JPS6114231B2 - - Google Patents

Info

Publication number
JPS6114231B2
JPS6114231B2 JP5320183A JP5320183A JPS6114231B2 JP S6114231 B2 JPS6114231 B2 JP S6114231B2 JP 5320183 A JP5320183 A JP 5320183A JP 5320183 A JP5320183 A JP 5320183A JP S6114231 B2 JPS6114231 B2 JP S6114231B2
Authority
JP
Japan
Prior art keywords
heat
pure water
water
combustion chamber
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5320183A
Other languages
Japanese (ja)
Other versions
JPS59179792A (en
Inventor
Eiichi Torikai
Hiroyasu Takenaka
Yasuhiro Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Hokusan Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Hokusan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Hokusan Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP58053201A priority Critical patent/JPS59179792A/en
Publication of JPS59179792A publication Critical patent/JPS59179792A/en
Publication of JPS6114231B2 publication Critical patent/JPS6114231B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 この発明は高電流効率の電解が可能である水電
解槽(固体高分子電解質(SPE)型電解セル)を
用いて、暖房その他の用途に供する熱媒体が得ら
れるようにした熱源装置に関する。
[Detailed Description of the Invention] This invention uses a water electrolyzer (solid polymer electrolyte (SPE) type electrolytic cell) capable of electrolysis with high current efficiency to obtain a heat medium for heating and other uses. The present invention relates to a heat source device.

上記水電解槽は、水を原料として燃料や化学原
料として使用される水素ガスを製造するため、既
に用いられているが、当該水素ガス製造用のプラ
ントは第1図に示す通り、水電解槽aに純水タン
クbから純水cを供給自在となし、一方同槽aの
電極には直流電源dを接続し、同槽aから得られ
る水素ガスは需要先eへ送られ、酸素ガスは系外
へ送致されるもので、この際上記の純水cは水電
解槽aの稼動に伴い消費されるから、純水タンク
bには、別途装備された純水製造装置fにより作
られた純水を補給してやる必要がある。
The above-mentioned water electrolyzer is already used to produce hydrogen gas, which is used as a fuel or chemical raw material, using water as a raw material.As shown in Figure 1, the water electrolyzer Pure water c can be freely supplied from pure water tank b to tank a, while a DC power supply d is connected to the electrode of tank a, hydrogen gas obtained from tank a is sent to demand e, and oxygen gas is At this time, the above-mentioned pure water c is consumed as the water electrolyzer a operates, so the pure water tank b contains water produced by the separately equipped pure water production equipment f. It is necessary to replenish pure water.

ところが上記純水製造装置fは可成り高価なも
のとなるため、この種プラントのイニシヤルコス
トが高額となつてしまうだけでなく、大きな設備
面積を要することになり、しかも直流電源dの使
用により多くの商用電力を消費することになつ
て、ランニングコストも嵩むなどの欠陥があり、
このような難点が当該プラントを多角的に活用し
ていこうとする上で、大きな隘路となつていた。
However, since the pure water production equipment f is quite expensive, not only does the initial cost of this type of plant become high, but it also requires a large equipment area, and moreover, the use of the DC power supply d There are drawbacks such as consuming a lot of commercial power and increasing running costs.
These difficulties have been a major bottleneck in trying to utilize the plant in multiple ways.

この発明はこの種プラントがもつ純水補給源に
関する問題点に解決を与えると共に、前記直流電
源には太陽電池を用いて、自然エネルギーを利用
するようになし、かつ当該プラントに適切な構成
をもつた燃焼部を、所要配管により付加してやる
ことにより、畜舎や温室などの暖房用その他の用
途に供し得る熱源装置を安価に提供し、システム
の省力化と同時に省エネルギーをも図ろうとする
のが、その目的である。
This invention provides a solution to the problems related to pure water supply sources that this type of plant has, uses solar cells as the DC power source to utilize natural energy, and has a configuration appropriate for the plant. By adding a combustion section using the necessary piping, the aim is to provide an inexpensive heat source device that can be used for heating livestock barns, greenhouses, etc., and to save energy at the same time as making the system labor-saving. It is a purpose.

この発明を図示の実施例によつて詳記すれば、
第2図のように、水電解槽1には、純水供給源2
として図示されている純水タンクから、純水3が
供給配管4を介して供与されると共に、回収配管
5によつて同槽1内の残溜純水が純水タンクに戻
されるようになつており、水素用配管6、酸素用
配管7には夫々水素ガス、酸素ガスが流出され、
さらに水電解槽1の電極に、直流電源が印加され
ている構成は、第1図につき説示した水素ガス製
造用のプラントと同じである。
This invention will be described in detail by means of illustrated embodiments.
As shown in FIG. 2, the water electrolyzer 1 has a pure water supply source 2.
Pure water 3 is supplied from the pure water tank shown in the figure through the supply pipe 4, and the residual pure water in the tank 1 is returned to the pure water tank through the recovery pipe 5. Hydrogen gas and oxygen gas are discharged into the hydrogen pipe 6 and the oxygen pipe 7, respectively.
Furthermore, the configuration in which a DC power source is applied to the electrodes of the water electrolyzer 1 is the same as that of the hydrogen gas production plant illustrated in FIG.

この発明では先ず上記直流電源に商用電力を用
いず、太陽電池を用いた電源部8が採択されてお
り、当該電源部8としては、例えば第3図に示す
如く畜舎Aの屋根などに配設した既知の太陽電池
モジユール8……だけで構成したり、第2図の
ように上記モジユール8……から昼間の太陽光
を受けているときは、コントローラ8による制
御によつて、太陽電池による出力の一部が電極に
消費されると共に、残余の出力によりバツテリー
が充電され、体陽光の照射がない夜間には充
電されたバツテリー8からの出力により水電解
槽1による電解が継続されるようにしてもよい。
In this invention, first of all, a power supply unit 8 that uses solar cells instead of using commercial power as the DC power supply is adopted, and the power supply unit 8 is installed, for example, on the roof of the livestock shed A as shown in FIG. When the solar cell module 8 1 is configured with only the known solar cell module 8 1 . . . as shown in FIG. A part of the output from the battery is consumed by the electrode, and the remaining output charges the battery 83 , and at night when the body is not exposed to sunlight, the output from the charged battery 83 is used to perform electrolysis in the water electrolyzer 1. may be continued.

次にこの発明では、前記水素用配管6、酸素用
配管7が、器体9により閉成された燃焼部10の
燃焼室11に開口されており、従つて同室11内
にあつて図示しない点火栓により同室11に供与
されたガスに点火し、これを完全燃焼させるよう
にすれば、同室11にはH2とO2とにより水蒸気
が発生すると共に、酸水素焔による高カロリーの
発熱が生ずることゝなる。
Next, in this invention, the hydrogen piping 6 and the oxygen piping 7 are opened to the combustion chamber 11 of the combustion section 10 which is closed by the vessel body 9, and therefore an ignition (not shown) is provided in the same chamber 11. When the gas supplied to the chamber 11 is ignited by the stopper and completely combusted, water vapor is generated in the chamber 11 due to H 2 and O 2 , and high-calorie heat is generated due to the oxyhydrogen flame. That's true.

さらに燃焼部10は燃焼室11の上位に、隔壁
12により区画された熱交換室13を具有してお
り、同室13に内装した放熱路14の一端が燃焼
室11に開口していると共に、同路14の他端は
器体9を貫通して延設されている純水帰還路15
によつて、前記純水供給源2に連通している。
Furthermore, the combustion section 10 has a heat exchange chamber 13 partitioned by a partition wall 12 above the combustion chamber 11, and one end of a heat radiation path 14 installed in the chamber 13 opens into the combustion chamber 11. The other end of the channel 14 is a pure water return channel 15 extending through the container body 9.
It is in communication with the pure water supply source 2 through.

この熱交換室13には、液体または気体による
熱媒体Bが媒体導入管16から流入し、こゝで当
該媒体Bは放熱路14を通過する水蒸気の熱気に
より加熱され、この加熱された熱媒体Bが熱供給
配管17により、例えばラジエーター等の熱需要
先18に供給されるようになつている。
A liquid or gas heat medium B flows into the heat exchange chamber 13 from the medium introduction pipe 16, and the medium B is heated by the hot water vapor passing through the heat radiation path 14, and this heated heat medium B is supplied through a heat supply pipe 17 to a heat demand destination 18 such as a radiator, for example.

そしてこの際、熱媒体Bは第2図の−点鎖線L
の如く媒体導入配管16から熱交換室13に導入
して、これを熱供給配管17により熱需要先18
に送り、同需要先18から系外へ放出しても、ま
た一点鎖線L′のように熱媒体Bを循環させるよう
にしてもよい。
At this time, the heat medium B is the − dotted chain line L in FIG.
The medium is introduced into the heat exchange chamber 13 from the medium introduction pipe 16 as shown in FIG.
The heat medium B may be sent to the customer 18 and discharged outside the system, or the heat medium B may be circulated as shown by the dashed line L'.

また第2図の実施例にあつては、前記した水素
用配管6、配素用配管7に、夫々順次水素貯蔵タ
ンク19とその開閉弁20、酸素貯蔵タンク21
とその開閉弁22が介設されている。
In the embodiment shown in FIG. 2, the hydrogen storage tank 19 and its on-off valve 20, and the oxygen storage tank 21 are connected to the hydrogen pipe 6 and the distribution pipe 7, respectively.
and an on-off valve 22 are provided.

そこで、今上記実施例による装置を稼動させれ
ば、純水供給源2から純水3を供与され、電極に
は太陽電池を用いた電源部8により直流電圧が印
加される水電解槽1により、純水が電解されて水
素ガスと酸素ガスが、夫々水素用配管6、酸素用
配管7を介して水素貯蔵タンク19、酸素貯蔵タ
ンク21に貯溜される。
Therefore, if the device according to the above embodiment is operated now, pure water 3 is supplied from the pure water supply source 2, and the water electrolyzer 1 is supplied with a DC voltage to the electrodes by the power supply section 8 using a solar cell. , pure water is electrolyzed and hydrogen gas and oxygen gas are stored in a hydrogen storage tank 19 and an oxygen storage tank 21 via a hydrogen pipe 6 and an oxygen pipe 7, respectively.

そこで熱需要先18へ加熱された熱媒体を供給
するには、開閉弁20,22を夫々適度に開成
し、燃焼室11内にて点火することで、適当量宛
流入してくる水素ガス、酸素ガスを完全燃焼させ
るのであり、これにより加熱状態の水蒸気が熱交
換室13に内装の放熱路14に送られる。
Therefore, in order to supply the heated heat medium to the heat demand destination 18, the opening/closing valves 20 and 22 are opened appropriately and ignited in the combustion chamber 11, so that an appropriate amount of hydrogen gas flows into the combustion chamber 11. The oxygen gas is completely combusted, and as a result, heated water vapor is sent to the heat exchange chamber 13 and the internal heat radiation path 14.

この熱交換室13には媒体導入配管16から、
例えば空気、水、油等の熱媒体Bが供給されてい
るので、加熱水蒸気により当該熱媒体Bが加熱さ
れ、充分な熱エネルギーをもつた熱媒体Bが、熱
供給配管17を介して熱需要先18へ送られる。
From the medium introduction pipe 16 to this heat exchange chamber 13,
For example, since a heat medium B such as air, water, or oil is supplied, the heat medium B is heated by the heated steam, and the heat medium B with sufficient thermal energy is supplied to the heat supply pipe 17 to meet the heat demand. Sent to destination 18.

こゝで上記放熱路14にあつて、加熱水蒸気は
熱媒体Bにより冷却されることになるから、当該
水蒸気は純水となり、この純水は純水帰還路15
によつて、前記純水供給源2に戻されることにな
る。
Here, in the heat radiation path 14, the heated steam is cooled by the heat medium B, so the steam becomes pure water, and this pure water is passed through the pure water return path 15.
The purified water is then returned to the pure water supply source 2.

この発明は上記実施例によつて具現されるよ陽
極と陰極とをもつた水電解槽1と純水供給源2と
が、当該供給源2の貯溜純水3を水電解槽1の槽
内に供与する供給配管4によつて連結され、上記
陽極と陰極とには、太陽電池を用いた電源部8の
夫々正負の出力端子を接続し、別途装備した燃焼
部10には燃焼室11と熱交換室13とが具備さ
れ、当該燃焼室11には、上記水電解槽1に連結
されて前記純水3の電気分解により発生の水素ガ
ス、酸素ガスを導出する夫々水素用配管6、酸素
用配管7が連通され、上記熱交換室13に内設さ
れた放熱路14の一端は、上記燃焼室13内で、
これに供与された前記水素ガスと酸素ガスとの燃
焼により得た水蒸気が導入可能なるように当該燃
焼室11に開口し、他端は純水帰還路15を介し
て、前記純水供給源2に連通させ、かつ当該熱交
換室13には熱媒体Bが導入される媒体導入管1
6と、放熱路14内における前記水蒸気と熱交換
後の当該熱媒体が導出される熱供給配管17とを
連結すると共に、この熱供給配管17が熱需要先
18に配管された構成としたから、Bを熱需要先
酸水素焔により高熱が得られ、充分な熱エネルギ
ーをもつた熱媒体Bが熱需要先18へ送られると
共に、発生した加熱水蒸気は冷却されて純水とな
り、これが純水供給源2に戻されるので、純水の
補給を必要としないから、従来の水素ガス製造用
プラントに不可欠とされていた高価な純水製造装
置が不要となる。
The present invention is embodied by the above embodiment, in which a water electrolytic cell 1 having an anode and a cathode and a pure water supply source 2 supply stored pure water 3 of the supply source 2 into the tank of the water electrolytic cell 1. The anode and cathode are connected to the positive and negative output terminals of a power supply section 8 using a solar cell, respectively, and the separately equipped combustion section 10 has a combustion chamber 11 and a combustion chamber 11. A heat exchange chamber 13 is provided, and the combustion chamber 11 includes a hydrogen pipe 6 and an oxygen pipe connected to the water electrolyzer 1 to extract hydrogen gas and oxygen gas generated by electrolysis of the pure water 3, respectively. One end of the heat radiation path 14 installed inside the heat exchange chamber 13 and connected to the pipe 7 for the combustion chamber 13 is connected to the combustion chamber 13.
It opens into the combustion chamber 11 so that water vapor obtained by combustion of the hydrogen gas and oxygen gas supplied thereto can be introduced, and the other end is connected to the pure water supply source 2 through the pure water return path 15. A medium introduction pipe 1 that communicates with the heat exchange chamber 13 and introduces the heat medium B into the heat exchange chamber 13.
6 and a heat supply pipe 17 from which the heat medium after heat exchange with the water vapor in the heat radiation path 14 is led out, and this heat supply pipe 17 is connected to the heat demand destination 18. , B is the heat demand source High heat is obtained by the oxyhydrogen flame, and the heat medium B with sufficient thermal energy is sent to the heat demand destination 18, and the generated heated steam is cooled and becomes pure water. Since the hydrogen gas is returned to the supply source 2, there is no need to replenish pure water, thereby eliminating the need for expensive pure water production equipment that has been indispensable in conventional hydrogen gas production plants.

この結果暖房装置などとしても、その設備投資
が大巾に低減されることになると共に、純水補給
が必要なく省力化を計ることができ、設備面積を
小さくでき、さらに太陽電池を用いた電源部8を
電解用の直流電源としたから、自然エネルギーを
活用してランニングコストを削減できる。
As a result, equipment investment for heating equipment, etc. can be greatly reduced, labor can be saved by eliminating the need for pure water replenishment, the equipment area can be reduced, and the power source using solar cells can be used as a power source. Since section 8 is a DC power source for electrolysis, running costs can be reduced by utilizing natural energy.

尚こゝで前記した水素貯蔵タンク19、酸素貯
蔵タンク21は燃焼部10に内蔵させる構成とし
てもよい。
The hydrogen storage tank 19 and oxygen storage tank 21 described above may be built into the combustion section 10.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水電解槽を用いた従来の水素ガス製造
用プラントを示した配管構成説明図、第2図はこ
の発明に係る熱源装置の配管構成説明図、第3図
は同装置に用いる太陽電池を用いた電源部の設置
状態を示した斜視説明図である。 1…水電解槽、2…純水供給源、3…純水、4
…供給配管、6…水素用配管、7…酸素用配管、
8…太陽電池を用いた電源部、8…バツテリ
ー、10…燃焼部、11…燃焼室、13……熱交
換室、14…放熱路、15…純水帰還路、16…
媒体導入管、17…熱供給配管、18…熱需要
先、19…水素貯蔵タンク、21…酸素貯蔵タン
ク、B…熱媒体。
FIG. 1 is an explanatory diagram of the piping configuration showing a conventional hydrogen gas production plant using a water electrolyzer, FIG. 2 is an explanatory diagram of the piping configuration of a heat source device according to the present invention, and FIG. FIG. 2 is a perspective explanatory diagram showing an installed state of a power supply section using a battery. 1...Water electrolyzer, 2...Pure water supply source, 3...Pure water, 4
…Supply piping, 6…Hydrogen piping, 7…Oxygen piping,
8... Power source section using solar cells, 8 3 ... Battery, 10... Combustion section, 11... Combustion chamber, 13... Heat exchange chamber, 14... Heat radiation path, 15... Pure water return path, 16...
Medium introduction pipe, 17...Heat supply pipe, 18...Heat demand destination, 19...Hydrogen storage tank, 21...Oxygen storage tank, B...Heating medium.

Claims (1)

【特許請求の範囲】 1 陽極と陰極とをもつた水電解槽と純水供給源
とが、当該供給源の貯溜純水を水電解槽の槽内に
供与する供給配管によつて連結され、上記陽極と
陰極とには、太陽電池を用いた電源部の夫々正負
の出力端子を接続し、別途装備した燃焼部には燃
焼室と熱交換室とが具備され、当該燃焼室には、
上記水電解槽に連結されて前記純水の電気分解に
より発生の水素ガス、酸素ガスを導出する夫々水
素用配管、配素用配管が連通され、上記熱交換室
に内設された放熱路の一端は、上記燃焼室内で、
これに供与された前記水素ガスと酸素ガスとの燃
焼により得た水蒸気が導入可能なるよう当該燃焼
室に開口し、他端は純水帰還路を介して、前記純
水供給源に連通させ、かつ当該熱交換室には熱媒
体が導入される媒体導入管と、放熱路内における
前記水蒸気と熱交換後の当該熱媒体が導出される
熱供給配管とを連結すると共に、この熱供給配管
が熱需要先に配管されていることを特徴とする太
陽電池を用いた水電解槽による熱源装置。 2 太陽電池を用いた電源部が、太陽電池による
光起電力により充電されるバツテリーを具備して
いる特許請求の範囲第1項記載の太陽電池を用い
た水電解槽による熱源装置。 3 水電解槽から燃焼室に供給される水素ガスと
酸素ガスは、夫々水素用配管、酸素用配管に介設
された水素貯蔵タンク、酸素貯蔵タンクから適時
供与される特許請求の範囲第1項記載の太陽電池
を用いた水電解槽による熱源装置。
[Scope of Claims] 1. A water electrolyzer having an anode and a cathode and a pure water supply source are connected by a supply pipe that supplies stored pure water from the supply source into the tank of the water electrolyzer, The positive and negative output terminals of a power supply section using a solar cell are connected to the anode and cathode, respectively, and the separately equipped combustion section is equipped with a combustion chamber and a heat exchange chamber, and the combustion chamber includes:
Hydrogen piping and distribution piping are connected to the water electrolyzer and lead out hydrogen gas and oxygen gas generated by the electrolysis of the pure water, respectively, and are connected to the heat radiation path installed inside the heat exchange chamber. One end is inside the combustion chamber,
It opens into the combustion chamber so that water vapor obtained by combustion of the hydrogen gas and oxygen gas supplied thereto can be introduced, and the other end communicates with the pure water supply source via a pure water return path, In addition, a medium introduction pipe through which a heat medium is introduced into the heat exchange chamber and a heat supply pipe through which the heat medium is led out after exchanging heat with the water vapor in the heat radiation path are connected, and the heat supply pipe is connected to the heat exchange chamber. A heat source device using a water electrolyzer using solar cells, which is piped to a heat demand destination. 2. A heat source device using a water electrolyzer using a solar cell according to claim 1, wherein the power supply section using a solar cell includes a battery that is charged by photovoltaic force generated by the solar cell. 3. Claim 1: Hydrogen gas and oxygen gas supplied from the water electrolyzer to the combustion chamber are supplied in a timely manner from a hydrogen storage tank and an oxygen storage tank, respectively, which are interposed in the hydrogen piping and the oxygen piping. A heat source device using a water electrolyzer using the solar cell described above.
JP58053201A 1983-03-29 1983-03-29 Heat source device by water electrolytic cell using solar battery Granted JPS59179792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58053201A JPS59179792A (en) 1983-03-29 1983-03-29 Heat source device by water electrolytic cell using solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58053201A JPS59179792A (en) 1983-03-29 1983-03-29 Heat source device by water electrolytic cell using solar battery

Publications (2)

Publication Number Publication Date
JPS59179792A JPS59179792A (en) 1984-10-12
JPS6114231B2 true JPS6114231B2 (en) 1986-04-17

Family

ID=12936256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58053201A Granted JPS59179792A (en) 1983-03-29 1983-03-29 Heat source device by water electrolytic cell using solar battery

Country Status (1)

Country Link
JP (1) JPS59179792A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180133A (en) * 1986-02-04 1987-08-07 Mazda Motor Corp Balancer device of engine-transmission system
JPS62184260A (en) * 1986-02-10 1987-08-12 Mazda Motor Corp Balancer device in engine-transmission system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2370320B2 (en) * 2009-04-27 2012-06-13 Universidade De Vigo HEATING SYSTEM WITH OXHYDRIC COMBUSTION CONCRETE CHAMBER.
JP6707063B2 (en) 2017-08-03 2020-06-10 本田技研工業株式会社 Refueling cap and saddle type vehicle
US11498635B2 (en) 2017-09-14 2022-11-15 Honda Motor Co., Ltd. Fuel tank structure
PL242198B1 (en) * 2020-12-21 2023-01-30 Sescom Spolka Akcyjna Hydrogen heating boiler unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180133A (en) * 1986-02-04 1987-08-07 Mazda Motor Corp Balancer device of engine-transmission system
JPS62184260A (en) * 1986-02-10 1987-08-12 Mazda Motor Corp Balancer device in engine-transmission system

Also Published As

Publication number Publication date
JPS59179792A (en) 1984-10-12

Similar Documents

Publication Publication Date Title
US6929876B2 (en) Septic battery
BR112012026923B1 (en) electrical energy storage and restoration device
CN113278987B (en) SOEC and AEL electrolysis coupling solid circulation hydrogen storage and release system
US4040566A (en) Pollution-free heating system
JPS61263065A (en) Fuel cell system
CN106252693A (en) Battery system
CN115074751B (en) High-temperature electrolytic hydrogen production system and method capable of continuously and stably operating and application thereof
US4528947A (en) Solar oxy-hydrogen vehicle
ITCO20100003A1 (en) "HYDROGEN GENERATOR SYSTEM FOR A HYDROGEN CATALYTIC COMBUSTOR"
CN110410289B (en) SOFC-GT combined power generation system utilizing solar energy for heat supply and high-temperature thermochemical heat storage
JPS6114231B2 (en)
ES2325848B1 (en) HYDROGEN AND ELECTRICAL ENERGY PRODUCTION SYSTEM FROM PHOTOVOLTAIC ENERGY.
CN114725428A (en) Zero-carbon-emission solid oxide fuel cell and renewable energy source combined power generation system with ammonia gas as carrier
CH644201A5 (en) PROCEDURE FOR THE ACCUMULATION OF CHEMICAL ENERGY WITH STORAGE OF ALKALINE METALS FOR THE PURPOSE OF PRODUCING ELECTRIC OR THERMAL ENERGY THROUGH RECONVERSION.
JP2006299323A (en) Water electrolytic device
US4093527A (en) Hydrogen generating apparatus
CN108485952B (en) Organic wastewater hydrogen production system based on photovoltaic photo-thermal heat collector
JP3102434B2 (en) Power storage and generator
KR100794759B1 (en) System for generating Combined Energy
CN109855306A (en) Electric heat storage boiler, energy supplying system and method based on heat chemistry energy storage
Miri et al. Electrolyte process of hydrogen production by solar energy
JPH0492374A (en) Energy system
JPH05343085A (en) Fuel cell system
JP2000215901A (en) Solid polymer type fuel cell system
CN209798118U (en) Circulating water cooling hydrogen production module