JPS6114137A - Manufacture of manganese dioxide - Google Patents

Manufacture of manganese dioxide

Info

Publication number
JPS6114137A
JPS6114137A JP59131860A JP13186084A JPS6114137A JP S6114137 A JPS6114137 A JP S6114137A JP 59131860 A JP59131860 A JP 59131860A JP 13186084 A JP13186084 A JP 13186084A JP S6114137 A JPS6114137 A JP S6114137A
Authority
JP
Japan
Prior art keywords
acid
manganese
treatment
manganese dioxide
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59131860A
Other languages
Japanese (ja)
Inventor
Kensaku Murakawa
村川 健作
Minoru Ichidate
一伊達 稔
Tatsuhiko Shigematsu
重松 達彦
Kazuaki Yamamura
山村 和昭
Ryohei Ishikawa
石川 遼平
Yutaka Tsukuda
築田 裕
Hiroshi Ochiai
弘 落合
Masami Aimi
相見 政巳
Takahiro Uno
宇野 孝洋
Masanori Niiyama
正徳 新山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Denki Kogyo Co Ltd
Nippon Steel Corp
Original Assignee
Chuo Denki Kogyo Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Denki Kogyo Co Ltd, Sumitomo Metal Industries Ltd filed Critical Chuo Denki Kogyo Co Ltd
Priority to JP59131860A priority Critical patent/JPS6114137A/en
Publication of JPS6114137A publication Critical patent/JPS6114137A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To manufacture inexpensively MnO2 for a manganese dry cell having high performance by treating a manganese compd. with a low-concn. acid and thereafter treated with a high-concn. acid. CONSTITUTION:After a manganese compd. such as Mn2O3, Mn3O4 and MnOOH is immersed into nitric acid of >=0.1 equivalent for the manganese compd. or an acid (for example, surfuric acid) other than nitric acid and treated at 70-100 deg.C for 30min-2hr, it is filtered and rinsed. Then, after manganese compd. is immersed into comparatively concentrated acid (for example, nitric acid) of 2-6N concn. of >=1 equivalent for the manganese compd. and treated at 70-100 deg.C for 30min-2hr, it is filtered, rinsed and dried.

Description

【発明の詳細な説明】 羞1よp遭亙盈! 本発明は二酸化マンガンの製造方法に関する。[Detailed description of the invention] Shy 1yo p encounter! The present invention relates to a method for producing manganese dioxide.

更に詳しくは、マンガン化合物を酸−で段階的に処理す
ることによりマンガン乾電池用に適したT−型二酸化マ
ンガンを製造するための化学的方法に関する。
More specifically, the present invention relates to a chemical method for producing T-type manganese dioxide suitable for use in manganese dry batteries by stepwise treating a manganese compound with an acid.

従来の技術 二酸化マンガンは乾電池の主材料の中で減極剤として用
いられ、その性状が乾電池の性能に極めて大きな影響を
及ぼすので、電池の設計に当たり非常に重要である。
BACKGROUND OF THE INVENTION Manganese dioxide is used as a depolarizer in the main material of dry batteries, and its properties have a very large effect on the performance of dry batteries, so it is very important in battery design.

各種電池系の中で、特に二酸化マンガン乾電池が広範に
使用されているが、その理由は二酸化マンガン鉱石が天
然で比較的安価かつ大量に入手できたことによるものと
思われる。しかしながら、近年、天然鉱石から良質のも
のを選ぶことが次第に困難になってきており、その結果
良好な特性のものを人工的に作製しようとの種々の試み
がなされてきている。
Among various battery systems, manganese dioxide dry batteries are particularly widely used, probably because manganese dioxide ore is naturally available at relatively low cost and in large quantities. However, in recent years, it has become increasingly difficult to select high-quality natural ores, and as a result, various attempts have been made to artificially produce minerals with good properties.

その−例として、例えば電解二酸化マンガンを挙げるこ
とができる。この電解二酸化マンガンは通常硫酸マンガ
ンを陽極酸化して得られ、主としてr−MnOaからな
る結晶相であって、減極剤としては一般に最適のものと
されている。しかじながら、電解二酸化マンガンを得る
ためには電解酸化工程が必須であり、多大の電力を必要
とするので、コスト高、エネルギー消費が著しい等の点
で問題である。
As an example, mention may be made, for example, of electrolytic manganese dioxide. This electrolytic manganese dioxide is usually obtained by anodic oxidation of manganese sulfate, has a crystalline phase mainly consisting of r-MnOa, and is generally considered to be optimal as a depolarizing agent. However, in order to obtain electrolytic manganese dioxide, an electrolytic oxidation step is essential and requires a large amount of electric power, resulting in problems such as high cost and significant energy consumption.

更に、Mn+03、Mn30a 、Mn0OH等の低級
なマンガン酸化物の酸処理により、高活性なMnO2を
形成する化学的処理方法も多数知られている。
Furthermore, many chemical treatment methods are known in which highly active MnO2 is formed by acid treatment of lower manganese oxides such as Mn+03, Mn30a, and Mn0OH.

従来の化学的処理方法では硝酸を使用するものが多いが
、硝酸は高価で処理コストが高(なる。
Many conventional chemical treatment methods use nitric acid, but nitric acid is expensive and processing costs are high.

また、硝酸以外の酸を使用する場合には、酸濃度を高く
すると、生成する二酸化マンガンはα−型となり乾電池
用二酸化マンガンとして使用することはできない。なん
となれば、α−Mno2は電解二酸化マンガン即ちr−
MnO7とは異なり、重放電時(2〜4Ωの負荷)には
Mn4+−Mn3+の還元反応速度が遅く、著しい電圧
降下を生ずるという欠点を有しているからである。  
             を一方、低濃度の酸を使用
した場合には、乾電池用に適したT−型二酸化マンガン
を得ることは可能であるが、そのために゛は酸濃度を2
N以下としなければならず、このような低濃度では酸処
理に必要とされる液量が著しく多量となるために処理設
備が大きくなるばかりでなく、濾過、廃液処理等の後処
理工程も大規模のものが必要とされ、設備コスト、処理
コストが著しく高いものとなってしまう。
Furthermore, when an acid other than nitric acid is used, if the acid concentration is increased, the produced manganese dioxide becomes α-type and cannot be used as manganese dioxide for dry batteries. After all, α-Mno2 is electrolytic manganese dioxide, or r-
This is because, unlike MnO7, during heavy discharge (load of 2 to 4 Ω), the reduction reaction rate of Mn4+-Mn3+ is slow, resulting in a significant voltage drop.
On the other hand, if a low concentration of acid is used, it is possible to obtain T-type manganese dioxide suitable for dry batteries;
At such a low concentration, the amount of liquid required for acid treatment becomes extremely large, which not only increases the size of the treatment equipment, but also requires a large amount of post-treatment processes such as filtration and waste liquid treatment. A large scale device is required, resulting in extremely high equipment costs and processing costs.

発明が解決しようとする問題点 前述のように、従来の人工的二酸化マンガンの製造法に
あっては、例えば電解法では高性能のT−型二酸化マン
ガンを得ることができるが、エネルギーコストが高く、
結果としてマンガン乾電池の製造単価を高いものとして
おり、−力比学的な酸処理にあっても乾電池用の減極剤
としては不満足なα−型MnO2が主生成物であったり
、処理液量が大量になり、処理設備、廃液処理設備等の
大型化が余儀なくされるといった改善すべき各種問題点
を内包している。
Problems to be Solved by the Invention As mentioned above, in conventional methods for producing artificial manganese dioxide, for example, high-performance T-type manganese dioxide can be obtained using the electrolytic method, but the energy cost is high. ,
As a result, the manufacturing cost of manganese dry batteries is high, and even in force-ratio acid treatment, α-type MnO2, which is unsatisfactory as a depolarizer for dry batteries, is the main product, and the amount of treatment liquid is low. There are various problems that need to be improved, such as the large amount of water and the need to increase the size of treatment equipment, waste liquid treatment equipment, etc.

そこで、本発明はこめような従来法の状況に鑑みて、で
きるだけ少量の処理液量で、高性能のマンガン乾電池用
二酸化マンガンを作製することができ、その結果処理設
備を小さくし、製造経費を節減でき、ひいては乾電池の
単価を下げることを可能とするピ酸化マンガンの製造方
法を開発することにある。
Therefore, in view of the situation of conventional methods, the present invention makes it possible to produce high-performance manganese dioxide for use in manganese dry batteries using as little processing liquid as possible.As a result, processing equipment can be made smaller and manufacturing costs can be reduced. The purpose of this project is to develop a method for producing manganese poxide that can save money and, in turn, reduce the unit price of dry batteries.

問題点を解決するための手段 そこで、本発明者等−は前記目的を達成すべく種々検討
、研究した結果、酸処理により二酸化マンガンを得る方
法においてその結晶構造がα−型となる主な原因が、酸
処理前のマンガン化合物中の)(”、Na+等の陽イオ
ン並びに酸中の8042−等の陰イオンなどが結晶格子
内に侵入するためであると考えられているので、マンガ
ン化合物を少量の酸で前処理しK” 、Na+等のイオ
ンを溶出し、かつ8口、′−等のイオンが侵入し難い状
態に転化させることが上記目的を達成する上で極めて有
効であることを見出した。本発明はかかる新規知見に基
づき完成されたものである。
Means for Solving the Problems Therefore, the inventors of the present invention have conducted various studies and researches to achieve the above-mentioned object, and have found that the main cause of the α-type crystal structure in the method of obtaining manganese dioxide by acid treatment. However, it is thought that this is because cations such as ``('', Na+, etc.) in the manganese compound before acid treatment and anions such as 8042- in the acid invade into the crystal lattice. It has been found that pre-treatment with a small amount of acid to elute ions such as K", Na+, etc. and convert it into a state in which ions such as 8- and '- are difficult to enter is extremely effective in achieving the above purpose. The present invention has been completed based on this new finding.

即ち、本発明の二酸化マンガンの製造方法はマンガン化
合物をまず硝酸または2規定以下の硝酸以外の酸で一次
処理し、次いで比較的濃厚な酸で二次処理することを特
徴とする。
That is, the method for producing manganese dioxide of the present invention is characterized in that a manganese compound is first treated with nitric acid or an acid other than nitric acid of 2N or less, and then subjected to a second treatment with a relatively concentrated acid.

本発明の方法において使用し得るマンガン化合物として
はMnzO++ 、1lln+o* 、Mn0OH,そ
の他マンガン鉱石を焙焼して得られるもの等を挙げるこ
とができ、これらは単独でもしくは2種以上の混合物と
して使用することが可能である。
Manganese compounds that can be used in the method of the present invention include MnzO++, 1lln+o*, Mn0OH, and other compounds obtained by roasting manganese ore, and these can be used alone or in a mixture of two or more. Is possible.

該マンガン鉱石としては一般にMn約45%以上(Mn
O,約70%以上)、5102約4%以下、A1.O8
約5%以下、Fe2r3約2%以下およびその他の不可
避の元素を含むものを使用することができる。
The manganese ore generally contains about 45% or more of Mn (Mn
O, about 70% or more), 5102 about 4% or less, A1. O8
A material containing about 5% or less, about 2% or less of Fe2r3, and other unavoidable elements can be used.

該鉱石の焙焼は通常600〜950℃で30分以上、大
気中で行う。この焙焼は焙焼生成物の主成分がMn2O
3となるように行うことが有利である。というのは、一
般にMn20aが後の酸処理において、他のマンガン酸
化物例えばMn301等よりも高い二酸化マンガン歩留
りを与えるからである。
The ore is usually roasted at 600 to 950°C for 30 minutes or more in the atmosphere. In this roasting, the main component of the roasted product is Mn2O.
It is advantageous to do so so that 3. This is because Mn20a generally provides a higher manganese dioxide yield in the subsequent acid treatment than other manganese oxides such as Mn301.

Mn20v  !Jプツチ焙焼生成物を得るためには、
該原鉱の焙焼を前記温度範囲の比較的低い領域で行うか
、もしくはより高温度下であっても酸素リッチな条件下
で行うことが望ましい。
Mn20v! To obtain the J Petucci roasted product,
It is desirable that the raw ore be roasted at a relatively low temperature within the above temperature range, or even at a higher temperature under oxygen-rich conditions.

また、一次処理において使用する硝酸以外の酸としては
塩酸、硫酸等の鉱酸などを例示できる。
Examples of acids other than nitric acid used in the primary treatment include mineral acids such as hydrochloric acid and sulfuric acid.

この一次処理において、硝酸以外の酸を使用する場合重
要なことは濃度を2N以下とすることであり、酸の種類
には関係しない。従って、混合酸系を使用することも可
能である。
In this primary treatment, when an acid other than nitric acid is used, what is important is that the concentration is 2N or less, regardless of the type of acid. It is therefore also possible to use mixed acid systems.

更に、二次処理において使用する酸としては塩酸、硝酸
、硫酸などの鉱酸等を挙げることができる。この場合も
、酸は単独でもしくは混合物として使用することができ
る。この二次処理における酸濃度は特に制限されないが
、処理液量を減じ、処理紐端、濾過および廃液処理等の
後処理工程の設備の小規模化を図り、設備コスト、処理
コストを節減するという目的から一次処理における濃度
よりも高くすることが望ましく、一般的には2〜6N程
度の範囲内で実施することが有利である。
Furthermore, examples of acids used in the secondary treatment include mineral acids such as hydrochloric acid, nitric acid, and sulfuric acid. In this case too, the acids can be used alone or in mixtures. The acid concentration in this secondary treatment is not particularly limited, but the amount of treated liquid is reduced, and the equipment for post-treatment processes such as treatment string ends, filtration, and waste liquid treatment is downsized to reduce equipment costs and treatment costs. For the purpose, it is desirable that the concentration be higher than that in the primary treatment, and it is generally advantageous to carry out the concentration within a range of about 2 to 6N.

すなわち、2N未満では酸がうずくなり、多量の処理液
量を必要とする。一方6Nを越える濃度では処理液量が
少なく、スラリー濃度が高くなりすぎ、酸処理がむつか
しくなると共にα化率も高くなる傾向になる。
That is, if it is less than 2N, the acid becomes tingly and requires a large amount of processing liquid. On the other hand, when the concentration exceeds 6N, the amount of treatment liquid is small, the slurry concentration becomes too high, acid treatment becomes difficult, and the gelatinization rate tends to increase.

本発明の方法において、一次処理および二次処理の酸並
びにその濃度以外の処理条件例えば温度、処理時間等は
特に制限されないが、処理温度を低くすれば長時間の処
理が必要とされる等、工業的には不利であるので経済的
観点からすれば70〜100℃の範囲内の温度で、30
分〜2時間程度の処理で十分な効果を期待することがで
きる。
In the method of the present invention, the treatment conditions other than the acid and its concentration in the primary treatment and secondary treatment, such as temperature, treatment time, etc., are not particularly limited. Since it is disadvantageous industrially, from an economic point of view, the temperature is within the range of 70 to 100°C.
Sufficient effects can be expected with a treatment time of about 2 hours.

作置 本発明の二酸化マンガンの製造方法においては一次処理
において硝酸または低濃度即ち2N以下のその他の酸に
よって処理することにより、マン−ガン乾電池用の減極
剤として使用するのに不適当なα−型結晶構造の生成を
促進するに+、Na+、Ba2+等の陽イオンを被処理
マンガン化合物から溶出し、生成するMnO2の結晶形
がα−型となるのを防止する。この処理に必要な酸の量
は、被処理マンガン化合物に対し最低0.1当量程度あ
れば十分に目的を達成できる。また、この処理により、
次の二次酸処理の際にso、”−<これもα−型化を促
進するものと考えられている)イオン等が結°晶中に侵
入してα−型化することも抑制されるようである。
Preparation In the method for producing manganese dioxide of the present invention, in the primary treatment, treatment is performed with nitric acid or other acids of low concentration, that is, 2N or less, to remove α that is unsuitable for use as a depolarizer for manganese dry batteries. In order to promote the formation of a - type crystal structure, cations such as +, Na+, and Ba2+ are eluted from the manganese compound to be treated, thereby preventing the crystal form of MnO2 produced from becoming an α-type. The amount of acid required for this treatment is at least about 0.1 equivalent relative to the manganese compound to be treated, which is sufficient to achieve the purpose. Also, with this process,
During the subsequent secondary acid treatment, it is possible to prevent so, ions, etc. (which are also thought to promote α-form formation) from penetrating into the crystals and forming α-form formation. It seems that

次いで、二次酸処理工程において任意の濃度の任意の酸
により処理するが、この処理はいわゆる不均化反応によ
りMn0zを生成させるための処理である。この処理に
必要な酸の量は被処理マンガン化合物の量に対して少な
くとも1当量である。
Next, in the secondary acid treatment step, the material is treated with any acid of any concentration, and this treatment is for producing Mn0z by a so-called disproportionation reaction. The amount of acid required for this treatment is at least 1 equivalent relative to the amount of manganese compound to be treated.

この二次処理においては、既に前段階即ち一次処理によ
りα化の原因となる要因が排除されているので、従来の
ように酸濃度を高くしてもα−型結晶構造の形成は回避
され、マンガン乾電池の作製に有利な高品位の二酸化マ
ンガンを得ることができる。
In this secondary treatment, the factors that cause α-ization have already been eliminated in the previous stage, that is, the primary treatment, so even if the acid concentration is increased as in the past, the formation of an α-type crystal structure is avoided. High-grade manganese dioxide, which is advantageous for producing manganese dry batteries, can be obtained.

実施例 以下、本発明を比較例および実施例に基づき更に具体的
に説明するが、本発明の範囲はこれら実施例により何隻
制限されない。
EXAMPLES Hereinafter, the present invention will be explained in more detail based on comparative examples and examples, but the scope of the present invention is not limited by these examples.

比較例 S i’o a約3wt%、KrJo、6wt%、Na
約0.1wt%含有し、Mn0z含有率約77wt%の
マンガン鉱石を200メツシユ以下1こ粉砕し、これを
’800 tにて、5時間焙焼してマンガン低級酸化物
(MniOa、Mn5(L等を含む)を作製した。
Comparative example S i'o a about 3wt%, KrJo, 6wt%, Na
Manganese ore containing about 0.1 wt% and Mn0z content of about 77 wt% is crushed into 200 mesh or less, and this is roasted at 800 tons for 5 hours to produce manganese lower oxides (MniOa, Mn5 (L etc.) were created.

該マンガン低級酸化物を3N硫酸(市販の硫酸を希釈し
て得た)を用いて’91)c4ごて1時間酸処理した。
The lower manganese oxide was acid-treated with 3N sulfuric acid (obtained by diluting commercially available sulfuric acid) using a '91) C4 trowel for 1 hour.

次いで、濾過、水洗、乾燥(1仰℃)して二酸化マンガ
ンを得た。
Then, it was filtered, washed with water, and dried (at 1 °C) to obtain manganese dioxide.

かくして得カニ酸化マンガンをx−a回折装置により分
析したところ、その結晶構造はα−型のものであった。
When the thus obtained crab manganese oxide was analyzed using an xa diffraction device, its crystal structure was found to be α-type.

更に、該二酸化マンガン生成物中のNa含量は0.03
wt%と減少していたが、Kの含量は1wt%とかなり
高いものであった。
Furthermore, the Na content in the manganese dioxide product is 0.03
Although the K content decreased to 1 wt%, it was quite high at 1 wt%.

実施例1 上記比較例で使用したものと同じマンガン鉱石を使用し
、同様な方法に従って焙焼処理して得たマンガン低級酸
化物を、まずINの硝酸041当量(該マンガン低級酸
化物に対し)を用いて90℃にて1時間酸処理し、次い
で濾過し、水洗した。
Example 1 Using the same manganese ore as that used in the above comparative example, a manganese lower oxide obtained by roasting according to the same method was first treated with 041 equivalents of IN nitric acid (relative to the manganese lower oxide). The mixture was acid-treated at 90° C. for 1 hour, then filtered and washed with water.

次に3N硫酸2当量を用いて、同様に90℃にてL時間
酸処理し、濾過、水洗し、乾燥(100℃)したわ かくして得られる二酸化マンガンはX−線回折装置によ
る分析ではT−型の結晶構造(わずかにα−型が含まれ
る)を有することがわかった。更に、α゛−型Mn0z
の形成を促進すると思われるNaおよびKの含有率はそ
れぞれO,,03wt%および0.171%といずれに
参いてもかなり減少しており、明らかなα化の抑制が認
められた。
Next, using 2 equivalents of 3N sulfuric acid, acid treatment was performed at 90°C for L hours, followed by filtration, washing with water, and drying (100°C).The resulting manganese dioxide was found to have T- It was found that it has a type crystal structure (slightly α-type is included). Furthermore, α゛-type Mn0z
The contents of Na and K, which are thought to promote the formation of O, were considerably reduced to 0.03 wt% and 0.171%, respectively, and clear suppression of gelatinization was observed.

実施例2 前記比較例におけると同様なマンガン鉱石を用い、同様
な方法で焙焼してマンガン低級酸化物を^ 得た。これをまず、0.5Nの硫酸0.1当量(マンガ
ン低級酸化物に対し)を用いて90℃にて1時間酸処理
し、次いで6N硫酸を添加することにより処理液中の酸
濃度を3Nに調節し、この条件下で再度90℃で1時間
酸処理した。次いで濾過し、水洗し、乾燥して目的とす
る二酸化マンガンを得た。
Example 2 Manganese ore similar to that in the comparative example was used and roasted in the same manner to obtain lower manganese oxide. This was first acid-treated at 90°C for 1 hour using 0.1 equivalent of 0.5N sulfuric acid (for manganese lower oxide), and then 6N sulfuric acid was added to reduce the acid concentration in the treatment solution to 3N. Under these conditions, acid treatment was performed again at 90° C. for 1 hour. Then, it was filtered, washed with water, and dried to obtain the target manganese dioxide.

か(して得られた二酸化マンガンも同様にX−線回折装
置による分析ではγ−型の結晶構造(わずかにα−゛型
構造を含む)を有していることがわかった。更に、Na
およびKの含有率は夫々0.02wt%ふよび0.2w
t%と著しく低下してふり、明らかにα化の抑制効果が
達成されていることがわかる。
Analyzes using an X-ray diffraction apparatus similarly revealed that the manganese dioxide obtained in this manner had a γ-type crystal structure (including a slight α-type structure).Furthermore, Na
The content of K is 0.02wt% and 0.2w, respectively.
It can be seen that the gelatinization suppressing effect has been clearly achieved.

実施例3 上記実施例と同様なマンガン化合物を用い、以下の表に
示す酸および濃度で、その他の条件は上記実施例と同様
にして二酸化マンガンを形成した。
Example 3 Manganese dioxide was formed using the same manganese compound as in the above example, using the acids and concentrations shown in the table below, and under the same conditions as in the above example.

かくして得た各試料につきα゛化率%)並びに放電特性
(単一サイズのZnC11型電池に組込み、負荷2Ω、
放電終止電圧0.9■なる条件下で測定した連続放電寿
命)を測定した。結果を下表に示す。
For each sample obtained in this way, the alpha conversion rate (%) and discharge characteristics (assembled into a single size ZnC11 type battery, with a load of 2Ω,
The continuous discharge life (continuous discharge life) was measured under the condition that the discharge end voltage was 0.9cm. The results are shown in the table below.

上記表の結果から萌らかな−く、一次酸処理において2
N以下の濃度の酸を使用した場合にはα化率がかなり低
下され、放電特性も250分以上とこの種の電池の最低
許容限界の240分を越える値となっている。
From the results in the above table, it is clear that Moerakana-2 is 2% in the primary acid treatment.
When an acid with a concentration of N or less is used, the gelatinization rate is considerably reduced, and the discharge characteristic is 250 minutes or more, which exceeds the minimum allowable limit of 240 minutes for this type of battery.

名車μ皇逮 かくして、本発明の二酸化マンガンの製造方法に従って
、段階的に2度の酸処理即ち一次処理および二次処理を
出発原料としてのマンガン化合物に施し、まず一次処理
でα化の原因を除去し、二次処理でMn0zを生成させ
るように工夫したことに基づき、硝酸のように高価な酸
を多量に使用することがなく、また処理液量を著しく低
下させることが可能となり、その結果酸処理設備の大型
化並びに濾過、廃液処理−の後処理用の設備の大型。化
を回避することが可能となり、ひいては放電特性の優れ
たマンガン乾電池用二酸化マンガンを安価に製造するこ
とが可能となる。
Therefore, according to the method for producing manganese dioxide of the present invention, a manganese compound as a starting material is subjected to two stepwise acid treatments, that is, a primary treatment and a secondary treatment, and the primary treatment first removes the cause of gelatinization. Based on the devised method to remove Mn0z and generate Mn0z in secondary treatment, it is not necessary to use large amounts of expensive acids such as nitric acid, and the amount of processing liquid can be significantly reduced. Larger acid treatment equipment, filtration, waste liquid treatment - larger post-processing equipment. This makes it possible to avoid oxidation, and in turn, it becomes possible to manufacture manganese dioxide for manganese dry batteries with excellent discharge characteristics at a low cost.

従って、本発明の方法は二酸化マンガンの製造方法とし
て工業的に極めて有用なものといえる。
Therefore, the method of the present invention can be said to be extremely useful industrially as a method for producing manganese dioxide.

Claims (7)

【特許請求の範囲】[Claims] (1)マンガン化合物を、まず硝酸または2N以下の濃
度の硝酸以外の酸で一次処理し、次いで更に比較的濃厚
な酸で二次処理することを特徴とする二酸化マンガンの
製造方法。
(1) A method for producing manganese dioxide, which comprises first treating a manganese compound with nitric acid or an acid other than nitric acid with a concentration of 2N or less, and then secondly treating a manganese compound with a relatively concentrated acid.
(2)該マンガン化合物がMn_2O_3、Mn_3O
_4、MnOOHおよびマンガン鉱石を焙焼したものか
らなる群から選ばれることを特徴とする特許請求の範囲
第1項記載の方法。
(2) The manganese compound is Mn_2O_3, Mn_3O
_4, MnOOH and roasted manganese ore.
(3)前記硝酸以外の酸が硫酸または塩酸であることを
特徴とする特許請求の範囲第1または2項記載の方法。
(3) The method according to claim 1 or 2, wherein the acid other than nitric acid is sulfuric acid or hydrochloric acid.
(4)前記一次処理において使用する酸の量が前記マン
ガン化合物に対して少なくとも0.1当量であることを
特徴とする特許請求の範囲第1〜3項のいずれか1項に
記載の方法。
(4) The method according to any one of claims 1 to 3, characterized in that the amount of acid used in the primary treatment is at least 0.1 equivalent relative to the manganese compound.
(5)前記二次処理で使用する酸が硝酸、塩酸、硫酸か
らなる群から選ばれる少なくとも1種である特許請求の
範囲第1〜3項のいずれか1項に記載の方法。
(5) The method according to any one of claims 1 to 3, wherein the acid used in the secondary treatment is at least one selected from the group consisting of nitric acid, hydrochloric acid, and sulfuric acid.
(6)前記二次処理における酸の濃度が2〜6Nの範囲
内であることを特徴とする特許請求の範囲第1〜4項の
いずれか1項に記載の方法。
(6) The method according to any one of claims 1 to 4, wherein the concentration of acid in the secondary treatment is within a range of 2 to 6N.
(7)前記二次処理において使用する酸の量が前記マン
ガン化合物に対して少なくとも1当量であることを特徴
とする特許請求の範囲第1〜6項のいずれか1項記載の
方法。
(7) The method according to any one of claims 1 to 6, characterized in that the amount of acid used in the secondary treatment is at least 1 equivalent relative to the manganese compound.
JP59131860A 1984-06-28 1984-06-28 Manufacture of manganese dioxide Pending JPS6114137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59131860A JPS6114137A (en) 1984-06-28 1984-06-28 Manufacture of manganese dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59131860A JPS6114137A (en) 1984-06-28 1984-06-28 Manufacture of manganese dioxide

Publications (1)

Publication Number Publication Date
JPS6114137A true JPS6114137A (en) 1986-01-22

Family

ID=15067812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59131860A Pending JPS6114137A (en) 1984-06-28 1984-06-28 Manufacture of manganese dioxide

Country Status (1)

Country Link
JP (1) JPS6114137A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384653B1 (en) * 2000-06-16 2003-05-22 이계승 Preparation Method Of High Purity Manganese Oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384653B1 (en) * 2000-06-16 2003-05-22 이계승 Preparation Method Of High Purity Manganese Oxide

Similar Documents

Publication Publication Date Title
CN102531054A (en) Purification method of ammonium metavanadate and preparation method of high-purity vanadium pentoxide
CN103771526A (en) Method for preparing high-purity manganese sulfate with industrial manganese sulfate as raw material
CN1401801A (en) Preparation of active zinc oxide from zinc dross by ultrasonic-microwave process
CN106335924A (en) Preparation method of NaV2O5
CN108977675B (en) Method for preparing low-sulfur-content rare earth oxide by reverse feeding precipitation-staged roasting
JP7283720B2 (en) Method for preparing battery grade Ni-Co-Mn mixture and battery grade Mn solution
JPH02145422A (en) Production of fine copper oxide powder
JP3299291B2 (en) Method for obtaining a metal hydroxide having a low fluoride content
CN102352435A (en) Efficient leaching technology of metal ions in chrysotile nanofiber
JPS6114137A (en) Manufacture of manganese dioxide
CN116371387A (en) Preparation method of cation doped modified lithium ion sieve
DE102021108442B4 (en) Process for preparing a lithium adsorbent
CN114014385B (en) Method for preparing nickel oxide by utilizing water quenched nickel
US2667405A (en) Production of a manganese dioxide for use as depolarizer in dry cells
CN111977690B (en) Method for removing copper and other impurities in preparation of tantalum-niobium oxide
CN105056874B (en) A kind of preparation method and its usage of eight potassium titanate crystal whiskers
JPH03153520A (en) Production of ceric ammonium nitrate
CN105858717B (en) A kind of preparation method of the basic lead sulphate battery additive of nanoscale four
JPS634555A (en) Activated chemical treatment manganese dioxide for dry batterry and its manufacture
CN108975402A (en) A method of preparing bulky grain high purity vanadic anhydride
JPS62187118A (en) Production of manganese dioxide
RU2542273C1 (en) Method of obtaining lithium titanate with spinel structure
CN116534820B (en) Method for preparing high-compaction ferric phosphate from industrial monoammonium phosphate and ferrous sulfate
JPH05229900A (en) Production of phombic layered titanic acid plate crystal represented by hxmyti2-yo4-nh2o
JPS6230624A (en) Production of manganese oxide for dry cell