JP2005127285A - Catalyst typical temperature estimating method - Google Patents

Catalyst typical temperature estimating method Download PDF

Info

Publication number
JP2005127285A
JP2005127285A JP2003366347A JP2003366347A JP2005127285A JP 2005127285 A JP2005127285 A JP 2005127285A JP 2003366347 A JP2003366347 A JP 2003366347A JP 2003366347 A JP2003366347 A JP 2003366347A JP 2005127285 A JP2005127285 A JP 2005127285A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
temperature
sensor
representative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003366347A
Other languages
Japanese (ja)
Inventor
Daisuke Haruhara
大輔 春原
Susumu Koketsu
晋 纐纈
Shinji Nakayama
真治 中山
Yoshiki Tanabe
圭樹 田邊
Minehiro Murata
峰啓 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2003366347A priority Critical patent/JP2005127285A/en
Publication of JP2005127285A publication Critical patent/JP2005127285A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst typical temperature estimating method capable of highly accurately estimating temperature of whole catalyst subjected to various temperature variation factors. <P>SOLUTION: The catalyst typical temperature estimating method of the present invention is provided with an inlet exhaust gas temperature sensor 3 for detecting the temperature of exhaust gas to be flowed into an exhaust emission control catalyst 2, and an outlet exhaust gas temperature sensor 4 for detecting the temperature of exhaust gas flowed out from the exhaust emission control catalyst 2. A weighted average of a sensor value from the inlet exhaust gas temperature sensor 3 and a sensor value from the outlet exhaust gas temperature sensor 4 is calculated with the weighting of the sensor value from the outlet exhaust gas temperature sensor 4 increased to calculate an instant catalyst typical temperature Tcat'. Subsequently, a weighted average of the calculated instant catalyst typical temperature Tcat'and an instant catalyst typical temperature Tcat<SB>n-1</SB>from one step earlier is calculated to estimate a current catalyst typical temperature Tcat. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関の排気通路に設けられる排ガス浄化用触媒の代表温度を推定する触媒代表温度推定方法に関する。   The present invention relates to a catalyst representative temperature estimation method for estimating a representative temperature of an exhaust gas purifying catalyst provided in an exhaust passage of an internal combustion engine.

自動車に搭載されるエンジン(内燃機関)では、排ガス対策として、エンジンの排気通路に排ガス浄化用触媒を設けて、排気ガス中に含まれる有害な成分を浄化させている。   In an engine (internal combustion engine) mounted on an automobile, as an exhaust gas countermeasure, an exhaust gas purification catalyst is provided in the exhaust passage of the engine to purify harmful components contained in the exhaust gas.

こうした排ガスの浄化をエンジン運転状態や触媒の状況に応じて良好に進めるのには、触媒温度を用いて制御することは不可欠である。特にNOx吸蔵触媒は、適切に吸蔵されたNOx量や還元の具合を管理(NOx吸蔵量の推定など)するために、触媒全体を代表する温度が必要とされる。   Control of the exhaust gas using the catalyst temperature is indispensable in order to promote the purification of the exhaust gas in accordance with the engine operating state and the catalyst state. In particular, the NOx storage catalyst requires a temperature representative of the entire catalyst in order to manage the amount of NOx stored and the degree of reduction (estimation of the NOx storage amount, etc.).

こうした触媒の制御に用いられる触媒温度は、従来、a.触媒の内部に温度センサを差し込んで触媒温度を検出したり、b.温度センサを用いて、触媒の入口側温度と出口側温度とを個別に間接的に算出したり直接的に検出したりして得ている(例えば特許文献1を参照)。
特開平10−196433号公報
The catalyst temperature used to control such a catalyst has conventionally been a. A temperature sensor is inserted into the catalyst to detect the catalyst temperature, b. The temperature sensor is used to indirectly calculate or directly detect the inlet side temperature and the outlet side temperature of the catalyst individually (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 10-196433

ところが、触媒の各部温度は、化学反応の進行具合などにより異なる。   However, the temperature of each part of the catalyst varies depending on the progress of the chemical reaction.

このため、上記a.のように温度センサで検出しても、検出される温度は触媒自身の局所的な温度、すなわち触媒全体の温度分布のうち一部分の温度を示しているだけので、触媒全体の温度を代表していない。このため、NOx吸蔵触媒のような高い精度のNOx吸蔵量の管理(NOx吸蔵量の推定など)制御に必要とする温度値には適さない。また上記b.のように触媒入口側温度や触媒出口側温度を得ても、触媒前後の局所的な温度値なので、同様に触媒全体を代表する温度値には乏しく、高い精度が求められるNOx吸蔵量の管理制御に必要とする温度値には適さない。   For this reason, the a. Even if the temperature sensor detects the temperature, the detected temperature only represents the local temperature of the catalyst itself, that is, the temperature of a part of the temperature distribution of the entire catalyst. Absent. For this reason, it is not suitable for the temperature value required for control of NOx occlusion amount (such as estimation of NOx occlusion amount) with high accuracy such as a NOx occlusion catalyst. B. Even if the catalyst inlet side temperature or the catalyst outlet side temperature is obtained as described above, it is a local temperature value before and after the catalyst. Similarly, the temperature value representative of the entire catalyst is poor, and NOx occlusion amount management that requires high accuracy is also required. Not suitable for temperature values required for control.

そこで、本発明の目的は、高い精度で、様々な温度変化の要因を受ける触媒全体の代表温度の推定を可能にした触媒代表温度推定方法を提供することにある。   Accordingly, an object of the present invention is to provide a catalyst representative temperature estimation method capable of estimating the representative temperature of the entire catalyst that receives various factors of temperature change with high accuracy.

請求項1に記載の発明は、上記目的を達成するために、排ガス浄化用触媒へ流入される排気ガスの温度を検出する入口排気ガス温度センサと、該触媒から流出される排気ガスの温度を検出する出口排気ガス温度センサとを設け、入口排気ガス温度センサからのセンサ値と出口排気ガス温度センサからのセンサ値とを、逐次、出口排気ガスセンサのセンサ値の重み付けを大きくして加重平均させて、その結果を排ガス浄化用触媒の代表温度とした。   In order to achieve the above-mentioned object, the invention according to claim 1 provides an inlet exhaust gas temperature sensor for detecting the temperature of exhaust gas flowing into the exhaust gas purification catalyst, and the temperature of the exhaust gas flowing out from the catalyst. An outlet exhaust gas temperature sensor is provided, and the sensor value from the inlet exhaust gas temperature sensor and the sensor value from the outlet exhaust gas temperature sensor are sequentially weighted and averaged by increasing the weight of the sensor value of the outlet exhaust gas sensor. The result was used as the representative temperature of the exhaust gas purifying catalyst.

請求項2に記載の発明は、上記目的に加え、さらに排ガス浄化用触媒の熱容量も考慮に入れた高精度の触媒代表温度を得るために、請求項1の加重平均させた後、現在求めた加重平均のセンサ値と前回求めた加重平均のセンサ値とを加重平均させて、その結果を排ガス浄化用触媒の代表温度とした。   In addition to the above object, the invention described in claim 2 is currently obtained after the weighted average of claim 1 in order to obtain a highly accurate catalyst representative temperature that takes into account the heat capacity of the exhaust gas purifying catalyst. The weighted average sensor value and the previously obtained weighted average sensor value were weighted averaged, and the result was used as the representative temperature of the exhaust gas purifying catalyst.

請求項3に記載の発明は、上記目的に加え、さらに入口排気ガス温度センサが故障したときのフェールセーフとするために、入口排気ガス温度センサで排気ガス温度の検出が行えないときは、出口排気ガス温度センサのセンサ値のみを排ガス浄化用触媒の代表温度推定に使用することにある。   In addition to the above-mentioned object, the invention according to claim 3 further provides an output when the exhaust gas temperature cannot be detected by the inlet exhaust gas temperature sensor in order to make the inlet exhaust gas temperature sensor fail safe. Only the sensor value of the exhaust gas temperature sensor is used for estimating the representative temperature of the exhaust gas purifying catalyst.

請求項1に記載の発明によれば、触媒入口に流入される排気ガス温度の挙動がもたらすエンジンの負荷変動に伴う急激な排気ガス温度の温度変化の情報と、触媒出口から流出する排気ガス温度の挙動がもたらす排ガス浄化用触媒による化学反応熱の変化の情報とを考慮し、さらに排ガス浄化用触媒の化学反応の影響が最も大きいことを考慮した重みづけ加重平均により、排ガス浄化用触媒の全体を代表する温度が推定できる。   According to the first aspect of the present invention, information on the rapid temperature change of the exhaust gas temperature accompanying the engine load fluctuation caused by the behavior of the exhaust gas temperature flowing into the catalyst inlet, and the exhaust gas temperature flowing out from the catalyst outlet The overall weight of the exhaust gas purification catalyst is calculated by a weighted weighted average that takes into account the effects of the chemical reaction heat of the exhaust gas purification catalyst caused by Can be estimated.

したがって、高い精度で、様々な温度変化の要因を受ける触媒全体の温度推定ができる。特に高い精度下での制御、例えばNOx吸蔵触媒の吸蔵NOx量の管理制御に用いるのには有効である。   Therefore, it is possible to estimate the temperature of the entire catalyst subjected to various temperature change factors with high accuracy. This is particularly effective for use in control under high accuracy, for example, management control of the amount of NOx stored in the NOx storage catalyst.

請求項2に記載の発明によれば、さらに現在求めた加重平均のセンサ値と前回求めた加重平均のセンサ値とを加重平均させることにより、排ガス浄化用触媒の熱容量(例えば触媒が冷めやすいか否かなど)の特性も考慮されるので、一層、高精度な触媒代表温度の推定ができる。   According to the second aspect of the present invention, the heat capacity of the exhaust gas purifying catalyst (for example, whether the catalyst is easy to cool) is further obtained by performing weighted averaging of the currently obtained weighted average sensor value and the previously obtained weighted average sensor value. Therefore, the catalyst representative temperature can be estimated with higher accuracy.

請求項3に記載の発明によれば、さらに上記効果に加え、たとえ入口排気ガス温度センサが故障した場合でも、精度的には劣るものの、最も重要な化学反応の情報を含む出口排気ガス温度センサからの出力のみを一時的に排ガス浄化用触媒の代表温度推定に使用することで、高いフェールセーフ性をもたらすことができる。   According to the invention described in claim 3, in addition to the above effect, even if the inlet exhaust gas temperature sensor fails, the outlet exhaust gas temperature sensor including information on the most important chemical reaction is inferior in accuracy. By using only the output from the engine temporarily to estimate the representative temperature of the exhaust gas purifying catalyst, high fail-safety can be achieved.

[第1の実施形態]
以下、本発明を図1および図2に示す第1の実施形態にもとづいて説明する。
[First Embodiment]
Hereinafter, the present invention will be described based on the first embodiment shown in FIG. 1 and FIG.

図1中1は、自動車(車両)に搭載された内燃式エンジンの排気マニホールド(図示しない)に接続された排気通路、2は該排気通路1の途中に介装された排ガス浄化用の触媒、例えばNOx吸蔵触媒である。なお、NOx吸蔵触媒2は、流入する排ガスの空燃比がリーンのときは、排気中のNOxが吸蔵され、流入する排ガスの空燃比がリッチのときは、排ガス中の未燃HC、COなどと反応して還元させる機能をもつ。   In FIG. 1, 1 is an exhaust passage connected to an exhaust manifold (not shown) of an internal combustion engine mounted on an automobile (vehicle), 2 is an exhaust gas purifying catalyst interposed in the middle of the exhaust passage 1, For example, a NOx storage catalyst. The NOx storage catalyst 2 stores NOx in the exhaust when the air-fuel ratio of the inflowing exhaust gas is lean, and the unburned HC, CO, etc. in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is rich. Has the function of reducing by reaction.

NOx吸蔵触媒2の入口側には、該触媒2へ流入される排気ガスの温度を検出する入口排気ガス温度センサ3が設けあり、NOx吸蔵触媒2の出口側には、該触媒2から流出される排気ガスの温度を検出する出口排気ガス温度センサ4が設けてある。そして、演算処理部で構成される触媒代表温度推定部5によって、両温度センサ3,4から出力される排ガスの温度値から、同NOx吸蔵触媒2の全体を代表する温度を推定して、その結果を例えば吸蔵NOxを還元するためのリッチ運転制御系へ出力し、吸蔵NOx量の推定に用いられるようにしている。   An inlet exhaust gas temperature sensor 3 for detecting the temperature of the exhaust gas flowing into the catalyst 2 is provided on the inlet side of the NOx storage catalyst 2, and the NOx storage catalyst 2 is discharged from the catalyst 2 on the outlet side. An exhaust gas temperature sensor 4 for detecting the temperature of the exhaust gas is provided. Then, the catalyst representative temperature estimation unit 5 configured by the arithmetic processing unit estimates the temperature representative of the entire NOx storage catalyst 2 from the temperature value of the exhaust gas output from both the temperature sensors 3 and 4, and The result is output to a rich operation control system for reducing the stored NOx, for example, and used for estimating the stored NOx amount.

そして、触媒全体を代表する温度を推定する処理に本実施形態の触媒代表温度推定方法が適用されている。   And the catalyst representative temperature estimation method of this embodiment is applied to the process which estimates the temperature representative of the whole catalyst.

ここで、通常、触媒は、エンジンからの排気ガスが流入されると、排気中に含まれる有害成分が触媒上で化学反応して浄化(NOx吸蔵触媒2ではリーン時にNOxが吸蔵され、リッチ時に還元される)される。このとき触媒温度の変化の挙動は、エンジンの負荷変動による急激な入口排気ガスの温度変化に影響されたり、触媒上の化学反応熱、排気ガス流量に影響されたりする。しかも、最も化学反応熱の影響が大きい。   Here, normally, when exhaust gas from the engine flows into the catalyst, harmful components contained in the exhaust gas chemically react on the catalyst to purify (NOx storage catalyst 2 stores NOx when lean, and when rich, Reduced). At this time, the behavior of the change in the catalyst temperature is influenced by a sudden change in the temperature of the inlet exhaust gas due to the engine load fluctuation, or by the chemical reaction heat on the catalyst and the exhaust gas flow rate. Moreover, the influence of heat of chemical reaction is the greatest.

こうした温度変化の要因を考慮して、本実施形態では触媒全体を代表する温度を得るべく、触媒代表温度推定部5には、つぎの与式(1)、すなわち入口排気ガス温度センサ3で検出された温度(センサ値)と出口排気ガス温度センサ4で検出された温度(センサ値)とを、逐次、出口排気ガス温度センサ4のセンサ値の重み付けを大きくして加重平均させる式が設定してある。そして、その演算の結果を触媒の瞬時代表温度として、リッチ運転制御系へ出力するようにしてある。   In consideration of the factors of such temperature change, in this embodiment, the catalyst representative temperature estimation unit 5 detects the following equation (1), that is, the inlet exhaust gas temperature sensor 3 in order to obtain a temperature representative of the entire catalyst. An equation for weighted averaging of the measured temperature (sensor value) and the temperature (sensor value) detected by the outlet exhaust gas temperature sensor 4 by sequentially increasing the weight of the sensor value of the outlet exhaust gas temperature sensor 4 is set. It is. The calculation result is output to the rich operation control system as the instantaneous representative temperature of the catalyst.

Tcat′=(1−n)・Tgin+n・Tgout …(1)
但し、Tcat′:瞬時触媒代表温度推定値、Tgin:触媒入口排気ガス温度センサ値、Tgout:触媒出口排気ガス温度センサ値、n:定数(0.5<n≦1)。
Tcat '= (1-n) .Tgin + n.Tgout (1)
Where Tcat ′: instantaneous catalyst representative temperature estimated value, Tgin: catalyst inlet exhaust gas temperature sensor value, Tgout: catalyst outlet exhaust gas temperature sensor value, n: constant (0.5 <n ≦ 1).

この瞬時触媒代表温度を推定する方法が図2のフローチャートに示されている。このフローチャート、並びに与式(1)を参照して、触媒代表温度を推定する方法を説明すると、エンジン1から排出された例えばリーンの排気ガスが、NO吸蔵触媒2を通過する際、NOx吸蔵触媒2により、化学反応によって排気中に含まれるNOxが吸蔵されて除かれるとする。   A method of estimating the instantaneous catalyst representative temperature is shown in the flowchart of FIG. The method for estimating the catalyst representative temperature will be described with reference to this flowchart and the given equation (1). When the exhaust gas of, for example, lean exhausted from the engine 1 passes through the NO storage catalyst 2, the NOx storage catalyst. 2, it is assumed that NOx contained in the exhaust gas is occluded and removed by a chemical reaction.

ここで、NOx吸蔵触媒2の全体の温度は、様々な温度変化の要因を受けた結果の表れである。触媒の温度変化をもたらす要因には、上記のようなエンジン運転がもたらす負荷変動による急激な排気ガスの温度変化や、触媒上の化学反応熱、触媒を通過する排気ガスの流量の変化などが挙げられる。   Here, the overall temperature of the NOx storage catalyst 2 is a result of various factors causing temperature changes. Factors that cause catalyst temperature changes include abrupt changes in exhaust gas temperature due to load fluctuations caused by engine operation as described above, heat of chemical reaction on the catalyst, and changes in the flow rate of exhaust gas passing through the catalyst. It is done.

このとき、負荷変動による排気ガスの温度変化は、NOx吸蔵触媒2に流入される排気ガスの温度からわかる。また触媒上の化学反応熱、排気ガス流量の変化などが要因の触媒の温度変化は、NOx吸蔵触媒2から流出される排気ガスの温度からわかる。   At this time, the temperature change of the exhaust gas due to the load fluctuation is known from the temperature of the exhaust gas flowing into the NOx storage catalyst 2. Further, the temperature change of the catalyst caused by the chemical reaction heat on the catalyst, the change of the exhaust gas flow rate, etc. can be understood from the temperature of the exhaust gas flowing out from the NOx storage catalyst 2.

そうした根拠にもとづき、図2中のステップS1は、入口排気ガス温度センサ3からNOx吸蔵触媒2に流入される排気ガスの温度を検出し、出口排気ガス温度センサ4からNOx吸蔵触媒2から流出された排気ガスの温度を検出する内容としている。   Based on such grounds, step S1 in FIG. 2 detects the temperature of the exhaust gas flowing into the NOx occlusion catalyst 2 from the inlet exhaust gas temperature sensor 3, and flows out from the NOx occlusion catalyst 2 from the outlet exhaust gas temperature sensor 4. The content of the exhaust gas is detected.

ここで、触媒上で化学反応によって生ずる反応熱は、温度変化要因の中で最も大きな要素なので、単純に入・出口排気ガス温度を平均しただけでは、触媒全体の温度とは認められない。   Here, the reaction heat generated by the chemical reaction on the catalyst is the largest factor among the temperature change factors. Therefore, simply averaging the inlet / outlet exhaust gas temperature cannot be recognized as the temperature of the entire catalyst.

そこで、図2中のステップS2および与式(1)に示されるように、こうした影響度を考慮すべく、入口側の排気温度よりも出口側の排気温度の重みづけ(0.5<n≦1)を大きくして、入口排気ガス温度と出口排気ガス温度とを加重平均させている。そして、求まる温度値から、その検出時点における触媒の代表温度、すなわち瞬時触媒代表温度値を推定させている。なお、重みづけ定数nは、エンジン機種、触媒の種類、配置やサイズなどにより異なる。   Therefore, as shown in step S2 in FIG. 2 and the given equation (1), in order to consider such influence, weighting of the exhaust gas temperature on the outlet side rather than the exhaust gas temperature on the inlet side (0.5 <n ≦ 1) is increased so that the inlet exhaust gas temperature and the outlet exhaust gas temperature are weighted averaged. Then, the representative catalyst temperature at the time of detection, that is, the instantaneous catalyst representative temperature value is estimated from the obtained temperature value. The weighting constant n varies depending on the engine model, the type of catalyst, the arrangement, the size, and the like.

こうした様々な温度変化要因を考慮して行われる触媒代表温度の推定により、高い精度で触媒全体の温度が推定できる。特に触媒全体を代表する温度は、高い精度下での制御、例えばNOx吸蔵触媒2の吸蔵NOx量を管理する等の制御には有効である。しかも、触媒全体の代表温度は、与式(1)に示されるような簡便式による演算でよく、制御系(ECUなど)の負担は少ない。   By estimating the catalyst representative temperature performed in consideration of these various temperature change factors, the temperature of the entire catalyst can be estimated with high accuracy. In particular, the temperature representative of the entire catalyst is effective for control with high accuracy, for example, for controlling the amount of NOx stored in the NOx storage catalyst 2. Moreover, the representative temperature of the entire catalyst may be calculated by a simple equation as shown in the equation (1), and the burden on the control system (ECU, etc.) is small.

[第2の実施形態]
図3〜図5は、本発明の第2の実施形態を示す。
[Second Embodiment]
3 to 5 show a second embodiment of the present invention.

第2の実施形態は、第1の実施形態の変形例で、さらに高い精度で触媒全体の温度の推定が行えるように触媒の熱容量を考慮して触媒代表温度を推定したり、2つの温度センサのうち入口排気ガス温度センサ3が故障しても、触媒代表温度の推定機能が確保されるようにしたものである。   The second embodiment is a modification of the first embodiment, and estimates the catalyst representative temperature in consideration of the heat capacity of the catalyst so that the temperature of the entire catalyst can be estimated with higher accuracy, or two temperature sensors. Among these, even if the inlet exhaust gas temperature sensor 3 fails, the estimation function of the catalyst representative temperature is ensured.

すなわち、高精度の触媒代表温度を確保する工夫には、逐次、入口排気ガス温度と出口ガス温度とを加重平均(ステップS2)した後、つぎの与式(2)を用いた演算および図4中のステップS3の演算処理内容に示されるように、今回求めた瞬時触媒代表温度推定値とその1ステップ前(前回)に求めた触媒代表温度推定値とを加重平均させることで、前回から今回までの間の触媒状況を考慮するという、触媒の熱容量(例えば触媒が冷めやすいのか否かなど)までを考慮して、一層、高精度の触媒代表温度の推定が行えるようにしたものである。   That is, to devise a technique for ensuring a highly accurate catalyst representative temperature, after sequentially calculating the weighted average (step S2) of the inlet exhaust gas temperature and the outlet gas temperature, the calculation using the following equation (2) and FIG. As shown in the calculation processing contents of step S3 in the middle, the instantaneous catalyst representative temperature estimated value obtained this time and the catalyst representative temperature estimated value obtained one step before (previous) are weighted and averaged, so that The catalyst representative temperature can be estimated with higher accuracy in consideration of the heat capacity of the catalyst (for example, whether or not the catalyst is easy to cool).

Tcat=(1−m)・Tcatn-1+m・Tcat′ …(2)
但し、Tcat:触媒代表温度推定値、Tcatn-1:1ステップ前の触媒代表温度推定値、Tcat′:瞬時触媒代表温度推定値、m:定数(0<m≦1)。
Tcat = (1−m) · Tcat n−1 + m · Tcat ′ (2)
However, Tcat: catalyst representative temperature estimated value, Tcat n−1 : catalyst representative temperature estimated value before one step, Tcat ′: instantaneous catalyst representative temperature estimated value, m: constant (0 <m ≦ 1).

このようにして触媒代表温度を推定すると、図5の線図中の太一点鎖線に示されるように入口排気ガスの急激な温度変化や反応熱の影響を受けた出口排気ガス温度の挙動や触媒の熱容量を考慮した特性をたどる高い精度の温度値を得ることができる。なお、定数mは、エンジン機種、触媒の種類、配置やサイズなどにより異なる。   When the catalyst representative temperature is estimated in this way, the behavior of the outlet exhaust gas temperature and the catalyst affected by the abrupt temperature change of the inlet exhaust gas and the reaction heat as shown by the thick dashed line in the diagram of FIG. It is possible to obtain a highly accurate temperature value that follows the characteristics in consideration of the heat capacity. The constant m varies depending on the engine model, the type of catalyst, the arrangement, the size, and the like.

一方、温度センサのうち入口排気ガス温度センサ3が故障したときのフェールセーフには、図4中のステップS4に示されるように入口排気ガス温度センサ3が故障したと判定したら、図5の線図に示されるように出口排気ガス温度の挙動が、触媒代表温度推定値の挙動に似通った履歴をたどるということ、すなわち精度的には劣るが化学反応の情報をもつことを利用して、ステップS5に示されるように出口排気ガス温度値のみを触媒代表温度推定に利用する処理を施したものである。具体的には、出口排気ガス温度値のみを触媒代表温度推定に利用するために、ステップS5では、n=1、m=m′なる定数を用いて、与式(1),(2)を演算して、出口排気ガス温度のみで触媒全体を代表する温度を推定するルーチンが用いてある。   On the other hand, for fail-safe when the inlet exhaust gas temperature sensor 3 among the temperature sensors fails, if it is determined that the inlet exhaust gas temperature sensor 3 has failed as shown in step S4 in FIG. 4, the line of FIG. As shown in the figure, using the fact that the behavior of the outlet exhaust gas temperature follows a history similar to the behavior of the catalyst representative temperature estimated value, that is, the information of the chemical reaction is inferior in accuracy, As shown in S5, only the outlet exhaust gas temperature value is used for estimating the catalyst representative temperature. Specifically, in order to use only the outlet exhaust gas temperature value for estimation of the catalyst representative temperature, in Step S5, using the constants n = 1 and m = m ′, the given expressions (1) and (2) are used. A routine is used to calculate and estimate a temperature representative of the entire catalyst only from the outlet exhaust gas temperature.

こうした一時的に触媒の代表温度推定に単独で使用できる出口排気ガス温度は、最も重要な触媒の化学反応熱の情報を多く含むから、故障時でも、ある程度の精度を有する触媒代表温度の推定機能を確保でき、これによりフェールセーフ性の向上が図れる。   The exhaust gas temperature that can be used for estimation of the representative temperature of the catalyst temporarily contains a lot of information on the heat of chemical reaction of the most important catalyst. As a result, the fail-safe property can be improved.

なお、本発明は上述した各実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施しても構わない。例えば上述した実施形態は、NOx吸蔵触媒を用いた例を挙げたが、これに限らず、他の触媒を用いた場合でもよい。   In addition, this invention is not limited to each embodiment mentioned above, You may implement in various changes within the range which does not deviate from the main point of this invention. For example, in the above-described embodiment, an example in which the NOx storage catalyst is used has been described. However, the present invention is not limited thereto, and other catalysts may be used.

本発明の第1の実施形態に係る排気浄化装置の触媒周辺の構成を示す図。The figure which shows the structure of the catalyst periphery of the exhaust gas purification apparatus which concerns on the 1st Embodiment of this invention. 触媒全体を代表する温度の推定を行う手順を説明するためのフローチャート。The flowchart for demonstrating the procedure which estimates the temperature which represents the whole catalyst. 本発明の第2の実施形態に係る排気浄化装置の触媒周辺の構成を示す図。The figure which shows the structure of the catalyst periphery of the exhaust gas purification apparatus which concerns on the 2nd Embodiment of this invention. 触媒全体を代表する温度の推定を行う手順、入口排気ガス温度センサが故障したときのフェールセーフを説明するためのフローチャート。The flowchart for demonstrating the fail safe when the procedure which estimates the temperature which represents the whole catalyst, and an inlet exhaust gas temperature sensor fail. 入口排気ガス温度、出口排気ガス温度、触媒代表推定温度を対比して示す線図。The diagram which compares and shows an inlet exhaust gas temperature, an outlet exhaust gas temperature, and a catalyst representative estimated temperature.

符号の説明Explanation of symbols

1…排気通路、2…触媒、3…入口排気ガス温度センサ、4…出口排気ガス温度センサ、5…触媒代表温度推定部。   DESCRIPTION OF SYMBOLS 1 ... Exhaust passage, 2 ... Catalyst, 3 ... Inlet exhaust gas temperature sensor, 4 ... Outlet exhaust gas temperature sensor, 5 ... Catalyst representative temperature estimation part.

Claims (3)

内燃機関の排気通路に設けられた排ガス浄化用触媒の入口側に、当該触媒へ流入される排気ガスの温度を検出する入口排気ガス温度センサを設け、前記排ガス浄化用触媒の出口側に、当該触媒から流出される排気ガスの温度を検出する出口排気ガス温度センサを設け、前記入口排気ガス温度センサで検出されたセンサ値と前記出口排気ガスセンサで検出されたセンサ値とを、逐次、出口排気ガスセンサのセンサ値の重み付けを大きくして加重平均させ、その結果を排ガス浄化用触媒の代表温度とすることを特徴とする触媒代表温度推定方法。   An inlet exhaust gas temperature sensor for detecting the temperature of the exhaust gas flowing into the catalyst is provided on the inlet side of the exhaust gas purification catalyst provided in the exhaust passage of the internal combustion engine, and the outlet side of the exhaust gas purification catalyst is provided with the An outlet exhaust gas temperature sensor for detecting the temperature of the exhaust gas flowing out from the catalyst is provided, and the sensor value detected by the inlet exhaust gas temperature sensor and the sensor value detected by the outlet exhaust gas sensor are sequentially output to the outlet exhaust. A catalyst representative temperature estimation method characterized by increasing a weighted average of sensor values of a gas sensor and averaging the result to obtain a representative temperature of an exhaust gas purifying catalyst. さらに、前記加重平均させた後、現在求めた加重平均のセンサ値と前回求めた加重平均のセンサ値とを加重平均させて、その結果を触媒の代表温度とすることを特徴とする請求項1に記載の触媒代表温度推定方法。   Further, after the weighted average, the weighted average sensor value obtained at present and the weighted average sensor value obtained last time are weighted average, and the result is used as a representative temperature of the catalyst. The method for estimating a catalyst representative temperature described in 1. さらに、前記入口排気ガス温度センサで排気ガス温度の検出が行えないときは、出口排気ガス温度センサのセンサ値のみを排ガス浄化用触媒の代表温度推定に使用することを特徴とする請求項1または請求項2に記載の触媒代表温度推定方法。   Furthermore, when the exhaust gas temperature cannot be detected by the inlet exhaust gas temperature sensor, only the sensor value of the outlet exhaust gas temperature sensor is used for estimating the representative temperature of the exhaust gas purification catalyst. The catalyst representative temperature estimation method according to claim 2.
JP2003366347A 2003-10-27 2003-10-27 Catalyst typical temperature estimating method Pending JP2005127285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003366347A JP2005127285A (en) 2003-10-27 2003-10-27 Catalyst typical temperature estimating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003366347A JP2005127285A (en) 2003-10-27 2003-10-27 Catalyst typical temperature estimating method

Publications (1)

Publication Number Publication Date
JP2005127285A true JP2005127285A (en) 2005-05-19

Family

ID=34644721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003366347A Pending JP2005127285A (en) 2003-10-27 2003-10-27 Catalyst typical temperature estimating method

Country Status (1)

Country Link
JP (1) JP2005127285A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046300A1 (en) 2005-10-19 2007-04-26 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device of internal combustion engine
JP2011256845A (en) * 2010-06-11 2011-12-22 Isuzu Motors Ltd Dpf system
WO2012104985A1 (en) 2011-02-01 2012-08-09 トヨタ自動車株式会社 Vehicle and method for controlling temperature of catalytic device
US8311271B2 (en) 2009-10-20 2012-11-13 Canon Kabushiki Kaisha Image processing apparatus and image processing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046300A1 (en) 2005-10-19 2007-04-26 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device of internal combustion engine
KR100988190B1 (en) * 2005-10-19 2010-10-18 도요타 지도샤(주) Exhaust emission control device of internal combustion engine
US8051641B2 (en) 2005-10-19 2011-11-08 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine
EP2977598A1 (en) 2005-10-19 2016-01-27 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine
US8311271B2 (en) 2009-10-20 2012-11-13 Canon Kabushiki Kaisha Image processing apparatus and image processing method
JP2011256845A (en) * 2010-06-11 2011-12-22 Isuzu Motors Ltd Dpf system
CN102939440A (en) * 2010-06-11 2013-02-20 五十铃自动车株式会社 Dpf system
WO2012104985A1 (en) 2011-02-01 2012-08-09 トヨタ自動車株式会社 Vehicle and method for controlling temperature of catalytic device
US8925301B2 (en) 2011-02-01 2015-01-06 Toyota Jidosha Kabushiki Kaisha Vehicle and method for controlling catalyst device in temperature

Similar Documents

Publication Publication Date Title
JP3744483B2 (en) Exhaust gas purification device for internal combustion engine
US9453451B2 (en) Abnormality diagnosis apparatus for exhaust gas purification apparatus
US10502114B2 (en) Concentration calculation apparatus, concentration calculation system, and concentration calculation method
US20070017212A1 (en) Catalyst diagnosis apparatus for internal combustion engine
US9234474B2 (en) Control oriented model for LNT regeneration
JP6287989B2 (en) Abnormality diagnosis device for NOx storage reduction catalyst
JP2611070B2 (en) Catalyst deterioration detection device for internal combustion engine
JPH08338297A (en) Catalyst deterioration judging device
WO1997013058A1 (en) APPARATUS AND METHOD FOR DETECTING DETERIORATION OF NOx CATALYST IN DIESEL ENGINE
JP5007845B2 (en) Exhaust gas purification device for internal combustion engine
JP2007046517A (en) Control device for internal combustion engine
JP2004069457A (en) Apparatus for detecting degradation of air/fuel ratio detecting device
JP2796413B2 (en) Method and apparatus for controlling air-fuel ratio of an internal combustion engine
JP6248978B2 (en) Control device for internal combustion engine
JP2008095603A (en) Exhaust emission control device for internal combustion engine
JP2007239472A (en) Catalyst temperature estimation device for internal combustion engine
JP2005127285A (en) Catalyst typical temperature estimating method
JP4366976B2 (en) Exhaust gas sensor abnormality detection device
JP5545631B2 (en) Air-fuel ratio control device
JP4134665B2 (en) HC concentration prediction method and HC adsorption catalyst deterioration diagnosis device
KR20170113357A (en) Method for monitoring of a methane oxidation catalytic converter and an exhaust aftertreatment device
JPH1162559A (en) Exhaust emission control device of internal combustion engine
JP2020023922A (en) Exhaust emission control device of internal combustion engine
JP2020060128A (en) Abnormality determination device of ammonia sensor
JP2019190360A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060516

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421