JPS61141986A - Evaporation apparatus - Google Patents
Evaporation apparatusInfo
- Publication number
- JPS61141986A JPS61141986A JP26472584A JP26472584A JPS61141986A JP S61141986 A JPS61141986 A JP S61141986A JP 26472584 A JP26472584 A JP 26472584A JP 26472584 A JP26472584 A JP 26472584A JP S61141986 A JPS61141986 A JP S61141986A
- Authority
- JP
- Japan
- Prior art keywords
- evaporation
- water
- chamber
- steam
- feed water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/06—Flash distillation
- B01D3/065—Multiple-effect flash distillation (more than two traps)
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
- C02F1/048—Purification of waste water by evaporation
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は汚水から清浄な用水を回収する蒸発装置に関し
、より詳しくは、産業排水、特に、食品産業などの高濃
度の廃水または腐蝕性の廃水などのうち汚水から清浄な
用水を回収する蒸発装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an evaporation device for recovering clean water from wastewater, and more specifically, industrial wastewater, particularly highly concentrated wastewater or corrosive wastewater from the food industry, etc. Of these, it relates to evaporation equipment that recovers clean water from sewage.
従来の技術
従来、多段フラッジ1法或いは多重効用法によって海水
を淡水化する装置や、多重効用法によってパルプ廃液を
濃縮する装置に用いられ−Cいる蒸発装置では、凝縮用
の伝熱管内を直接海水や高濃度の黒液等を通過させてい
た。Conventional technology Conventionally, in evaporation equipment used in equipment for desalinating seawater using the multi-stage flood method or multiple-effect method, and equipment for concentrating pulp waste liquid using the multiple-effect method, the inside of the condensing heat transfer tube is directly connected. Seawater and highly concentrated black liquor were passed through it.
発明が解決しようとする問題点
上記従来構成にjこると、伝熱管の壁面に析出したスケ
ールやスラッジが付着して伝熱管壁の伝熱抵抗が増加す
ることを回;けできないIごめ、予じめ伝熱面積を大き
くする必要があり、これがために装置全体が大型化する
という問題があった。Problems to be Solved by the Invention When it comes to the above-mentioned conventional configuration, it is impossible to avoid the fact that scale and sludge deposited on the walls of the heat exchanger tubes increase the heat transfer resistance of the walls of the heat exchanger tubes. , it is necessary to increase the heat transfer area in advance, which poses a problem in that the overall size of the device increases.
本発明は上記従来の問題を解潤するもので、スケール、
スラッジなどが伝熱管内に付着し易い産業廃水などの汚
水をフラッシュ蒸発させ、このフラッシュ蒸気から用水
を回収するために、スケール、スラッジを析出しにくい
媒体を伝熱管内に導いて上記フラッシュ蒸気から熱回収
を行ない、該フラッシュ蒸気から用水を轡るようにする
ことにより伝熱管内へのスケール、スラッジなどの付着
を防11−シ、これにJ:す、伝熱面積を小さくするこ
とを可能として上首を小形化できるようにな]ノ、さら
には長!lII連続運転を可能とする蒸発装置を提供す
ることを目的とする。The present invention solves the above-mentioned conventional problems.
In order to perform flash evaporation of wastewater such as industrial wastewater, where sludge and the like tend to adhere to the inside of heat transfer tubes, and to recover water for use from this flash steam, a medium that does not easily deposit scale and sludge is introduced into the heat transfer tubes and removed from the flash steam. By recovering heat and submerging water from the flash steam, it is possible to prevent scale, sludge, etc. from adhering to the heat transfer tubes, and to reduce the heat transfer area. The upper neck can be made smaller and even longer! An object of the present invention is to provide an evaporator that enables continuous operation.
問題点を解決づるだめの手段
上記問題を解消するため、本発明の蒸発装置は、上方か
ら汚水が供給される蒸発器の内部を1−下多段の蒸発室
に仕切る床を設け、該床に前記隣接する蒸発室に連通ず
るノズルを設け、前記各蒸発室を減圧するポンプを設け
、前記各蒸発室からの蒸気がそれぞれ導かれる給水加熱
室を一ト下多段に形成した給水加熱器を設け、該給水加
熱器内に凝縮用伝熱管を配設するとともに、該伝熱管内
にスケール、スラッジを析出しにくい媒体を導いた構成
としたものである。Means for Solving the Problems In order to solve the above problems, the evaporator of the present invention is provided with a floor that partitions the interior of the evaporator into which sewage is supplied from above into a multi-tiered evaporation chamber. A feed water heater is provided in which a nozzle communicating with the adjacent evaporation chambers is provided, a pump is provided to reduce the pressure in each of the evaporation chambers, and feed water heating chambers are formed in multiple stages to which steam from each of the evaporation chambers is respectively guided. A condensing heat exchanger tube is disposed within the feed water heater, and a medium that does not easily deposit scale and sludge is introduced into the heat exchanger tube.
作用
上配溝成により、蒸発器に供給される、スケール、スラ
ッジなどが伝熱管内に付着し易い産業廃水などの汚水は
、ノズルから減圧状態の蒸発室に轡かれてフラッシュ蒸
発し、発生した蒸気は給水加熱室に導かれて管内をスケ
ール、スラッジなどを析出しにくい媒体が流れる伝熱管
によって凝縮されるため、伝熱管内にスケール、スラッ
ジなどの付着のない状態で前記汚水から用水を回収でA
る。Due to the working structure, industrial wastewater, which is supplied to the evaporator and where scale, sludge, etc. tend to adhere to the inside of the heat transfer tubes, is passed through the nozzle into the evaporation chamber under reduced pressure, where it flash evaporates and is generated. The steam is guided to the feed water heating chamber and condensed by the heat transfer tube through which a medium that does not easily deposit scale, sludge, etc. flows, so water can be recovered from the wastewater without any scale, sludge, etc. adhering to the heat transfer tube. DeA
Ru.
実施例
以下、本発明の一実施例を図面にlitづいて説明する
。第1図は蒸発装置の全体構成図で、図面において、1
は蒸発器で、蒸発器1の内部は床2によって上下多段の
蒸発室3に什切られており、各床2には一1下隣接する
それぞれの蒸発室3に’、+p通するノズル4が取付け
られている。EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. Figure 1 is an overall configuration diagram of the evaporator, and in the drawing, 1
is an evaporator, and the inside of the evaporator 1 is divided into upper and lower multi-tiered evaporation chambers 3 by a bed 2, and each bed 2 has a nozzle 4 that passes through each of the adjacent evaporation chambers 3. is installed.
5は給水加熱器で、給水加熱器5の内部は、前記各床2
と同一平面内にある各床6によって仕切られて上下多段
の給水加熱室7が形成されており、最上段の給水加熱室
7aと最上段の蒸発室3aとは隔壁8を介して隣接して
いる。5 is a feed water heater, and the inside of the feed water heater 5 is connected to each floor 2.
The upper and lower multistage feed water heating chambers 7 are partitioned by each floor 6 on the same plane, and the uppermost feed water heating chamber 7a and the uppermost evaporation chamber 3a are adjacent to each other with a partition wall 8 in between. There is.
9は上部に蒸気の通過を許すミストセパレータ10が取
付けられた隔壁で、該隔壁9は、最」一段より下段の各
給水加熱室7と、これに隣接の各蒸発室3との間に介装
されている。Reference numeral 9 denotes a partition wall having a mist separator 10 attached thereto to allow steam to pass through, and the partition wall 9 is a partition wall interposed between each of the feed water heating chambers 7 at the lower stage than the first stage and each evaporation chamber 3 adjacent thereto. equipped.
11は凝縮用伝熱管で、この伝熱管11は給水加熱器5
の各床6を肖通()て上下方向に配設されており、給水
加熱器5の下方から供給される媒体は、伝熱管11内を
上方へ流れる。媒体としてはスケールやスラッジを析出
しにくい、例えば、純水が用いられる。11 is a condensing heat exchanger tube, and this heat exchanger tube 11 is connected to the feed water heater 5.
The medium is arranged vertically through each floor 6 of the feed water heater 5, and the medium supplied from below the feed water heater 5 flows upward in the heat transfer tube 11. As the medium, for example, pure water, which does not easily precipitate scale or sludge, is used.
12は汚水加熱器で、これは、給水加熱器5の上部から
導かれる純水の熱エネルギーによって、蒸発器1に供給
する汚水を予じめ、加熱するためのもので、汚水を加熱
した純水は給水加熱器5の下部へ導かれる。汚水加熱器
12としてはプレート熱交換器、スポンジボールによる
洗滌装置付のチューブラ熱交換器など昂除し易い熱交換
器が用いられる。13は純水循環用のポンプである。Reference numeral 12 denotes a waste water heater, which is used to preheat the waste water to be supplied to the evaporator 1 using the thermal energy of pure water led from the upper part of the feed water heater 5. The water is led to the lower part of the feed water heater 5. As the waste water heater 12, a heat exchanger that can be easily heated is used, such as a plate heat exchanger or a tubular heat exchanger equipped with a cleaning device using sponge balls. 13 is a pump for circulating pure water.
14は最上段の給水加熱室7aの下部に接続されるポン
プで、ボイラ等から供給されるi!!iの蒸気は、最2
L段の給水加熱室7aで伝熱管11内を流れる純水を加
熱し、凝縮した水は、このポンプ14によってボイラ等
の蒸気供給源へ戻される。14 is a pump connected to the lower part of the uppermost water supply heating chamber 7a, and is a pump that is supplied with i! from a boiler or the like. ! The steam of i is up to 2
Pure water flowing through the heat exchanger tubes 11 is heated in the L-stage feed water heating chamber 7a, and the condensed water is returned to a steam supply source such as a boiler by the pump 14.
15は最」一段より下段の1−上隣接゛する給水加熱室
7を互いに連通する管路で、該管路15は、上段側の給
水加熱室7の下部と手段側の給水加熱室7の上部にそれ
ぞれ接続されている。Reference numeral 15 denotes a conduit that connects the feed water heating chambers 7 adjacent to each other in the lower tier than the first tier. They are connected to each other at the top.
16は一端が各給水加熱室7に細端が真空ボンに接続さ
れる弁で、各給水加熱室7の圧力は弁16によって下段
のもの程低くしである。A valve 16 has one end connected to each water supply heating chamber 7 and a narrow end connected to a vacuum bong, and the pressure in each water supply heating chamber 7 is lowered by the valve 16 as it is lower.
次に、蒸気構成における作用について説明する。Next, the effect on the steam configuration will be explained.
汚水加熱器12で加熱された1凝然発器1の最十段の蒸
発室3aに供給された汚水は、該蒸発室3aの床2に設
けられたノズル4を通して下段の蒸発室3に流下し、該
下段の蒸発室3でフラッシュ蒸発する。発生した蒸気は
、ミストセパレータ10を介して隣接の給水加熱室7に
導かれ、給水加熱室7内の伝熱管11によって凝縮して
水となる。水分が蒸発した分だけ濃度が増した汚水は、
床2のノズル4から下段側の蒸発室3に導かれて再びフ
ラッシュ蒸発し、発生した蒸気はミストセパレータ10
を介して隣接の給水加熱?7に導かれ、伝熱管11によ
って凝縮して水となる。フラッシュ蒸発を繰り返して濃
度が増した汚水は、ポンプ17、弁18を介し、濃縮廃
水として排出され、水分の回収が充分でないときは弁1
<)を介して再び蒸発器1に導かれる。各給水加熱室7
で発生した水は、管路15によって下段側の給水加熱室
7にう9かれ、最下段の給水加熱室7からポンプ20を
介して回収されて種々の用途に供される。The wastewater heated by the wastewater heater 12 and supplied to the tenth stage evaporation chamber 3a of the first condenser generator 1 flows down to the lower stage evaporation chamber 3 through the nozzle 4 provided on the floor 2 of the evaporation chamber 3a. , flash evaporation is performed in the lower evaporation chamber 3. The generated steam is guided to the adjacent feed water heating chamber 7 via the mist separator 10, and is condensed into water by the heat transfer tube 11 in the feed water heating chamber 7. The concentration of sewage has increased by the amount of water that has evaporated,
The vapor is led from the nozzle 4 on the floor 2 to the evaporation chamber 3 on the lower stage side and undergoes flash evaporation again, and the generated vapor is passed through the mist separator 10.
Adjacent water supply heating through? 7 and is condensed into water by the heat transfer tube 11. Sewage whose concentration has increased due to repeated flash evaporation is discharged as concentrated wastewater via pump 17 and valve 18. If water recovery is not sufficient, valve 1
) is again led to the evaporator 1. Each water supply heating chamber 7
The water generated is transferred to the lower water supply heating chamber 7 through the pipe 15, and is recovered from the lowermost water supply heating chamber 7 via the pump 20 and used for various purposes.
伝熱管11内を」一方へ流れる純水は、線管11の外面
を流下する凝縮水により自流加熱されて逐次警部した後
、最上段の給水加熱室7aでボイラなどの外部熱源から
供給される高温の蒸気で加熱され、警部した純水は、汚
水加熱器1?で汚水を加熱する。The pure water flowing in one direction inside the heat exchanger tube 11 is self-heated by the condensed water flowing down the outer surface of the wire tube 11, and after being sequentially inspected, it is supplied from an external heat source such as a boiler to the uppermost feedwater heating chamber 7a. The purified water heated by high temperature steam is sewage heater 1? heat the wastewater.
このように、蒸気実施例では、伝熱管11内を流れる純
水は、フラッシュ蒸発が凝縮するときの熱と、ボイラな
どの外部熱源から供給される高温蒸気とによって加熱さ
れ、昇温した純水は、汚水加熱器12で汚水を加熱する
ため、澗aの高い汚水を蒸発器1に供給できるので汚水
を効率よくフラッシュ蒸発させることができる。In this way, in the steam embodiment, the pure water flowing through the heat exchanger tube 11 is heated by the heat generated when flash evaporation condenses and the high-temperature steam supplied from an external heat source such as a boiler, and the purified water becomes heated. Since wastewater is heated by the wastewater heater 12, wastewater with a high concentration of α can be supplied to the evaporator 1, so that the wastewater can be flash-evaporated efficiently.
第2図は本発明の伯の実施例を示し、21は蒸発器で蒸
発器21の内部は床2?によって上下二段の蒸発室23
a 、 23h 、 23cに仕切られており、各蒸発
室23a 、 23b 、 23cは下段のもの稈減圧
されている。各床22には上下隣接ηろそれぞれの蒸発
室23a 、 23b 、 23(二に連通−するノズ
ル24が取付けられている。FIG. 2 shows an embodiment of the present invention, in which 21 is an evaporator and the interior of the evaporator 21 is a floor 2? There are two evaporation chambers 23, upper and lower.
The evaporation chambers 23a, 23h, and 23c are partitioned into evaporation chambers 23a, 23h, and 23c, and the pressure in the lower evaporation chambers 23a, 23b, and 23c is reduced. Each bed 22 is equipped with a nozzle 24 that communicates with the evaporation chambers 23a, 23b, 23 (2) of the upper and lower adjacent η filters.
25は給水加熱器で、給水加熱器25の内部は、床26
によって上下二段の給水加熱室27a 、 27bに仕
切られており、上段側の給水加熱室27aと最−に段の
蒸発室23aとは隔壁28を介して慎接している。25 is a feed water heater, and the inside of the feed water heater 25 is a floor 26.
The feed water heating chamber 27a and 27b are divided into two upper and lower stages, and the upper stage water supply heating chamber 27a and the lowest stage evaporation chamber 23a are in close contact with each other via a partition wall 28.
29は土部に蒸気の通過を許でミストセパレータ30が
取付けられた隔壁で、該隔壁29は、下段側の給水加熱
室27bと中段の蒸発室23hとの間に介装されている
。Reference numeral 29 denotes a partition wall to which a mist separator 30 is attached to allow steam to pass through the soil, and the partition wall 29 is interposed between the lower-stage feed water heating chamber 27b and the middle-stage evaporation chamber 23h.
31は凝縮用伝熱管で、この伝熱管31は給水加熱器2
5の床26を貫通して上下方向に配設されており、給水
加熱器25の下方から供給される純水は、伝熱管31内
を上方へ流れる。31 is a condensing heat exchanger tube, and this heat exchanger tube 31 is connected to the feed water heater 2.
The pure water supplied from below the feed water heater 25 flows upward in the heat transfer tube 31 .
32は汚水加熱器で、これは、給水加熱器25の−1一
部から導かれる純水の熱Tネルギーによって、蒸発IP
:i21に供給する汚水を予じめ加熱するためのもので
、汚水を加熱した純水は給水加熱器25の下部へ導かれ
る。汚水加熱器32としてはプレート熱交換器、スポン
ジボールによる洗滌装置付のチューブラ熱交換器など掃
除し易い熱交換器が用いられる。33は純水循環用のポ
ンプである。32 is a sewage heater, which uses the heat T energy of pure water led from the -1 part of the feed water heater 25 to evaporate IP.
: This is for preheating the waste water to be supplied to the i21, and the pure water that has been heated from the waste water is led to the lower part of the feed water heater 25. As the wastewater heater 32, a heat exchanger that is easy to clean is used, such as a plate heat exchanger or a tubular heat exchanger equipped with a cleaning device using sponge balls. 33 is a pump for circulating pure water.
34は中r−1?で、該中間室34と最下段の蒸発室2
3cは、蒸気の通過を許すミストセパレータ35が取付
けられた壁36によって什切られている。34 is middle r-1? The intermediate chamber 34 and the lowest evaporation chamber 2
3c is completed by a wall 36 fitted with a mist separator 35 allowing the passage of steam.
37は蒸気エゼクタ−で、中間室34から蒸気エゼクタ
−37に導かれた蒸気は、ボイラなどの外部熱源から供
給される高温蒸気によって昇温昇圧された後、その高温
蒸気とともに上段側の給水加熱室27aに供給される。37 is a steam ejector, and the steam led from the intermediate chamber 34 to the steam ejector 37 is heated and pressurized by high-temperature steam supplied from an external heat source such as a boiler, and then heated with the high-temperature steam to feed water on the upper stage side. It is supplied to the chamber 27a.
38は管路で、該管路38の一端は上段側の給水加熱室
27aの下部に、他端は下段側の給水加熱室27bの」
一部にそれぞれ接続されている。38 is a pipe, one end of which is connected to the lower part of the upper feed water heating chamber 27a, and the other end to the lower feed water heating chamber 27b.
Some are connected to each other.
次に、上記構成における作用について説明する。Next, the operation of the above configuration will be explained.
汚水加熱器32で加熱され1=後蒸発器21の最上段の
蒸発室23aに供給された汚水は、該蒸発室23aの床
22に設けられたノズル24を通して中段の蒸発室23
bに流下し、該中段の蒸発室23bでフラッシュ蒸発す
る。発生した蒸気は、ミス[・セパレータ30を介して
隣接の給水加熱室27bに導かれ、給水加熱室27h内
の伝熱管31によって凝縮されて水となる。水分が蒸発
した分だけ濃度が増した汚水は、床22のノズル24か
ら下段側の蒸発室23cに導かれて再びフラッシュ蒸発
する。発生l)た蒸気は、ミストセパレータ35、中間
室34を軽−て蒸気JIタクター37の吸引部に入り、
該エゼクタ−37内でボイラ等から轡かれる高温蒸気に
より蒸気IF縮されてが渇昇圧し、その高調蒸気ととも
に上段側の給水加熱室27aに導かれて凝縮し、子の凝
縮時の熱で伝熱管31内を流れる純水を加熱する。給水
加熱室27a内で発生した水は管路38を介して下段の
給水加熱室27bに導かれ、該給水加熱室27b内で発
生する水とともにポンプ41を介して回収されて種々の
用途に供される。The wastewater heated by the wastewater heater 32 and supplied to the uppermost evaporation chamber 23a of the post-evaporator 21 passes through the nozzle 24 provided on the floor 22 of the evaporation chamber 23a to the middle evaporation chamber 23.
b, and undergoes flash evaporation in the middle evaporation chamber 23b. The generated steam is guided to the adjacent feed water heating chamber 27b via the mis-separator 30, and is condensed into water by the heat transfer tube 31 in the feed water heating chamber 27h. The sewage whose concentration has increased by the amount of water that has evaporated is led from the nozzle 24 on the floor 22 to the evaporation chamber 23c on the lower stage side, where it flash-evaporates again. The generated steam passes through the mist separator 35 and the intermediate chamber 34 and enters the suction section of the steam JI tanker 37.
In the ejector 37, the steam IF is condensed by high-temperature steam discharged from a boiler, etc., and the pressure is raised.The high-temperature steam is led to the upper stage side feed water heating chamber 27a and condensed, and is transferred by the heat of the condensation of the child. The pure water flowing inside the heat tube 31 is heated. The water generated in the feed water heating chamber 27a is led to the lower feed water heating chamber 27b via a pipe line 38, and is recovered together with the water generated in the feed water heating chamber 27b via a pump 41 and supplied for various uses. be done.
中段および下段の各蒸発室23b 、 23cで水分が
フラッシュ蒸発して濃度が増した汚水は、ポンプ38、
弁39を介して澗縮廃水として排出され、水分の回収が
充分でないときは弁40を介して再び蒸発器21にう9
かれる。The water in the middle and lower evaporation chambers 23b and 23c is flash-evaporated and the sewage has an increased concentration, which is pumped to a pump 38,
It is discharged as condensed waste water through the valve 39, and when the moisture recovery is not sufficient, it is returned to the evaporator 21 through the valve 40.
It will be destroyed.
伝熱管31内を上方へ流れる純水は、線管31の外面を
流下する凝縮水により向流加熱されて逐次胃温した後、
」〕0段の給水加熱?27aで加熱され、昇温した純水
は、汚水加熱器32で汚水を加熱する。The pure water flowing upward inside the heat transfer tube 31 is countercurrently heated by the condensed water flowing down the outer surface of the wire tube 31 and gradually warmed to the stomach temperature.
”] 0 stage feed water heating? The pure water heated in 27a and raised in temperature heats wastewater in the wastewater heater 32.
このように、ト配実施例では、伝熱管11内を流れる純
水は、フラッシコ蒸気が凝縮するときの熱と、ボイラな
どの外部熱源から供給される高温蒸気と、該高窯気によ
って界渇胃圧されたフラッシコ蒸気とににって加熱され
、貸温した純水は、汚水加熱器32で汚水を加熱するた
め、温度の高い汚水を蒸発器21に供給できるので汚水
を効率よくフラッシュ蒸発させることができる。In this way, in the heat exchanger tube 11, the pure water flowing through the heat exchanger tubes 11 is depleted by the heat generated when the flashco steam condenses, the high-temperature steam supplied from an external heat source such as a boiler, and the high-temperature furnace air. The heated purified water is heated using gastrically pressurized flashco steam and garlic, and the wastewater is heated in the wastewater heater 32, so that high-temperature wastewater can be supplied to the evaporator 21, resulting in efficient flash evaporation of the wastewater. can be done.
なお、上記実施例T・は蒸気Jゼクタ−37を用いてフ
ラッシュ蒸気を圧縮したが、蒸気コンプレッサー等の機
械式蒸気圧縮機を用いることもできる。In addition, although the flash steam was compressed using the steam J Zector-37 in the above-mentioned Example T, a mechanical steam compressor such as a steam compressor can also be used.
発明の効果
1メ十説明したように、本発明によれば、汚水は蒸発室
で7ラツシコ蒸発し、発生した蒸気は、内部をスケール
やスラッジの析出しにくい媒体が流れる伝熱管によって
凝縮されるので、伝熱管の壁面に析出したスケールやス
ラッジが付着することによる管壁の伝熱抵抗の増加を防
ぐことができ、これにより装置を小形化できるとともに
長期連続運転が可能となる。さらに、給水加熱器内に配
設される伝熱管として伝熱特性の良い二重溝付管等も使
用できるので、このことからもKNを小形化することが
できる。Effects of the Invention As explained above, according to the present invention, wastewater is evaporated in the evaporation chamber for 7 hours, and the generated steam is condensed by the heat exchanger tube through which a medium that does not easily cause scale and sludge precipitation flows. Therefore, it is possible to prevent an increase in the heat transfer resistance of the tube wall due to the adhesion of precipitated scale and sludge on the wall surface of the heat transfer tube, thereby making it possible to downsize the device and enable long-term continuous operation. Further, since a double grooved tube with good heat transfer characteristics can be used as the heat transfer tube disposed in the feed water heater, the KN can also be made smaller.
第1図は本発明の一実施例を示す全体構成図、第2図は
他の実施例の全体構成図である。
1・・・蒸発器、2・・・床、3・・・蒸発室、4・・
・ノズル、5・・・給水加熱器、7・・・給水加熱室、
11・・・伝熱管代理人 森 本 義 弘
手続補正書(自発)
1.事件の表示 ゛′−昭和 59
年特 許 願第 264725 号2、発明の名
称
蒸発装置
3、補正をする者
事件との関係 特許出願人
名称 (511)日立造船株式会社
氏名 (6808)弁理士森 本 義 弘5、
の日付(発送日)昭和 年 月 日
6、補正により増加する発明の数
7、補正の対象
明細書全文
図面の一部
8、補正の内容
■明細書全文
別紙の通り訂正する。
0図面の第2図
る部品番号「38」のうち、下側の「38」を「42」
と訂正する。
明 細 書
1、発明の名称
蒸発装置
2、特許請求の範囲
1、加熱された汚水が供給i\れる蒸発器の内部を多段
の蒸発室に仕切る隔壁を設け、該壁に前記隣接する蒸発
室に連通するノズルを8Qけ、前記各蒸発室を減圧する
ポンプを設け、前記各蒸発室からの蒸気がそれぞれ導か
れる給水加熱室を多段に形成した給水加熱器を設け、該
給水加熱器内に凝縮用伝熱管を配設するとともに、該伝
熱管内にスケールやスラッジの析出しにくい媒体を導き
、該媒体により汚水を加熱するようにしたことを特徴と
する蒸発装置。
3、発明の詳111な説明
産業上の利用分野
本発明は汚水から清浄な用水を回収する蒸発装置に関し
、より詳しくは、産業排水、特に、食品産業などの高濃
度の廃水または腐蝕性の廃水などの汚水から清浄な用水
を回収する蒸発装置に関するものである。
従来の技術
従来、多段フラッジ1法或いは多重効用法にJ:って海
水を淡水化する装置や、多重効用法によってパルプvF
、液を濃縮する装置に用いられている蒸発装置では、凝
縮用の伝熱管内を直接海水や高濃度の黒液等を通過させ
ていた。
発明が解決しにうとする問題点
上記従来構成によると、伝熱管の壁面にスケールやスラ
ッジが析出、付着して伝熱管壁の伝熱抵抗が増加するこ
とを回避できないため、予じめ伝熱面積を大きくする必
要があり、これがために装四全体が大型化するという問
題があった。
本発明は」−記従来の問題を解消するもので、スケール
、スラッジなどが伝熱管内に付着し易い産業廃水などの
汚水をフラッシュ蒸発させ、このフラッシュ蒸気から用
水を回収するために、スケール、スラッジが析出しにく
い媒体を伝熱管内に導いて上記フラッシュ蒸気から熱回
収を行ない、該フラッシュ蒸気から用水を得るようにす
ることにより伝熱管内へのスケール、スラッジなどの付
着を防止し、これにより、伝熱面積を小さくすることを
可fILとして装置を小形化できるようになし、さらに
は長期連続運転を可能とする蒸発装置を捏供づることを
目的とする。
問題点を解決するための手段
上記問題を解消するため、本発明の蒸発装置は、汚水が
供給される蒸発器の内部を多段の蒸発室に什切る隔壁を
設け、該壁に前記隣接する蒸発室に連通ずるノズルを設
け、前記各蒸発室を減圧するポンプを説け、前記各蒸発
室からの蒸気がそれぞれ導かれる給水加熱室を多段に形
成した給水加熱器を設け、該給水加熱器内に凝縮用伝熱
管を配設するとともに、該伝熱管内にスケール、スラッ
ジを析出しにくい媒体を導き、該媒体により前記汚水を
加熱するように構成としたものである。
作用
上記構成により、蒸発器に供給される、スケール、スラ
ッジへとが伝熱管内に付着し易い産業廃水などの汚水は
、ノズルから減圧状態の蒸発室に導かれてフラッシュ蒸
発し、発生した蒸気は給水加熱室に導かれて管内をスケ
ール、スラッジなどを析出、付着しにくい媒体が流れる
伝熱管によって凝縮されるため、伝熱管内にスケール、
スラッジなどの付着のない状態で前記汚水から用水を回
収できる。
実施例
以下、本発明の一実施例を図面に基づいて説明する。第
1図は蒸発装置の全体構成図で、図面において、1は蒸
発器で、蒸発器1の内部は床2によって上下多段の蒸発
室3に什切られており、各床2には上下rtg接するそ
れぞれの蒸発室3に連通するノズル4が取付けられてい
る。
5は給水加熱器で、給水加熱器5の内部は、前記各床2
と同一平面内にある各床6によって仕切られて上下多段
の給水加熱室7が形成されており、最上段の給水加熱室
7aと最上段の水室3aとは隔壁8を介して隣接してい
る。
9は上部に蒸気の通過を許すミストセパレータ10が取
付けられた隔壁で、該隔壁9は、第2段以下の下段の各
給水加熱室7と、これに隣接の各蒸発室3との間に介装
されている。
11は凝縮用伝熱管で、この伝熱管11は給水加熱器5
の各床6を4通して上下方向に配設されており、給水加
熱器5の下方から供給される媒体は、伝熱管11内を上
方へ流れる。媒体としてはスケールやスラッジを析出し
にくい、例えば、純水が用いられる。
12は汚水加熱器で、これは、給水加熱器5の上部から
導かれる純水の熱エネルギーによって、蒸発器1に供給
する汚水を予じめ加熱するためのもので、汚水を加熱し
た純水は給水加熱器5の下部へ導かれる。汚水加熱器1
2としてはプレート式熱交換器、スポンジボールによる
洗滌装瞠付のチューブラ熱交換器など掃除し易い熱交換
器が用いられる。13は純水循環用のポンプである。
14は最上段の給水加熱室7aの下部の復水溜に接続さ
れるポンプで、ボイラ等から供給される外部蒸気は、最
上段の給水加熱室7aで伝熱管11内を流れる純水を加
熱し、凝縮した水は、このボンブ14によってボイラ等
の蒸気供給源へ戻される。
15は上下隣接する給水加熱室7を互いに連通する管路
で、該管路15は上段側の給水加熱″’i7の下部と下
段側の給水加熱室7の上部にそれぞれ接続されている。
16は一端が各給水加熱室7に他端が真空ボンに接続さ
れる弁で、各給水加熱室7の圧力は弁10によって下段
のもの稈低くしである。
次に、上記構成における作用について説明する。
汚水加熱器12で加熱された後蒸発器1の最上段の水室
3aに供給された汚水は、該水室3aの床2に設けられ
たノズル4を通して下段の蒸発室3に流下し、該下段の
蒸発室3でフラッシュ蒸発する。発生した蒸気は、ミス
トセパレータ10を介して隣接の給水加熱室7に導かれ
、給水加熱室7内の伝熱管11によって凝縮して水とな
る。水分が蒸発した分だけ潤度が増した汚水は、床2の
ノズル4から下段側の蒸発室3に導かれて再びフラッシ
ュ蒸発し、発生した蒸気はミストセパレータ10を介し
て隣接の給水加熱室7に導かれ、伝熱管11にJこつて
凝縮して水となる。フラッシュ蒸発を繰り返して澗僚が
増した汚水は、ポンプ17.弁18を介し、濃縮廃水と
して排出され、水分の回収が充分でないときは弁19を
介して再び蒸発器1に導かれる。各給水加熱室7で発生
した水は、管路15にJ:つて下段側の給水加熱室7に
導かれ、最下段の給水加熱室7からポンプ20を介して
回収されて種々の用途に供される。
伝熱管11内を上方へ流れる純水は、線管11の外面の
フラッシュ上記ににり加熱され、蒸気は潜熱を放出して
凝縮水となる。純水は高温段へと自流加熱されて逐次昇
温した後、最上段の給水加熱室7aでボイラなどの外部
熱源から供給される蒸気で加熱され、ざらに昇温した純
水は、汚水加熱器12で汚水を加熱する。
このように、上記実施例では、伝熱管11内を流れる純
水は、フラッシュ蒸気が凝縮するとぎの熱により予熱さ
れ最終的にボイラなどの外部熱源から供給される蒸気と
によって加熱され、屏温した純水は、汚水加熱器12で
汚水を加熱するため、瀉−7一
度の高い汚水を蒸発器1に供給できるので汚水を効率よ
くフラッシュ蒸発させることができる。
第2図は本発明の他の実施例を示し、21は蒸発器で蒸
発器21の内部は床22によって上下三段に水室23a
、蒸発室23b 、 23cに仕切られており、各蒸発
室23b 、 23cは下段のもの稈減圧されている。
各床22には上下隣接するそれぞれの蒸発室23h。
23cに連通するノズル24が取付けられている。
25は給水加熱器で、給水加熱器25の内部は、床26
によって、上下三段の給水加熱室27a 、 27bに
仕切られており、上段側の給水加熱室27aと最上段の
水23aとは隔壁28を介して隣接している。
29は上部に蒸気の通過を許寸ミストセパレータ30が
取付けられた隔壁で、該隔壁29は、下段側の給水加熱
室27bと中段の蒸発室23hとの間に介装されている
。
31は凝縮用伝熱管で、この伝熱管31は給水加熱器2
5の床26を買通して上下方向に配設されており、給水
加熱器25の下方から供給される純水は、伝熱管31内
を上方へ流れる。
32は汚水加熱器で、これは、給水加熱器25の上部か
ら導かれる純水の熱エネルギーによって、蒸発器21に
供給する汚水を予じめ加熱するためのもので、汚水を加
熱した純水は給水加熱器25の下部へ59かれる。汚水
加熱器32どしてはプレート式熱交換器、スポンジボー
ルににる洗註装冒付のチューブラ熱交換器など掃除し易
い熱交換器が用いられる。33は純水循環用のポンプで
ある。
34は蒸気室で、該蒸気室34と最下段の蒸発室23c
は、蒸気の通過を許すミストセパレータ35が取付けら
れた壁3Gによって仕切られている。
31は蒸気エゼクタ−で、蒸気室34から蒸気エゼクタ
−37に導かれた蒸気は、ボイラなどの外部熱源から供
給される蒸気によって昇温昇圧された後、その蒸気とと
もに上段側の給水加熱室27aに供給される。
38は管路で、該管路38の一端は上段側の給水加熱室
27aの下部に、他端は下段側の給水加熱室27bの」
一部にそれぞれ接続されている。
次に、」:記構成における作用について説明する。
汚水加熱器32で加熱された後蒸発器21の最上段の氷
室23aに供給された汚水は、該水室23aの床22に
設けられたノズル24を通して蒸発室23tlに流下し
、該蒸発室23bでフラッシュ蒸発する。発生した蒸気
は、ミストセパレータ30を介して隣接の給水加熱室2
7bに導かれ、給水加熱室27b内の伝熱管31によっ
て凝縮されて水となる。水分が蒸発した分だけ濃度が増
した汚水は、床22のノズル24から下段側の蒸発室2
3cに導かれて再びフラッシュ蒸発する。発生した蒸気
は、ミストセパレータ35、蒸気室34を経て蒸気エゼ
クタ−37の吸引部に入り、該エゼクタ−37内でボイ
ラ等から導かれる蒸気により蒸気圧縮されて昇温昇圧し
、そのボイラ蒸気とともに上段側の給水加熱室27aに
導かれて凝縮し、その凝縮時の熱で伝熱管31内を流れ
る純水を加熱する。給水加熱室27a内で発生した水は
管路38を介して下段の給水加熱室27bに導かれ、該
給水加熱室27b内で発生する水とともにポンプ41を
介して回収されて種々の用途に供される。
中段および下段の各蒸発室23b 、 23cで水分が
フラッシュ蒸発して瀧1αが増した汚水は、ポンプ42
、弁39を介して濃縮廃水として排出され、水分の回収
が充分でないときは弁40を介して再び蒸発器21に導
かれる。
伝熱管31内を上方へ流れる純水は、線管31の外面の
蒸気により加熱されて昇温した後、上段側の給水加熱?
27aで加熱され、臂温した純水は、汚水加熱器32で
汚水を加熱する。
このように、」−記実施例では、伝熱管11内を流れる
純水は、フラッシュ蒸気が凝縮するときの熱と、ボイラ
などの外部熱源から供給される蒸気と、エゼクタ−によ
って蒸気圧縮されて昇温昇圧されたフラッシュ蒸気とに
よって加熱され、昇温した純水は、汚水加熱器32で汚
水を加熱するため、温酊の高い汚水を蒸発器21に供給
できるので汚水を効率よくフラッシュ蒸発させることが
できる。
なお、」−記実施例では蒸気エゼクタ−37を用いたエ
ゼクタ一式蒸気圧縮器でフラッシュ蒸気を圧縮したが、
機械式蒸気圧縮機を用いることもできる。
発明の詳細
な説明したように、本発明によれば、汚水は蒸発室でフ
ラッシュ蒸発し、発生した蒸気は、内部をスケールやス
ラッジの析出しにくい媒体が流れる伝熱管によって凝縮
されるので、伝熱管の壁面に析出したスケールやスラッ
ジが付着することによる管壁の伝熱抵抗の増加を防ぐこ
とができ、これにより装置を小形化できるとともに長期
連続運転が可能となる。さらに、給水加熱器内に配設さ
れる伝熱管として伝熱特性の良い二重溝付管等も使用で
きるので、このことからも装置を小形化することができ
る。実施例では給水加熱器、蒸発室の積重ね構造につい
て説明したが、該給水加熱器、蒸発室を横置きに配置し
てフラッシュ蒸発させる構造とすることもできる。
4、図面の簡単な説明
第1図は本発明の一実施例を示す全体構成図、第2図は
他の実施例の全体構成図である。FIG. 1 is an overall configuration diagram showing one embodiment of the present invention, and FIG. 2 is an overall configuration diagram of another embodiment. 1... Evaporator, 2... Floor, 3... Evaporation chamber, 4...
・Nozzle, 5... Feed water heater, 7... Feed water heating chamber,
11... Heat exchanger tube agent Yoshihiro Morimoto procedural amendment (voluntary) 1. Incident display ゛′-Showa 59
Patent Application No. 264725 2, Name of the invention Evaporation device 3, Relationship with the case of the person making the amendment Name of patent applicant (511) Name of Hitachi Zosen Corporation (6808) Patent attorney Yoshihiro Morimoto 5,
date (shipment date) Showa year, month, day 6, number of inventions increased by the amendment 7, part of the drawings in the full text of the specification subject to the amendment 8, contents of the amendment - The entire text of the specification is corrected as shown in the attached sheet. Of the part number "38" in the second drawing of 0, the lower "38" is replaced with "42".
I am corrected. Description 1, Name of the invention Evaporation device 2, Claim 1, A partition wall is provided to partition the inside of the evaporator into which heated wastewater is supplied into multi-stage evaporation chambers, and the adjacent evaporation chambers are connected to the wall. A feed water heater is provided in which a pump is provided to reduce the pressure in each of the evaporation chambers, and a feed water heating chamber is formed in multiple stages to which steam from each of the evaporation chambers is guided, and the feed water heater is provided with a nozzle communicating with the evaporation chamber. An evaporator characterized in that a heat transfer tube for condensation is provided, a medium that is difficult to deposit scale and sludge is introduced into the heat transfer tube, and waste water is heated by the medium. 3. Detailed Description of the Invention 111 Industrial Application Field The present invention relates to an evaporation device for recovering clean water from wastewater, and more particularly, it relates to an evaporation device for recovering clean water from wastewater, and more particularly, to industrial wastewater, particularly highly concentrated wastewater or corrosive wastewater from the food industry. This relates to an evaporation device that recovers clean water from sewage. Conventional technology Conventionally, there have been devices for desalinating seawater using the multi-stage fludge method or the multiple-effect method, and pulp vF desalination using the multiple-effect method.
In the evaporator used in devices for concentrating liquids, seawater or highly concentrated black liquor is passed directly through the condensing heat transfer tube. Problems to be Solved by the Invention According to the conventional structure described above, it is impossible to prevent scale and sludge from precipitating and adhering to the wall surface of the heat transfer tube, increasing the heat transfer resistance of the heat transfer tube wall. It was necessary to increase the thermal area, which caused the problem of increasing the size of the entire assembly. The present invention solves the conventional problems mentioned above.In order to flash-evaporate polluted water such as industrial wastewater in which scale, sludge, etc. tend to adhere to the inside of heat transfer tubes, and recover water for use from this flash steam, scale, sludge, etc. By guiding a medium in which sludge does not easily precipitate into the heat exchanger tubes, recovering heat from the flash steam, and obtaining water from the flash steam, it is possible to prevent scale, sludge, etc. from adhering to the heat exchanger tubes. Therefore, it is an object of the present invention to provide an evaporator that can miniaturize the device by making it possible to reduce the heat transfer area and further enable long-term continuous operation. Means for Solving the Problems In order to solve the above problems, the evaporator of the present invention is provided with a partition wall that divides the interior of the evaporator into which waste water is supplied into multi-stage evaporation chambers, and the partition wall is provided with a partition wall that divides the interior of the evaporator into which waste water is supplied, and the adjacent evaporator A nozzle communicating with the chamber is provided, a pump is provided to reduce the pressure in each of the evaporation chambers, a feed water heater is provided in which a multi-stage feed water heating chamber is formed into which the steam from each of the evaporation chambers is guided, and the feed water heater is provided with A heat exchanger tube for condensation is provided, a medium that does not easily deposit scale and sludge is introduced into the heat exchanger tube, and the waste water is heated by the medium. Effect With the above configuration, wastewater such as industrial wastewater that is supplied to the evaporator and where scale and sludge tend to adhere to the inside of the heat transfer tube is led from the nozzle to the evaporation chamber in a reduced pressure state and undergoes flash evaporation, resulting in the generated steam. When the water is guided into the feed water heating chamber, scale and sludge precipitate inside the tubes, and because the medium that is difficult to adhere to is condensed by the flowing heat transfer tubes, scale and sludge are deposited inside the tubes.
Water can be recovered from the wastewater without any sludge or the like attached. EXAMPLE Hereinafter, an example of the present invention will be described based on the drawings. Figure 1 is an overall configuration diagram of the evaporator. In the drawing, 1 is an evaporator, and the inside of the evaporator 1 is divided into upper and lower multistage evaporation chambers 3 by beds 2. Each bed 2 has an upper and lower RTG. A nozzle 4 is attached that communicates with each of the evaporation chambers 3 in contact with each other. 5 is a feed water heater, and the inside of the feed water heater 5 is connected to each floor 2.
A multi-tiered upper and lower water supply heating chamber 7 is formed by partitioning each floor 6 on the same plane as the uppermost one. There is. Reference numeral 9 denotes a partition wall having a mist separator 10 attached thereto to allow passage of steam, and the partition wall 9 is provided between each of the lower stage feed water heating chambers 7 below the second stage and each evaporation chamber 3 adjacent thereto. It has been intervened. 11 is a condensing heat exchanger tube, and this heat exchanger tube 11 is connected to the feed water heater 5.
The medium is arranged in the vertical direction through each of the four beds 6, and the medium supplied from below the feed water heater 5 flows upward in the heat exchanger tubes 11. As the medium, for example, pure water, which does not easily precipitate scale or sludge, is used. Reference numeral 12 denotes a waste water heater, which is used to preheat the waste water to be supplied to the evaporator 1 using the thermal energy of pure water led from the upper part of the feed water heater 5. is led to the lower part of the feed water heater 5. Sewage heater 1
As the heat exchanger 2, a heat exchanger that is easy to clean is used, such as a plate heat exchanger or a tubular heat exchanger equipped with a sponge ball cleaning mechanism. 13 is a pump for circulating pure water. Reference numeral 14 denotes a pump connected to the condensate reservoir at the bottom of the uppermost feedwater heating chamber 7a, and external steam supplied from a boiler or the like heats the pure water flowing through the heat exchanger tubes 11 in the uppermost feedwater heating chamber 7a. The condensed water is returned by this bomb 14 to a steam supply source such as a boiler. Reference numeral 15 denotes a pipe line that communicates the upper and lower adjacent feed water heating chambers 7 with each other, and the pipe line 15 is connected to the lower part of the upper feed water heating chamber 7 and the upper part of the lower feed water heating chamber 7. 16 is a valve whose one end is connected to each feed water heating chamber 7 and the other end is connected to a vacuum bong, and the pressure in each feed water heating chamber 7 is lowered by the valve 10.Next, the operation of the above structure will be explained. After being heated by the sewage heater 12, the sewage supplied to the uppermost water chamber 3a of the evaporator 1 flows down into the lower evaporation chamber 3 through the nozzle 4 provided on the floor 2 of the water chamber 3a. , flash evaporates in the lower evaporation chamber 3. The generated steam is guided to the adjacent feed water heating chamber 7 via the mist separator 10, and is condensed by the heat exchanger tube 11 in the feed water heating chamber 7 to become water. The sewage whose moisture level has increased by the amount of water that has evaporated is led from the nozzle 4 on the floor 2 to the evaporation chamber 3 on the lower stage, where it flash-evaporates again, and the generated steam passes through the mist separator 10 to the adjacent water supply heating chamber. 7, condenses in the heat transfer tube 11 and becomes water.The wastewater, which has increased in volume due to repeated flash evaporation, is discharged as concentrated wastewater via the pump 17 and valve 18, and the water can be recovered. If there is not enough water, the water is led back to the evaporator 1 via the valve 19.The water generated in each feed water heating chamber 7 is led to the lower feed water heating chamber 7 through the pipe 15, and It is recovered from the heating chamber 7 via the pump 20 and used for various purposes.The pure water flowing upward in the heat transfer tube 11 is heated by the flash on the outer surface of the wire tube 11, and the steam loses latent heat. The pure water is discharged and becomes condensed water.After being self-heated to the high-temperature stage and gradually raised in temperature, it is heated in the feed water heating chamber 7a of the top stage with steam supplied from an external heat source such as a boiler, and the temperature rises roughly. The heated pure water heats the waste water in the waste water heater 12. In this way, in the above embodiment, the pure water flowing inside the heat transfer tube 11 is preheated by the heat generated by the condensation of the flash steam, and is finally sent to the boiler, etc. The heated purified water is heated by steam supplied from an external heat source, and heated by the sewage heater 12, so that the sewage with a high temperature of 7 degrees can be supplied to the evaporator 1, so that the sewage can be efficiently processed. Flash evaporation can be carried out. Fig. 2 shows another embodiment of the present invention, in which 21 is an evaporator, and the inside of the evaporator 21 has a floor 22 and three levels of water chambers 23a, upper and lower.
, evaporation chambers 23b and 23c, and each of the evaporation chambers 23b and 23c is evacuated to a lower pressure. Each floor 22 has respective evaporation chambers 23h adjacent to each other above and below. A nozzle 24 communicating with 23c is attached. 25 is a feed water heater, and the inside of the feed water heater 25 is a floor 26.
The water supply heating chamber 27a and 27b are divided into three upper and lower stages, and the upper water supply heating chamber 27a and the water 23a at the top stage are adjacent to each other with a partition wall 28 in between. Reference numeral 29 denotes a partition wall having a mist separator 30 attached thereto with a size that allows passage of steam, and the partition wall 29 is interposed between the lower-stage feed water heating chamber 27b and the middle-stage evaporation chamber 23h. 31 is a condensing heat exchanger tube, and this heat exchanger tube 31 is connected to the feed water heater 2.
The deionized water supplied from below the feed water heater 25 flows upward through the heat transfer tubes 31 . Reference numeral 32 denotes a wastewater heater, which is used to preheat the wastewater to be supplied to the evaporator 21 using the thermal energy of pure water led from the upper part of the feedwater heater 25. is fed 59 to the bottom of the feed water heater 25. As the sewage heater 32, a heat exchanger that is easy to clean is used, such as a plate heat exchanger or a tubular heat exchanger with a cleaning attachment attached to a sponge ball. 33 is a pump for circulating pure water. 34 is a steam chamber, and this steam chamber 34 and the lowest evaporation chamber 23c
are partitioned by a wall 3G equipped with a mist separator 35 that allows passage of steam. Reference numeral 31 denotes a steam ejector, and the steam led from the steam chamber 34 to the steam ejector 37 is heated and pressurized by steam supplied from an external heat source such as a boiler, and then is sent together with the steam to the upper feedwater heating chamber 27a. supplied to 38 is a pipe, one end of which is connected to the lower part of the upper feed water heating chamber 27a, and the other end to the lower feed water heating chamber 27b.
Some are connected to each other. Next, the operation in the ":" configuration will be explained. After being heated by the wastewater heater 32, the wastewater supplied to the ice chamber 23a at the top of the evaporator 21 flows down to the evaporation chamber 23tl through the nozzle 24 provided on the floor 22 of the water chamber 23a, and flows into the evaporation chamber 23b. evaporate with flash. The generated steam passes through the mist separator 30 to the adjacent feed water heating chamber 2.
7b, and is condensed into water by the heat transfer tube 31 in the water supply heating chamber 27b. The sewage, whose concentration has increased by the amount of water that has evaporated, flows from the nozzle 24 on the floor 22 to the evaporation chamber 2 on the lower side.
3c and flash evaporates again. The generated steam passes through the mist separator 35 and the steam chamber 34, enters the suction section of the steam ejector 37, and is compressed in the ejector 37 by the steam led from the boiler, etc., and is heated and pressurized. The purified water is guided to the upper water supply heating chamber 27a and condensed, and the heat from the condensation heats the pure water flowing inside the heat exchanger tubes 31. The water generated in the feed water heating chamber 27a is led to the lower feed water heating chamber 27b via a pipe line 38, and is recovered together with the water generated in the feed water heating chamber 27b via a pump 41 and supplied for various uses. be done. The wastewater with an increased waterfall 1α due to flash evaporation of water in the middle and lower evaporation chambers 23b and 23c is pumped to a pump 42.
, and is discharged as concentrated waste water via valve 39, and is led back to evaporator 21 via valve 40 when the moisture recovery is not sufficient. The pure water flowing upward inside the heat exchanger tube 31 is heated by the steam on the outer surface of the wire tube 31 to raise its temperature, and then the upper stage side feed water is heated?
The pure water heated in 27a and heated to an armpit temperature is used to heat wastewater in a wastewater heater 32. In this way, in the embodiment mentioned above, the pure water flowing through the heat exchanger tube 11 is compressed by the heat generated when the flash steam condenses, the steam supplied from an external heat source such as a boiler, and the vapor compressed by the ejector. The heated pure water is heated by the heated and pressurized flash steam, and the heated waste water is heated in the waste water heater 32, so that highly warm and intoxicating waste water can be supplied to the evaporator 21, so that the waste water can be flash-evaporated efficiently. be able to. In addition, in the example described in "-", the flash steam was compressed by a vapor compressor with an ejector set using a steam ejector 37.
Mechanical vapor compressors can also be used. As described in detail, according to the present invention, wastewater is flash-evaporated in the evaporation chamber, and the generated steam is condensed by the heat transfer tube through which a medium that is difficult to deposit scale and sludge flows. It is possible to prevent an increase in the heat transfer resistance of the tube wall due to the adhesion of deposited scale and sludge on the wall surface of the heat tube, thereby making it possible to downsize the device and enable long-term continuous operation. Furthermore, a double grooved tube or the like having good heat transfer characteristics can be used as the heat transfer tube disposed in the feed water heater, so that the device can be downsized. In the embodiment, a stacked structure of the feed water heater and the evaporation chamber has been described, but the feed water heater and the evaporation chamber may be arranged horizontally to perform flash evaporation. 4. Brief Description of the Drawings FIG. 1 is an overall configuration diagram showing one embodiment of the present invention, and FIG. 2 is an overall configuration diagram of another embodiment.
Claims (1)
の蒸発室に仕切る床を設け、該床に前記隣接する蒸発器
に連通するノズルを設け、前記各蒸発室を減圧するポン
プを設け、前記各蒸発室からの蒸気がそれぞれ導かれる
給水加熱室を上下多段に形成した給水加熱器を設け、該
給水加熱器内に凝縮用伝熱管を配設するとともに、該伝
熱管内にスケールやスラッジの析出しにくい媒体を導い
たことを特徴とする蒸発装置。1. A floor is provided to partition the inside of the evaporator into which wastewater is supplied from above into upper and lower multistage evaporation chambers, a nozzle communicating with the adjacent evaporator is provided on the floor, and a pump is provided to reduce the pressure in each of the evaporation chambers. , a feed water heater is provided in which feed water heating chambers are formed in upper and lower multi-stages to which the steam from each evaporation chamber is guided, a condensing heat exchanger tube is disposed in the feed water heater, and scale and An evaporator characterized by introducing a medium in which sludge does not easily precipitate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26472584A JPS61141986A (en) | 1984-12-14 | 1984-12-14 | Evaporation apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26472584A JPS61141986A (en) | 1984-12-14 | 1984-12-14 | Evaporation apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61141986A true JPS61141986A (en) | 1986-06-28 |
Family
ID=17407310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26472584A Pending JPS61141986A (en) | 1984-12-14 | 1984-12-14 | Evaporation apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61141986A (en) |
-
1984
- 1984-12-14 JP JP26472584A patent/JPS61141986A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101352828B1 (en) | Membrane distillation process and membrane distillation device | |
US3161574A (en) | Still having thin resinous heat transfer surfaces | |
US5133837A (en) | Dimpled plate multi-stage flash evaporator | |
US1006197A (en) | Means for removing incrustations of calcium sulfate from brine-heating surfaces. | |
US5139620A (en) | Dimple plate horizontal evaporator effects and method of use | |
US3300392A (en) | Vacuum distillation including predegasification of distilland | |
US3487873A (en) | Multiple effect flash evaporator | |
DK143269B (en) | SEA DISPOSAL DEVICE | |
US3961658A (en) | Sea water desalination apparatus | |
US5232556A (en) | Water desalination apparatus | |
JPS61141986A (en) | Evaporation apparatus | |
WO2007032220A1 (en) | Evaporator | |
US1582066A (en) | Process of and apparatus for multiple-effect evaporative separation | |
JP3865217B2 (en) | Evaporator | |
JPH06198102A (en) | Vertical column type evaporator | |
CN1387931A (en) | Multi-effect self-descending membrane-pipe type alumina liquid evaporating process | |
JPH0549802A (en) | Can effective in horizontal vaporizing device by plate heat exchanger of irregular surface type | |
IL24856A (en) | Evaporators for distillation of sea water and other liquids | |
JPH06162B2 (en) | Multiple effect evaporator | |
US230333A (en) | Alcohol-still | |
US1105443A (en) | Multiple-effect evaporating apparatus. | |
US4265701A (en) | Liquid concentration method | |
US464389A (en) | Vacuum evaporating apparatus | |
US554916A (en) | Vacuum-pan | |
US341843A (en) | Apparatus for saccharine and other juices |