corp Treatment of gold plating film
FR2707894B1 (en) * 1993-07-20 1995-10-06 Lorraine Laminage Surface treatment of a steel sheet coated with zinc or zinc alloy before painting.

Also Published As

Publication number Publication date
JPS58157990A (en) 1983-09-20

Similar Documents

Publication Publication Date Title
JP7122045B2 (en) Method for manufacturing corrosion resistant hot stamped parts
KR101108312B1 (en) Plated steel sheet for can and process for producing the same
KR102150736B1 (en) Coated substrate for packaging applications and a method for producing said coated substrate
JP4920627B2 (en) Plated steel sheet for can and manufacturing method thereof
RU2001117509A (en) METHOD OF ZINC AND Galvanic Annealing WHEN USING A BATH WITH ZINC AND ALUMINUM
JP2010242182A (en) Plated steel sheet for can
JP2783452B2 (en) Manufacturing method of galvannealed steel sheet
JPH04214895A (en) Surface treated steel sheet excellent in plating performance and weldability and manufacture thereof
CN1099432A (en) Zinc coated steel sheet and method therefor
US4036600A (en) Steel substrate electroplated with Al powder dispersed in Zn
JPS61223197A (en) Surface-treated steel plate
JPS6114235B2 (en)
KR890001109B1 (en) Corrosion-resistant steel strip having zn-fe-p alloy electroplated thereon
JPH059693A (en) Production of galvannealed steel sheet
KR970000190B1 (en) Method for producing zinc coated steel sheet
JPS5993900A (en) Galvanized steel sheet having excellent weldability
JP3135818B2 (en) Manufacturing method of zinc-tin alloy plated steel sheet
JPS6086257A (en) Galvannealed steel plate excellent in painting property
JPS58189363A (en) Manufacture of steel plate coated with alloyed zinc by galvanization
JPS6114236B2 (en)
JPS627890A (en) Zinc or zinc alloy plated steel sheet having superior corrosion resistance, paintability and workability
JPS6366915B2 (en)
JPH05171392A (en) Method for galvanizing high-strength steel sheet
JPH04333551A (en) Production of hot dip galvanized steel sheet by preliminary ni plating
JPS59211590A (en) Zn-p alloy electroplated steel sheet with superior corrosion resistance