JPH06162B2 - Multiple effect evaporator - Google Patents

Multiple effect evaporator

Info

Publication number
JPH06162B2
JPH06162B2 JP17166085A JP17166085A JPH06162B2 JP H06162 B2 JPH06162 B2 JP H06162B2 JP 17166085 A JP17166085 A JP 17166085A JP 17166085 A JP17166085 A JP 17166085A JP H06162 B2 JPH06162 B2 JP H06162B2
Authority
JP
Japan
Prior art keywords
effect
heat transfer
stage
seawater
cans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17166085A
Other languages
Japanese (ja)
Other versions
JPS6233501A (en
Inventor
勇 辰野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SASAKURA KK
Original Assignee
SASAKURA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SASAKURA KK filed Critical SASAKURA KK
Priority to JP17166085A priority Critical patent/JPH06162B2/en
Publication of JPS6233501A publication Critical patent/JPS6233501A/en
Publication of JPH06162B2 publication Critical patent/JPH06162B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、海水等から淡水を蒸発によって製造するため
の多重効用蒸発装置の改良に関するものである。
TECHNICAL FIELD The present invention relates to an improvement of a multiple-effect evaporation device for producing fresh water from seawater or the like by evaporation.

〔従来の技術〕[Conventional technology]

海水等から淡水を蒸発によって製造するための多段蒸発
装置には、例えば特開昭54−18469公報等に記載
されているような多段フラッシュ蒸発装置と、例えば特
公昭49−29070号公報とか特開昭50−2098
1号公報等に記載されているような多重効用蒸発装置と
があるが、一般に後者の多重効用蒸発装置は、前者の多
段フラッシュ蒸発装置に比べて設備費が安価で且つ消費
電力が少なく、しかも自動制御が容易である等の利点を
有することから、中小規模の淡水化設備に多く使用され
ている。
Examples of a multi-stage evaporator for producing fresh water from seawater by evaporation include a multi-stage flash evaporator as described in JP-A-54-18469 and JP-B-49-29070. 50-5098
There is a multiple-effect evaporator as described in Japanese Patent Publication No. 1 or the like, but generally, the latter multiple-effect evaporator has lower equipment cost and lower power consumption than the former multi-stage flash evaporator, and Since it has advantages such as easy automatic control, it is often used in small and medium-sized desalination facilities.

そして、この多重効用蒸発装置は、前記特開昭49−2
9070号公報及び特開昭50−20981号公報等に
記載されているように、複数個の効用缶を隣接して形成
し、各効用缶内には、水平方向に延びる多数本の伝熱管
を各々配設すると共に、該伝熱管の外側面に対して海水
(ブライン)を散布するための散布手段を各々設け、前
記各効用缶のうち最高温度の第1段効用缶における伝熱
管の外側に当該第1段効用缶における散布手段にて散布
した海水を、次の段における伝熱管の外側に散布手段に
て散布するようにする一方、前記第1段効用缶における
伝熱管内に加熱蒸気を導入して加熱源とし、第1段効用
缶を除く効用缶における伝熱管内には、前の段における
効用缶の伝熱管の外側において発生した蒸気を導入して
加熱源とし、各段の効用缶における伝熱管内での凝縮水
を淡水として取り出すように構成されている。
This multiple-effect evaporator is disclosed in the above-mentioned Japanese Patent Laid-Open No. 49-2.
As described in Japanese Patent No. 9070 and Japanese Patent Application Laid-Open No. 50-20981, a plurality of effect cans are formed adjacent to each other, and a large number of heat transfer tubes extending in the horizontal direction are provided in each effect can. Each of them is provided with a spraying means for spraying seawater (brine) on the outer surface of the heat transfer tube, and is provided outside the heat transfer tube in the highest temperature first stage effect can among the effect cans. The seawater sprayed by the spraying means in the first-stage effect can is sprayed by the spraying means to the outside of the heat transfer tube in the next stage, while heated steam is placed in the heat-transfer tube in the first-stage effect can. Introduced as a heating source, the steam generated outside the heat transfer tube of the effect can in the previous stage is introduced into the heat transfer tube of the effect can excluding the first-stage effect can as a heating source, and the effect of each stage The condensed water in the heat transfer tube of the can is taken as fresh water. It is configured in Suyo.

そして、前記両公報に記載されている多重効用蒸発装置
は、いずれも海水(ブライン)を各効用缶における伝熱
管の外側面に対して散布手段によつて散布することによ
って、伝熱管の外側面に海水の薄い液膜を形成し、海水
をこの薄い液膜の状態で沸騰蒸発さすことから、一般的
に薄膜式と言われている。
Further, in the multiple effect evaporators described in both the above-mentioned publications, the outer surface of the heat transfer tube is sprayed by spraying seawater (brine) onto the outer surface of the heat transfer tube in each effect can by a spraying means. A thin liquid film of seawater is formed on the seawater, and seawater is boiled and evaporated in the state of this thin liquid film.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

この薄膜式の多重効用蒸発装置は、伝熱管の外側面にお
いて海水を薄い液膜の状態で沸騰蒸発させるために、伝
熱管を海水中に浸漬したいわゆる液浸式に比べて熱伝達
が良好で高い伝熱係数が得られる利点を有する反面、伝
熱管の外側面に対してスケールが発生し易く、特にこの
スケール生成は温度に比例して著増するから、以下に述
べるように第1段効用缶の温度を高くすることができ
ず、従って第1段効用缶と最終段効用缶との間の温度差
を大きくできないに問題がある。
This thin-film multi-effect evaporator evaporates seawater in a thin liquid film state on the outer surface of the heat transfer tube by boiling, so that it has better heat transfer than the so-called immersion type in which the heat transfer tube is immersed in seawater. Although it has the advantage that a high heat transfer coefficient can be obtained, scale is likely to occur on the outer surface of the heat transfer tube. In particular, this scale generation increases remarkably in proportion to temperature. There is a problem in that the temperature of the can cannot be increased and therefore the temperature difference between the first effect can and the last effect can cannot be increased.

すなわち、散布手段にて伝熱管の外側面に海水の薄い液
膜を形成する場合、液膜の厚さは散布手段における異物
等による詰りや圧力変動等により均一にならず極端に薄
くなる部分ができたり、伝熱管の外側面に液膜の欠損部
分ができたりし、この部分では海水の局部的な過濃縮が
行なわれるから、伝熱管の外側面に対するスケールの生
成については厳しい環境となり、これに加えて伝熱管の
外側面に対するスケールの生成は、温度に比例して増大
する傾向にあるから、各効用缶における伝熱管の外側面
に生成するスケールは、温度が高い第1段効用缶の伝熱
管において最も顕著になる。
That is, when a thin liquid film of seawater is formed on the outer surface of the heat transfer tube by the sprinkling means, the thickness of the liquid film is not uniform due to clogging by foreign matter or pressure fluctuations in the sprinkling means, and there is a portion that becomes extremely thin. Or the liquid film is missing on the outer surface of the heat transfer tube, and local overconcentration of seawater occurs in this area, which creates a severe environment for scale formation on the outer surface of the heat transfer tube. In addition, since the scale formation on the outer surface of the heat transfer tube tends to increase in proportion to the temperature, the scale produced on the outer surface of the heat transfer tube in each effect can has a higher temperature than that of the first stage effect can. Most noticeable in heat transfer tubes.

そこで、従来の薄膜式の多重効用蒸発装置においては、
その各効用缶のうち最も高温となる第1段効用缶の温度
をその伝熱管の外側面に対するスケール生成の安全性を
見込んで約70℃程度に設定しなければならないから、
海水の温度によって決定される最終段階効用缶の温度を
例えば40℃とすれば、従来汎用の多重効用蒸発装置
は、70℃−40℃=30℃程度の作動温度範囲で使用
されているのが実情である。
Therefore, in the conventional thin-film multiple-effect evaporator,
Since the temperature of the first-stage effect can, which is the highest temperature among the effect cans, must be set to about 70 ° C. in consideration of the safety of scale formation on the outer surface of the heat transfer tube,
If the temperature of the final-stage effect can determined by the temperature of seawater is 40 ° C., for example, a conventional general-purpose multiple-effect evaporator is used in an operating temperature range of 70 ° C.-40 ° C. = 30 ° C. It's a reality.

しかし、このように作動温度範囲が30℃程度である
と、各効用缶相互間の温度差が小さくなるから、この分
だけ各効用缶における伝熱管の伝熱面積を増大しなけれ
ばならず蒸発装置が大型化し、且つ、製造コストが上昇
するのであり、しかも、造水比(加熱蒸気に対する製造
淡水の割合)を上げるために、効用缶の段数を増加する
ことができないのであつた。
However, when the operating temperature range is about 30 ° C. as described above, the temperature difference between the effect cans becomes small. Therefore, the heat transfer area of the heat transfer tube in each effect can must be increased by this amount. This is because the size of the apparatus is increased and the manufacturing cost is increased, and moreover, the number of effect cans cannot be increased in order to increase the ratio of fresh water (the ratio of the fresh water produced to the heated steam).

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記先行技術の多重効用蒸発装置において、
その各効用缶のうち温度の高い一部の効用缶に対し、そ
の伝熱管を海水中に浸漬するようにした液浸式を適用す
ることによって、前記の問題を解消するものである。
The present invention provides the above-mentioned prior art multi-effect evaporator,
The above problem is solved by applying the liquid immersion type in which the heat transfer tube is immersed in seawater to some of the effect cans having a high temperature among the effect cans.

すなわち本発明は、複数個の効用缶を隣接して形成し、
各効用缶内には多数本の伝熱管を各々配設し、最高温度
の第1段効用缶における伝熱管内には加熱蒸気を供給
し、該第1段効用缶以外の効用缶における伝熱管内に
は、前の段の効用缶で発生した蒸気を導入するようにし
た多重効用蒸発装置において、前記第1段効用缶を含め
て温度の高い効用缶における伝熱管を海水中に浸漬する
液浸式に、残りの他の効用缶における伝熱管を、その外
側面に対して海水を散布手段にて散布する薄膜式に各々
構成したことを特徴とするものである。
That is, the present invention forms a plurality of effect cans adjacent to each other,
A large number of heat transfer tubes are arranged in each effect can, and heating steam is supplied into the heat transfer tubes of the first-stage effect can having the highest temperature to transfer heat to effect cans other than the first-stage effect can. In a multiple-effect evaporator in which steam generated in the effect can of the previous stage is introduced into the pipe, a liquid for immersing the heat transfer pipe in the effect can of high temperature including the first-stage effect can into seawater. It is characterized in that the heat transfer tubes in the remaining other effect cans are formed in a thin film method in which seawater is sprayed onto the outer surface thereof by a spraying means.

〔発明の作用・効果〕[Operation and effect of invention]

このように第1段効用缶を含めて温度の高い効用缶にお
ける伝熱管を、海水中に浸漬した液浸式に構成したこと
により、温度の高い効用缶における伝熱管では、通常そ
の外側面での海水の沸騰蒸発は起らず、海水の沸騰蒸発
はその液面において起こる一方、海水中に浸漬した伝熱
管の外側面に薄膜式の場合のように伝熱管の外側面に乾
き部分が部分的に生じ局部的な濃縮が発生することがな
いから、当該伝熱管の外側面に、海水の加熱蒸発に伴っ
て生成するスケールの量は薄膜式に比べて著しく少なく
なる。従って、この分だけ第1段効用缶の温度を、従来
の設定温度よりも高くすることができる。一方、残りの
他の効用缶つまり温度の低い効用缶における伝熱管を、
その外側面に対して海水を散布手段にて散布するように
した薄膜式に構成したことにより、温度の低い効用缶で
は、熱伝達が良好で高い伝熱係数が得られ、且つ最終段
効用缶の温度も低く維持できるのである。
In this way, the heat transfer tubes in the high temperature effect cans including the first-stage effect cans are configured by the immersion type soaked in seawater. The boiling evaporation of seawater does not occur, and the boiling evaporation of seawater occurs at the liquid surface, while the outer surface of the heat transfer tube immersed in seawater has a dry portion on the outer surface of the heat transfer tube as in the case of the thin film type. In this case, the amount of scale generated on the outer surface of the heat transfer tube due to the heating and evaporation of seawater is significantly smaller than that of the thin film type because the local condensation does not occur. Therefore, the temperature of the first-stage effect can can be made higher than that of the conventional set temperature by this amount. On the other hand, the remaining heat transfer tubes in other effect cans
By using a thin-film system in which seawater is sprayed to the outer surface by means of a spraying device, in the effect can with a low temperature, good heat transfer can be obtained with a high heat transfer coefficient, and the final stage effect can. The temperature can be kept low.

従って本発明によると、多重効用蒸発装置の第1段効用
缶の温度を、当該第1段効用缶及び高い温度の効用缶に
おける伝熱缶に対するスケールの生成を抑制した状態で
高い温度に設定できて、第1段効用缶と最終段効用缶と
の間の温度差、つまり多重効用蒸発装置の作動温度範囲
を拡大することができるから、各効用缶相互間の温度差
が大きくなり、各効効用缶における伝熱管の伝熱面積が
小さくなって蒸発装置を小型化できると共に、蒸発装置
の製造コストを低減できるのであり、しかも、多重効用
蒸発装置の作動温度範囲を拡大することができることか
ら、各効用缶の段数を多くして造水比の向上を図ること
ができる効果を有する。
Therefore, according to the present invention, the temperature of the first-stage effect can of the multiple-effect evaporator can be set to a high temperature while suppressing the generation of scale for the heat transfer can in the first-stage effect can and the high-temperature effect can. As a result, the temperature difference between the first-effect can and the last-effect can, that is, the operating temperature range of the multiple-effect evaporator can be expanded. Since the heat transfer area of the heat transfer tube in the effect can is reduced and the evaporator can be downsized, the manufacturing cost of the evaporator can be reduced, and moreover, since the operating temperature range of the multiple effect evaporator can be expanded, The effect is that the number of stages of each effect can is increased to improve the water production ratio.

〔実施例〕〔Example〕

以下本発明を堅型多重効用蒸発装置に適用した場合の実
施例を図面について説明すると、図において1は堅型多
重効用蒸発装置本体を示し、該本体1内には、複数枚の
水平仕切板2,3,4,にて上から第1段効用缶5、第
2段効用缶6、第3段効用缶7、及び凝縮室8に区成さ
れ、これら各効用缶5,6,7及び凝縮室8は、凝縮室
8に接続した蒸気エゼクター又は真空ポンプ等の抽気装
置9にて、上方から下方に順次低温・低圧になるように
維持されている。
An embodiment in which the present invention is applied to a rigid multiple-effect evaporator will now be described with reference to the drawings. In the figure, reference numeral 1 denotes a rigid multiple-effect evaporator main body, in which a plurality of horizontal partition plates are provided. 2, 3, 4, are divided into a first-stage effect can 5, a second-stage effect can 6, a third-stage effect can 7, and a condensing chamber 8 from the top, and these effect cans 5, 6, 7 and The condensing chamber 8 is maintained by a bleeder 9 such as a vapor ejector or a vacuum pump connected to the condensing chamber 8 so that the temperature and the pressure are sequentially lowered from the upper side to the lower side.

前記各効用缶5,6,7内には水平方向に延びる多数本
の伝熱管5a,6a,7aを、また、前記凝縮室8内に
は多管式の凝縮室8aを各々設ける一方、第1段効用缶
5の伝熱管5aに対する蒸気室5bに加熱用蒸気の供給
管10を接続し、第2段効用缶6の伝熱管6aに対する
蒸気通路6bに前記第1段効用缶5を、第3段効用缶7
の伝熱管7aに対する入口ヘッダー7bに前記第2段効
用缶6を、そして凝縮室8に前記第3段効用缶7を各々
連通する。
A large number of heat transfer tubes 5a, 6a, 7a extending in the horizontal direction are provided in each of the effect cans 5, 6, 7 and a multi-tube condensing chamber 8a is provided in the condensing chamber 8. The heating steam supply pipe 10 is connected to the steam chamber 5b for the heat transfer pipe 5a of the first-stage effect can 5, and the first-stage effect can 5 is connected to the steam passage 6b for the heat-transfer pipe 6a of the second-stage effect can 6. Three-stage effect can 7
The second-stage effect can 6 is connected to the inlet header 7b for the heat transfer tube 7a, and the third-stage effect can 7 is connected to the condensing chamber 8.

また、前記凝縮室8内の凝縮室8aに、海から海水ポン
プ11にて汲み上げた海水を供給し、該凝縮管8aから
排出される海水の大部分を管12より廃棄する一方、一
部の海水を給水ポンプ13にて前記第3段効用缶7の伝
熱管7aの蒸気通路7b内及び第2段効用缶の伝熱管6
aへの蒸気通路6b内に設けた給水予熱器14,15を
通したのち、海水供給管16より前記第1段効用缶5内
に供給する。この場合、前記給水ポンプ13から給水予
熱器14への管路17には、スケール防止剤の定量注入
装置18が設けられている。
Further, the seawater pumped from the sea by the seawater pump 11 is supplied to the condensing chamber 8a in the condensing chamber 8 and most of the seawater discharged from the condensing pipe 8a is discarded through the pipe 12, while a part of the seawater is discharged. The seawater is supplied to the steam passage 7b of the heat transfer pipe 7a of the third effect can 7 and the heat transfer pipe 6 of the second effect can by the water supply pump 13.
After passing through the water supply preheaters 14 and 15 provided in the steam passage 6b to the a, the water is supplied from the seawater supply pipe 16 into the first effect can 5. In this case, a pipe 17 from the water supply pump 13 to the water supply preheater 14 is provided with a scale injection device 18 for a scale inhibitor.

前記第1段効用缶5と第2段効用缶6とを区成する仕切
板2には、第1段効用缶5内の底に溜った未蒸発海水の
ブラインを、第2段効用缶6における伝熱管6aの外側
面に散布するための多数個の散布孔2aが、第2段効用
缶6と第3段効用缶7とを区成する仕切板3には、同様
に第2段効缶6内の底に溜るブラインを第3段効用缶7
における伝熱缶7aの外側面に散布するための多数個の
散布孔3aを各々設ける一方、前記第1段効用管5内の
底部には、複数の絞り孔19aを有する流量規制板19
を設けて、当該第1段効用缶5内における海水が伝熱管
5aの上部まで溜るように、換言すると、第1段効用缶
5内における海水の液面20を伝熱管5aが海水中に浸
漬する高さに保持するように構成する。この場合、第1
段効用缶5には、その缶内の最高水位を規制するための
オーバーフロー管21が設けられている。
On the partition plate 2 that defines the first-stage effect can 5 and the second-stage effect can 6, the un-evaporated seawater brine accumulated in the bottom of the first-stage effect can 5 is added to the second-stage effect can 6. In the partition plate 3 that divides the second-stage effect can 6 and the third-stage effect can 7 into a plurality of distribution holes 2a for distributing to the outer surface of the heat transfer tube 6a in the second-stage effect can 6 in the same manner. Brine that collects at the bottom inside is a third-stage effect can 7.
While a large number of spray holes 3a for spraying are provided on the outer surface of the heat transfer can 7a, the flow regulating plate 19 having a plurality of throttle holes 19a at the bottom of the first effect pipe 5 is provided.
So that the seawater in the first-stage effect can 5 accumulates up to the upper part of the heat transfer tube 5a. In other words, the liquid level 20 of seawater in the first-stage effect can 5 is immersed in the seawater by the heat transfer tube 5a. It is configured to be held at the desired height. In this case, the first
The effect can 5 is provided with an overflow pipe 21 for controlling the maximum water level in the can.

このように第1段効用缶5内に、その伝熱管5aが浸か
る高さまで溜った海水は、伝熱管5a内に供給管10よ
り供給された蒸気によつて加熱されて、その液面20に
おいて沸騰蒸発し、次いで未蒸発海水のブラインは前記
流量規制板19を経て仕切板2における散布孔2aから
第2段効用缶6における伝熱管6aの外側面に散布され
る一方、前記第1段効用缶5内で発生した蒸気は、気水
分離器22を通過し、蒸気通路6bを経て予熱器15内
の給水を予熱したのち第2段効用缶6における伝熱管6
a内に入って、該伝熱管6aの外側面に形成されている
薄膜状のブラインを加熱蒸発する。
In this way, the seawater accumulated in the first-stage effect can 5 to the height at which the heat transfer pipe 5a is immersed is heated by the steam supplied from the supply pipe 10 into the heat transfer pipe 5a, and at the liquid level 20 thereof. The brine that evaporates by boiling and then the non-evaporated seawater is sprayed from the spray holes 2a in the partition plate 2 to the outer surface of the heat transfer pipe 6a in the second effect can 6 while passing through the flow regulating plate 19 while the first effect is applied. The steam generated in the can 5 passes through the steam separator 22, preheats the feed water in the preheater 15 via the steam passage 6b, and then the heat transfer pipe 6 in the second effect can 6
Entering inside a, the thin-film brine formed on the outer surface of the heat transfer tube 6a is heated and evaporated.

第2段効用缶6の伝熱管6aの外側面により流下したブ
ラインは、仕切板3における散布孔3aから第3段効用
缶7における伝熱管7aの外側面に散布される一方、前
記第2段効用缶6内で発生した蒸気は、気水分離器23
を通過し蒸気通路7b経て予熱器14内の給水を予熱し
たのち第3段効用缶7における伝熱管7a内に入つて、
該伝熱管7aの外側面に形成されている薄膜状のブライ
ンを加熱蒸発する。
The brine flowing down by the outer surface of the heat transfer tube 6a of the second effect can 6 is sprayed from the spray holes 3a of the partition plate 3 to the outer surface of the heat transfer tube 7a of the third effect can 7, while the second step The steam generated in the effect can 6 is steam-water separator 23.
Through the steam passage 7b to preheat the feed water in the preheater 14 and then enter the heat transfer pipe 7a in the third-stage effect can 7.
The thin-film brine formed on the outer surface of the heat transfer tube 7a is heated and evaporated.

第3段効用缶7の伝熱管7aの外側面より流下したブラ
インは仕切板4の上面に溜ったのち、ブラインポンプ2
4にて系外に排出される一方、第3段効用缶7内で発生
した蒸気は、気水分離器25を通過したのち、凝縮室8
内に入り、凝縮管8aの外側面において凝縮したのち凝
縮室8の底に溜る。
The brine flowing down from the outer surface of the heat transfer tube 7a of the third-stage effect can 7 accumulates on the upper surface of the partition plate 4, and then the brine pump 2
4, the steam generated in the third-stage effect can 7 is discharged to the outside of the system, passes through the steam separator 25, and then is condensed in the condensing chamber 8
After entering the inside and condensing on the outer side surface of the condensing pipe 8a, it accumulates at the bottom of the condensing chamber 8.

また、前記各効用缶5,6,7の伝熱管5a,6a,7
aに対する各凝縮水室5c,6c,7c内には凝縮水が
溜り、この凝縮水は管26,27,28を経て前記凝縮
室8内に導いたのち、凝縮室8内の凝縮水と一緒に製造
水ポンプ29より製造淡水として取り出されるのであ
る。
Further, the heat transfer tubes 5a, 6a, 7 of the respective effect cans 5, 6, 7
Condensed water collects in each of the condensed water chambers 5c, 6c, 7c for a, and is introduced into the condensed chamber 8 through the pipes 26, 27, 28, and then together with the condensed water in the condensed chamber 8. First, it is taken out as fresh water from the manufacturing water pump 29.

以上のように第1段効用缶5における伝熱管5aを、海
水中に浸漬した液浸式に構成したことにより、当該伝熱
管5aの外側面に、海水の加熱蒸発に伴って生成するス
ケールの量を著しく少なくなり、従って、この分だけ第
1段効用缶5の温度を、従来の設定温度よりも高くする
ことができる。一方、第2段効用缶6及び第3効用缶7
における伝熱管6a,7aを、その外側面に対して海水
を散布孔2a,3aにて散布するようにした薄膜式に構
成したことにより、第2段効用缶6及び第3段効用缶7
における伝熱管6a,7aの熱伝達が良好で高い伝熱係
数が得られ、且つ第3段効用缶7の温度を低く維持でき
るのである。
As described above, the heat transfer tube 5a in the first-stage effect can 5 is configured to be a liquid immersion type that is immersed in seawater, so that the outer surface of the heat transfer tube 5a has a scale of scale generated by heating and evaporation of seawater. Since the amount is remarkably reduced, the temperature of the first-stage effect can 5 can be made higher than that of the conventional set temperature by this amount. On the other hand, the second effect can 6 and the third effect can 7
The second-stage effect can 6 and the third-stage effect can 7 are configured by the heat transfer tubes 6a and 7a in the above-mentioned structure being of a thin film type in which seawater is sprayed to the outer surfaces thereof at the spray holes 2a and 3a.
The heat transfer of the heat transfer tubes 6a and 7a is good, a high heat transfer coefficient is obtained, and the temperature of the third-stage effect can 7 can be kept low.

なお、前記実施例は、3段の多重効用蒸発装置におい
て、最高温度の第1段効用缶5における伝熱管5aのみ
を液浸式にした場合であったが、段数が多い場合には、
最高温度の第1段効用缶を含めて温度を高い複数段の効
用缶における伝熱管を液浸式にすれば良く、また、本発
明は、前記実施例の堅型多重効用蒸発装置に限らず、複
数の効用缶を横に並べた横型とか、例えば特公昭51−
19425号公報に記載されているように複数の効用缶
を2系列の堅型に並設したものにも適用できることは言
うまでもない、更にまた、前記実施例は、流量規制板1
9によって第1段効用缶5における液面20を高い位置
に保持する場合であつたが、これに代えて、複数のオー
バーフロー管21に第1段効用缶5の中途部とを繋ぐ液
面レベル調節用弁を備えたバイパス管路を設けることに
よって、所定の液面20を保持するようにしても良いの
である。
In the above-described embodiment, in the three-stage multiple-effect evaporator, only the heat transfer tube 5a in the first-stage effect can 5 having the highest temperature was immersed, but when the number of stages was large,
It suffices if the heat transfer tubes in a plurality of high-temperature effect cans, including the highest-temperature first-effect effect can, are of the immersion type, and the present invention is not limited to the rigid multiple-effect evaporator of the above embodiment. , A horizontal type in which a plurality of effect cans are arranged side by side, for example, Japanese Patent Publication No. 51-
It goes without saying that the invention can also be applied to a case where a plurality of effect cans are arranged side by side in a rigid manner of two series as described in Japanese Patent No. 19425. Furthermore, in the above-mentioned embodiment, the flow regulating plate 1
Although the liquid level 20 of the first-stage effect can 5 is held at a high position by means of 9, instead of this, the liquid-level level connecting the plurality of overflow pipes 21 to the middle part of the first-stage effect can 5. The predetermined liquid level 20 may be retained by providing a bypass line provided with a regulating valve.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の実施例を示す縦断正面図である。 1・・・多重効用蒸発装置本体、2,3,4・・・仕切
板、5・・・第1段効用缶、6・・・第2段効用缶、7
・・・第3段効用缶、5a,6a,7a・・・伝熱管、
16・・・海水供給管、2a,3a・・・散布孔、19
・・・流量規制板、20・・・・・・液面。
The drawing is a vertical sectional front view showing an embodiment of the present invention. 1 ... Multi-effect evaporator main body, 2, 3, 4 ... Partition plate, 5 ... First stage effect can, 6 ... Second stage effect can, 7
... Third-stage effect cans, 5a, 6a, 7a ... Heat transfer tubes,
16 ... Seawater supply pipe, 2a, 3a ... Spraying hole, 19
... Flow rate control plate, 20 ... Liquid level.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数個の効用缶を隣接して形成し、各効用
缶内には多数本の伝熱管を各々配設し、最高温度の第1
段効用缶における伝熱管内には加熱蒸気を供給し、該第
1段効用缶以外の効用缶における伝熱管内には、前の段
の効用缶で発生した蒸気を導入するようにした多重効用
蒸発装置において、前記第1段効用缶を含めて温度の高
い効用管における伝熱管を海水中に浸漬する液浸式に、
残りの他の効用缶における伝熱管を、その外側面に対し
て海水を散布手段にて散布する薄膜式に各々構成したこ
とを特徴とする多重効用蒸発装置。
1. A plurality of effect cans are formed adjacent to each other, and a large number of heat transfer tubes are arranged in each effect can, and the maximum temperature
Heating steam is supplied into the heat transfer tubes of the stage effect cans, and steam generated in the effect cans of the preceding stage is introduced into the heat transfer tubes of the effect cans other than the first stage effect can. In the evaporator, the heat transfer tube in the high temperature effect tube including the first-stage effect can is immersed in seawater,
A multi-effect evaporation device, characterized in that the heat transfer tubes in the remaining other effect cans are each of a thin film type in which sea water is sprayed to the outer surface thereof by a spraying means.
JP17166085A 1985-08-02 1985-08-02 Multiple effect evaporator Expired - Lifetime JPH06162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17166085A JPH06162B2 (en) 1985-08-02 1985-08-02 Multiple effect evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17166085A JPH06162B2 (en) 1985-08-02 1985-08-02 Multiple effect evaporator

Publications (2)

Publication Number Publication Date
JPS6233501A JPS6233501A (en) 1987-02-13
JPH06162B2 true JPH06162B2 (en) 1994-01-05

Family

ID=15927330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17166085A Expired - Lifetime JPH06162B2 (en) 1985-08-02 1985-08-02 Multiple effect evaporator

Country Status (1)

Country Link
JP (1) JPH06162B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323160B1 (en) * 2012-02-06 2013-10-30 강희자 Marine vertical multistage desalinator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000030167A (en) * 2000-01-26 2000-06-05 신정호 sea water desalination system
JP4139597B2 (en) * 2000-03-31 2008-08-27 株式会社荏原製作所 Desalination equipment
JP4982073B2 (en) * 2005-11-15 2012-07-25 日立造船株式会社 Brine supply method in evaporator for multi-effect fresh water generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323160B1 (en) * 2012-02-06 2013-10-30 강희자 Marine vertical multistage desalinator

Also Published As

Publication number Publication date
JPS6233501A (en) 1987-02-13

Similar Documents

Publication Publication Date Title
US6309513B1 (en) Desalination of seawater by evaporation in a multi-stack array of vertical tube bundles, with waste heat
WO2002032813A1 (en) Process and plant for multi-stage flash desalination of water
JPS63104604A (en) Multiple effective evaporator having evaporation type condenser having liquid evaporation effect
JPH04244202A (en) Multi-flash evaporator using plate heat exchanger of irregular surface type
US3856632A (en) Method and apparatus for producing a distillate
US3021265A (en) Multiple effect evaporating system
US3499827A (en) Distillation plant
CN103342397B (en) Energy-saving low-temperature multi-effect distillation sea water desalination method
CN202849193U (en) Multistage vacuum distillation seawater desalting device
CN100391570C (en) A multi-effect distilling method for desalt and condensation and device
JPH06162B2 (en) Multiple effect evaporator
US3961658A (en) Sea water desalination apparatus
DK143269B (en) SEA DISPOSAL DEVICE
WO2001072638A1 (en) Desalination device
US3444049A (en) Vertical multistage distillation apparatus
US3901768A (en) Distillation method and apparatus
CN101525196A (en) Multi-effect distilled seawater desalting plant with pre-heater
US4366027A (en) Device for distillation or concentration of a solution and more particularly for desalination of a saline solution such as sea water
JPS6111580A (en) Zero-point cooler
US4049502A (en) Method of and apparatus for distilling of liquids
CN1387931A (en) Multi-effect self-descending membrane-pipe type alumina liquid evaporating process
GB2084885A (en) Process for the concentration of aqueous glycol solutions
Schwartzberg Food property effects in evaporation
KR101567655B1 (en) TVC-MED having Non-condensible Gas Venting System
JPS61187985A (en) Production of clear water

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term