JPS61141934A - Method for determination of regeneration period of catalyst - Google Patents

Method for determination of regeneration period of catalyst

Info

Publication number
JPS61141934A
JPS61141934A JP59261747A JP26174784A JPS61141934A JP S61141934 A JPS61141934 A JP S61141934A JP 59261747 A JP59261747 A JP 59261747A JP 26174784 A JP26174784 A JP 26174784A JP S61141934 A JPS61141934 A JP S61141934A
Authority
JP
Japan
Prior art keywords
catalyst
packed bed
reaction rate
catalytic reaction
pressure loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59261747A
Other languages
Japanese (ja)
Inventor
Jiro Igaki
井垣 次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59261747A priority Critical patent/JPS61141934A/en
Publication of JPS61141934A publication Critical patent/JPS61141934A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PURPOSE:To determine a proper regeneration period by accurately detecting the lowering in catalytic activity, by judging not only the point of time when the catalytic reaction rate of a catalyst packed bed is reduced to a set value or less and the pressure loss of said catalyst packed bed reaches a set value or more but also the regeneration period. CONSTITUTION:Densitometers 2, 3 for measuring the concn. of NOx in exhaust gas and a differential pressure gauge 4 are provided to the upstream and downstream sides of a catalyst packed bed 1 to calculate the pressure loss P and catalytic reaction rate X of the catalyst packed bed 1. Then, the amount of exhaust gas is corrected to a usual average flow amount with respect to the pressure loss P of an experimental value and the ratio of NOx-concn. and the amount of the exhaust gas to the catalytic reaction rate X is corrected to a usual average value and denitration reaction temp. to usual average temp. to set the index of the lowering in catalytic activity. By this method, the lowering in the activity of the catalyst is certainly detected and the regeneration period thereof can be made adequate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はダストを含む気体を固体触媒充填層に通す、気
固系触媒反応機構における触媒再生時期の決定方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for determining catalyst regeneration timing in a gas-solid catalytic reaction mechanism in which a gas containing dust is passed through a solid catalyst packed bed.

〔従来の技術〕[Conventional technology]

ダストを含む気体を固体触媒充填層に通す不均一系触媒
反応は、均一系触媒反応と異なり、固体である触媒層と
気体である反応物相中の界面で反応が起こる。すなわち
反応は触媒表面上で2次元的に進行するため、気体中の
ダストか触媒表面に堆積することは、触媒活性を低下さ
せる原因となる。
A heterogeneous catalytic reaction in which a gas containing dust is passed through a solid catalyst packed bed differs from a homogeneous catalytic reaction in that the reaction occurs at the interface between the solid catalyst layer and the gaseous reactant phase. That is, since the reaction proceeds two-dimensionally on the catalyst surface, the accumulation of dust in the gas on the catalyst surface causes a decrease in the catalyst activity.

従って、見かけの触媒活性は気体の総lit ni、反
応物量、反応温度、反応時間等の反応条件が同一でも時
系列的に低下してくるので、従来から定期的に充填層の
底部から触媒を取り出しまた充填層の頂部より触媒を戻
すことにより堆積ダストを除去し触媒活性の回復を図る
触媒再生を実施している。
Therefore, the apparent catalytic activity decreases over time even if the reaction conditions such as the total lit ni of gas, the amount of reactants, the reaction temperature, and the reaction time are the same. Catalyst regeneration is performed by removing the catalyst and returning it from the top of the packed bed to remove accumulated dust and restore catalyst activity.

しかし、さまざまな反応条件の変動により、ダストの堆
積とそれに伴う触媒反応率の低下の度合は異なり、その
状況に応じて非定期的に触媒移動による再生を実施する
必要があるので、その触媒移動時期の決定方法が問題と
なっていた。
However, due to fluctuations in various reaction conditions, the degree of dust accumulation and the resulting reduction in catalyst reaction rate varies, and it is necessary to perform regeneration by catalyst transfer irregularly depending on the situation. The problem was how to determine the timing.

化学反応系においてまず第一に要求される目的因子は反
応率であるので、上述の反応系においても触媒反応率の
要求される最低の反応率以下になる可能性が見出された
時に、触媒再生を実施し、触媒活性の回復を図ることが
、合理的である。しかし他のプロセスと連結する工業的
規模のプロセスでは気体の総流′ill、反応物j−1
反応温度、反応11′;間等の反応条件がかなり変動す
るので、触媒充填層前後の反応物量より求められた実測
の触媒反応率は大きく変動しそのまま触媒1IIIl慴
の低下を示す指標とじて−・二I(的に判断することか
適当でない場合があった。そこで、考え得るすべての反
応条件の変動に対して実AI’lの触々V、反応率を補
正する心安が生じる。
In a chemical reaction system, the first objective factor required is the reaction rate, so even in the above-mentioned reaction system, when it is found that the catalytic reaction rate may be lower than the required minimum reaction rate, the catalyst It is reasonable to carry out regeneration and try to recover the catalyst activity. However, in industrial-scale processes that are connected to other processes, the total flow of gas 'ill, reactant j-1
Since the reaction conditions such as reaction temperature and reaction time vary considerably, the actual catalytic reaction rate determined from the amount of reactants before and after the catalyst packed bed fluctuates greatly and can be used as an indicator of a decline in catalyst 1III1.・There were cases where it was not appropriate to make an objective judgment.Therefore, it was a good idea to correct the actual AI's reaction rate against all possible fluctuations in the reaction conditions.

しかし、触媒反応率を補正したとしても、第5図(a)
の点5に示されるように、ダス[・が反応器中にあまり
堆積しておらず、真の触媒反応イlはそれ程低下してい
ないにもかかわらず、見かけ−1−一時的に触媒反応率
が異常に低下することにより、触媒移動時期と判断する
可能性がある。また逆に第5図(b)の点6に示される
ようにダストが反応器中に多量に堆積して、真の触媒反
応率がかなり低下しているにもかかわらず、補正を加え
なかった変動因子により見かけ上、一時的に触媒反応率
が向」−することにより、触媒移動時期と判断しない可
能性かある。
However, even if the catalytic reaction rate is corrected, Fig. 5(a)
As shown in point 5, even though Das[• has not accumulated much in the reactor and the true catalytic reaction Il has not decreased significantly, the apparent −1−temporary catalytic reaction If the rate drops abnormally, it may be determined that it is time to move the catalyst. Conversely, as shown at point 6 in Figure 5(b), a large amount of dust was deposited in the reactor, and even though the true catalytic reaction rate was considerably reduced, no correction was made. There is a possibility that the catalytic reaction rate appears to temporarily increase due to fluctuation factors, so that it may not be determined that it is time to move the catalyst.

すなわち、I’i!l!媒反応率は多くの要因に基つく
変動が多く、触媒反応率のみを指標として触媒再生を行
うと、必ずしも適11−でない場合やI’ll断に迷う
場合がJJ々あった。
In other words, I'i! l! The catalyst reaction rate is subject to many fluctuations based on many factors, and when catalyst regeneration is performed using only the catalyst reaction rate as an index, there are cases where it is not always appropriate or there are cases where it is difficult to make a decision.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで本発明は、多数の変動因子の影響を受けるIll
!l!々y、反応率とは別の、タス)・の堆JJiに伴
う触媒活性の低下を示す指標を(JI用することにより
、触媒反応率だけでは不11ミ確であった情報をより正
確に判足し、ダストの堆積に伴う触媒活性の低ドを確実
正確に検知して、通雨な触媒再生時期を決定することを
1」的とする。
Therefore, the present invention aims to solve the problem of Ill.
! l! By using an index (JI) indicating the decrease in catalytic activity due to the catalytic reaction rate, which is different from the reaction rate, it is possible to obtain more accurate information that was inaccurate based on the catalytic reaction rate alone. The objective is to reliably and accurately detect low levels of catalyst activity due to dust accumulation and to determine the appropriate timing for catalyst regeneration.

〔問題点を解決するための手段〕[Means for solving problems]

第2図に示すようしこ、触媒充填層中の堆積ダストjj
+Wが増すにつれて変化する指標として、増大する充填
層における圧力損失ΔPをとった。第1図に示すように
、圧力損失ΔPに対する設定値としてΔPsを設け、ま
た低下する触媒反応率Xに対する設定値としてXsを設
け、ΔPかΔPs以上になり、かつXがXs以下になる
ことを触媒移動の決定条件とすることにより、タストの
堆積程度とタストの堆積に伴う触媒反応率の低下の度合
に応した効率的な触媒活性の回復時期の確実で効率のよ
い判定を達成することが出来る。なお触媒反応率X及び
充填層圧力損失ΔP、は実Wlll値に対して、気体の
総流量、反応物量、反応温度、反応時間等の補止を加え
たものである。
As shown in Figure 2, accumulated dust in the catalyst packed bed
The increasing pressure loss ΔP in the packed bed was taken as an index that changes as +W increases. As shown in Fig. 1, ΔPs is set as a set value for the pressure loss ΔP, and Xs is set as a set value for the decreasing catalytic reaction rate X. By using this as a determining condition for catalyst movement, it is possible to achieve a reliable and efficient determination of the timing of efficient recovery of catalyst activity according to the degree of tast accumulation and the degree of decrease in catalyst reaction rate due to tast accumulation. I can do it. Note that the catalytic reaction rate X and the packed bed pressure loss ΔP are obtained by adding corrections such as the total flow rate of gas, the amount of reactants, the reaction temperature, and the reaction time to the actual Wlll value.

第3図に示すように気固系触媒反応のだめの触媒充填層
1の前後に気体中の反応物濃度用足用の濃度計2.3お
よび差圧計4を設け、その触媒充填層1の圧力損失ΔP
および触媒反応率Xを求める。そして実測値の圧力損失
ΔPおよび触媒反応率Xに対して気体の総流量、反応物
量、反応温度、反応時間等の反応条件の変動に対する補
正を加え、圧力損失ΔPおよび触媒反応率Xをダストの
堆積状況およびそれに伴う触媒活性の低下の指標とする
As shown in FIG. 3, a concentration meter 2.3 for measuring the concentration of reactants in the gas and a differential pressure gauge 4 are provided before and after the catalyst packed bed 1 for the gas-solid catalytic reaction, and the pressure of the catalyst packed bed 1 is provided. Loss ΔP
and the catalytic reaction rate X. Then, corrections are made to the actual measured values of pressure drop ΔP and catalytic reaction rate It is used as an indicator of the deposition status and the resulting decrease in catalyst activity.

それから第1図のように圧力損失ΔP、触媒反応率Xに
各々設定(+fiΔPs、Xsを定め、前回の触媒移動
(図中のMvは触媒移動期間を示す。)により減少した
圧力損失ΔP、増大した触媒反応率Xが次の(1)、(
2)式を同時に満たした時点で触媒再生時期と判定する
Then, as shown in Figure 1, set the pressure loss ΔP and the catalytic reaction rate X (+fiΔPs, The catalytic reaction rate X is as follows (1), (
2) When the equations are satisfied at the same time, it is determined that it is time to regenerate the catalyst.

ΔP≧ΔPs         ・・・(1)X≦Xs
           ・・・(2)なお第1図(a)
はまず式(2)の条件が41′へたされ、次に式(1)
の条件が満たされた場合を示し、(b)は、まず式(1
)の条件が猫だされ、次に式(2)の条件が満たされる
場合を示し、(C)は式(1)、(2)の条件がほぼ同
時に満だぶれる場合を示している。
ΔP≧ΔPs ... (1) X≦Xs
...(2) In addition, Fig. 1 (a)
First, the condition of equation (2) is applied to 41', and then equation (1)
(b) shows the case where the condition of
) is shown, and then the condition of equation (2) is satisfied, and (C) shows the case where the conditions of equations (1) and (2) are satisfied almost at the same time.

〔実施例〕〔Example〕

第3図に示すプロセスを用い、排ガスにNH3を添加し
て、す1ガスを触媒充填層1を通過させ、排ガス中のN
Oxを還元除去する排煙脱硝処理する際に、触媒充填層
の前後に排ガス中のNOx濃度を測定するための濃度計
2.3および差圧計4を設け、その触媒充填層1の圧力
損失ΔPおよび触媒反応イXXを求めた。 そして実測
値の圧力損失ΔPに対してυ1ガス量を通常の平均流量
(30万Nm’/hr)に補正し、触媒反応率Xに対し
てN Ox 9度と排ガス量の比を通常の平均値(4p
 p m/ 10’ Nm’ h r−1)に、脱硝反
応温度を通常の平均温度(230’(りに補正し、圧力
損失ΔPおよび触媒反応率Xをダストの堆積状況および
それに伴う触媒活性の低下の指標とした。
Using the process shown in FIG.
When performing exhaust gas denitrification treatment to reduce and remove Ox, a concentration meter 2.3 and a differential pressure gauge 4 are installed before and after the catalyst packed bed to measure the NOx concentration in the exhaust gas, and the pressure loss ΔP of the catalyst packed bed 1 is measured. and the catalytic reaction IXX were determined. Then, the υ1 gas amount is corrected to the normal average flow rate (300,000 Nm'/hr) for the actually measured pressure loss ΔP, and the ratio of NOx 9 degrees and exhaust gas amount to the catalytic reaction rate X is adjusted to the normal average flow rate. Value (4p
p m/10'Nm' h r-1), the denitrification reaction temperature was corrected to the normal average temperature (230'), and the pressure drop ΔP and catalytic reaction rate This was used as an indicator of decline.

それから第4図のように圧力損失ΔP、触媒反応率Xの
設定値ΔP s 、 X sをそれぞれ25(mmH2
0) 、82 (%)に定め、1((1回の触媒移動に
より減少した圧力損失ΔPおよび増大した触媒反応率X
が次の2式を同時に満たした時点を触媒移動時期と決定
した。
Then, as shown in Fig. 4, the set values ΔP s and X s of the pressure loss ΔP and the catalytic reaction rate
0), 82 (%), and 1(((decreased pressure drop ΔP and increased catalytic reaction rate
The time when the following two equations were simultaneously satisfied was determined as the catalyst transfer time.

ΔP≧25         ・・・(3)X≦82 
         ・・・(4)これにより、触媒の再
生時期を誤りなく判断できるようになった。
ΔP≧25...(3)X≦82
(4) As a result, it is now possible to determine the timing of catalyst regeneration without error.

〔発明の効果〕〔Effect of the invention〕

本発明によって、触媒の活性低下が確実に検知されるか
ら、再生に供する時期を適切にすることができる。
According to the present invention, since a decrease in the activity of the catalyst is reliably detected, it is possible to appropriately time the regeneration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の触媒移動の実施例を示すグラ
フ、第2図は触媒層におけるダスト堆積量、圧力損失お
よび触媒反応率の変化を示すグラフ、第3図は本発明の
適用される触媒充填層と反応物濃度計、差圧計の構成を
示すブロック図、第4図は触媒層におけるダスト堆積量
、圧力損失および触媒反応率の一般的関係を示すグラフ
、第5図は触媒反応率の変動の及ぼす影響を説明する説
明図である。 W・・・触媒充填層におけるダスト堆積量、ΔP・・・
触媒充填層における圧力損失、X・・・触媒反応率、M
v・・・触媒移動期間、ΔPs・・・ΔPの設定値、X
s・・・Xの設定値、1・・・触媒充填層、2.3・・
・濃度計、4・・・差圧計。
Fig. 1 is a graph showing an example of catalyst transfer according to an embodiment of the present invention, Fig. 2 is a graph showing changes in dust accumulation amount, pressure loss, and catalytic reaction rate in the catalyst layer, and Fig. 3 is a graph showing an example of the application of the present invention. Figure 4 is a graph showing the general relationship between the amount of dust accumulated in the catalyst layer, pressure loss, and catalytic reaction rate. Figure 5 is a block diagram showing the configuration of the catalyst packed bed, reactant concentration meter, and differential pressure gauge. FIG. 2 is an explanatory diagram illustrating the influence of variation in reaction rate. W...Amount of dust accumulated in the catalyst packed bed, ΔP...
Pressure loss in catalyst packed bed, X... Catalyst reaction rate, M
v...catalyst movement period, ΔPs...set value of ΔP, X
s...Setting value of X, 1...Catalyst packed bed, 2.3...
・Concentration meter, 4...Differential pressure gauge.

Claims (1)

【特許請求の範囲】[Claims] 1 ダストを含む気体を触媒充填層に通す不均一系触媒
反応において、触媒充填層の触媒反応率が設定値以下と
なり、かつ触媒充填層の圧力損失が設定値以上となる時
点を触媒再生時期と判定することを特徴とする気固系触
媒充填層における触媒再生時期の決定方法。
1 In a heterogeneous catalytic reaction in which gas containing dust is passed through a catalyst packed bed, the catalyst regeneration period is defined as the time when the catalyst reaction rate of the catalyst packed bed becomes less than the set value and the pressure loss of the catalyst packed bed exceeds the set value. 1. A method for determining catalyst regeneration timing in a gas-solid catalyst packed bed.
JP59261747A 1984-12-13 1984-12-13 Method for determination of regeneration period of catalyst Pending JPS61141934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59261747A JPS61141934A (en) 1984-12-13 1984-12-13 Method for determination of regeneration period of catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59261747A JPS61141934A (en) 1984-12-13 1984-12-13 Method for determination of regeneration period of catalyst

Publications (1)

Publication Number Publication Date
JPS61141934A true JPS61141934A (en) 1986-06-28

Family

ID=17366145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59261747A Pending JPS61141934A (en) 1984-12-13 1984-12-13 Method for determination of regeneration period of catalyst

Country Status (1)

Country Link
JP (1) JPS61141934A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412252A (en) * 1987-06-23 1989-01-17 Bosch Gmbh Robert Method and apparatus for monitoring content of poisonous substance of exhaust gas for internal combustion engine
JP2005298376A (en) * 2004-04-08 2005-10-27 Mitsubishi Chemicals Corp Method for producing acrolein and acrylic acid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339253A (en) * 1976-09-24 1978-04-11 Babcock Hitachi Kk Circulating and moving device for catalyst

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339253A (en) * 1976-09-24 1978-04-11 Babcock Hitachi Kk Circulating and moving device for catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412252A (en) * 1987-06-23 1989-01-17 Bosch Gmbh Robert Method and apparatus for monitoring content of poisonous substance of exhaust gas for internal combustion engine
JP2005298376A (en) * 2004-04-08 2005-10-27 Mitsubishi Chemicals Corp Method for producing acrolein and acrylic acid

Similar Documents

Publication Publication Date Title
CN109493250B (en) Method for evaluating denitration capability of SCR reactor
EP3051087B1 (en) Abnormality diagnosis apparatus for exhaust gas purification apparatus
JPS59210373A (en) Wheel speed arithmetic device
CN106731829A (en) Suppress control system and method for the purging on thermal power plant's discharged nitrous oxides influence
JP2005273613A (en) Sensing method for obd of exhaust gas
JPS61141934A (en) Method for determination of regeneration period of catalyst
US8534053B2 (en) Exhaust purification apparatus for internal combustion engine
US10900397B2 (en) Method for determining the loading state of a particle filter of a motor vehicle
JP5156096B2 (en) Apparatus and method for estimating exhaust particulate amount
CN111540412B (en) SCR reactor inlet flue gas soft measurement method based on least square method
EP2213853A1 (en) Exhaust air purifier equipment and method for purifying exhaust air
Larsson et al. Investigation of the kinetics of a deactivating system by transient experiments
JP5656746B2 (en) Denitration catalyst deterioration judgment method
CA1211275A (en) Automated catalyst regeneration in a reactor
JP5450319B2 (en) How to monitor recombiner catalyst performance
US7704456B2 (en) NOx removal catalyst management unit for NOx removal apparatus and method for managing NOx removal catalyst
CN110554135B (en) SCR denitration catalyst replacement volume accounting method based on detection activity
JPH04325707A (en) Exhaust gas purifying device for engine
JPS63111994A (en) Pure water producing apparatus
JP3598542B2 (en) Exhaust purification system for diesel internal combustion engine
JPS58207930A (en) Estimation of denitration capacity in denitration apparatus
JP2005127285A (en) Catalyst typical temperature estimating method
JPS63144110A (en) Production of polycrystalline silicon
JP3151861B2 (en) Catalyst denitration control device
Suresh Babu et al. Heat loss and energy use in pilot plant testing of Piperazine with the Advanced Stripper