JPS6114103B2 - - Google Patents

Info

Publication number
JPS6114103B2
JPS6114103B2 JP56026503A JP2650381A JPS6114103B2 JP S6114103 B2 JPS6114103 B2 JP S6114103B2 JP 56026503 A JP56026503 A JP 56026503A JP 2650381 A JP2650381 A JP 2650381A JP S6114103 B2 JPS6114103 B2 JP S6114103B2
Authority
JP
Japan
Prior art keywords
lithium
solid electrolyte
ionic conductivity
iodide
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56026503A
Other languages
Japanese (ja)
Other versions
JPS57140368A (en
Inventor
Masashi Ooi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56026503A priority Critical patent/JPS57140368A/en
Publication of JPS57140368A publication Critical patent/JPS57140368A/en
Publication of JPS6114103B2 publication Critical patent/JPS6114103B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はリチウムイオン導電性固体電解質、と
くに沃化リチウムを主成分とするリチウムイオン
導電性の固体電解質に関する。 近年、リチウムを負極に用いた各種の電池が実
用に供されつつあり、これに伴ない長寿命・耐漏
液性に優れたリチウム固体電池の開発の要求が高
まつている。このリチウム固体電池を開発するた
めには、高いリチウムイオン導電性を有する固体
電解質を得る必要がある。 従来、沃化リチウムと酸化アルミニウム(以下
アルミナと略称)の混合物を熱処理して形成した
固体電解質は、室温で2.5×10-6V/cm程度のイオ
ン導電率を有し、高いリチウムイオン導電性をも
つ物質のひとつとして知られている。しかし、リ
チウム固体電池などに適用するにはそのイオン導
電率はまだ低く、それを適用した固体電池の出力
電流は微少である。従つて固体電解質のイオン導
電率の向上が必要である。 本発明の目的は、かかる従来固体電解質に代る
高イオン導電率を有するリチウムイオン導電性固
体電解質を提供することにある。 すなわち、本発明の固体電解質は沃化リチウム
とアルミナに塩化リチウム、臭化リチウム、水酸
化リチウム、酸化リチウム、過塩素酸リチウムな
どのリチウム塩を1種以上含有させた混合物を熱
処理して形成することを特徴とする。 以下、本発明の実施例を従来例と比較して詳細
に説明する。 〔実施例 1〕 沃化リチウムの粉末60grとアルミナの粉末30gr
と塩化リチウムの粉末10grを乳鉢中でよく混合
し、これらの混合粉末を得た。この混合粉末をア
ルゴン雰囲気において温度580℃で4時間熱処理
を施した後、さらにこれを粉砕して粉末状の固体
電解質を得た。 また、さらに塩化リチウムの代りに臭化リチウ
ム、水酸化リチウム、酸化リチウム、過塩素酸リ
チウムなどのリチウム塩を添加して前述同様の方
法で3成分からなる固体電解質を得た。 〔実施例 2〕 沃化リチウムの粉末60grとアルミナの粉末30gr
と塩化リチウムと水酸化リチウムの粉末各々5gr
ずつを乳鉢中でよく混合し、4成分からなる混合
粉末を得た。この混合粉末をアルゴン雰囲気にお
いて、温度580℃で4時間熱処理を施した後、さ
らにこれを粉砕して粉末状の固体電解質を得た。 次に、実施例1および2で得られた粉末状の固
体電解質の任意の箇所から重量300mgを取り出
し、これを成型治具(図示省略)に入れ2000Kg/
cm2で加圧して直径10mmのタブレツト状に成型し
た。これを2枚のリチウム金属板からなる電極で
はさみ、直流電圧を印加して電流を測定し、イオ
ン導電率を求めた。このイオン導電率の測定は、
露点−60℃のアルゴンガスを流入したグローブボ
ツクスと称する外気を遮断したボツクス(図示省
略)内で行つた。 また、本発明との比較のために従来例で得られ
た固体電解質に対しても、同様の手段でイオン導
電率を求めた。その結果を下の固体電解質のイオ
ン導電率比較表に示す。
The present invention relates to a lithium ion conductive solid electrolyte, and particularly to a lithium ion conductive solid electrolyte containing lithium iodide as a main component. In recent years, various batteries using lithium as a negative electrode have been put into practical use, and as a result, there has been an increasing demand for the development of lithium solid-state batteries with long life and excellent leakage resistance. In order to develop this lithium solid state battery, it is necessary to obtain a solid electrolyte with high lithium ion conductivity. Conventionally, solid electrolytes formed by heat treating a mixture of lithium iodide and aluminum oxide (abbreviated as alumina hereinafter) have an ionic conductivity of approximately 2.5 × 10 -6 V/cm at room temperature, and are highly lithium ion conductive. It is known as one of the substances that has However, its ionic conductivity is still too low to be applied to lithium solid-state batteries, and the output current of solid-state batteries to which it is applied is very small. Therefore, it is necessary to improve the ionic conductivity of solid electrolytes. An object of the present invention is to provide a lithium ion conductive solid electrolyte having high ionic conductivity that can be used as an alternative to such conventional solid electrolytes. That is, the solid electrolyte of the present invention is formed by heat treating a mixture of lithium iodide and alumina containing one or more lithium salts such as lithium chloride, lithium bromide, lithium hydroxide, lithium oxide, and lithium perchlorate. It is characterized by Hereinafter, embodiments of the present invention will be described in detail in comparison with conventional examples. [Example 1] 60gr of lithium iodide powder and 30gr of alumina powder
and 10g of lithium chloride powder were thoroughly mixed in a mortar to obtain a mixed powder. This mixed powder was heat-treated at a temperature of 580° C. for 4 hours in an argon atmosphere, and then pulverized to obtain a powdery solid electrolyte. Moreover, a solid electrolyte consisting of three components was obtained in the same manner as described above by adding a lithium salt such as lithium bromide, lithium hydroxide, lithium oxide, or lithium perchlorate instead of lithium chloride. [Example 2] Lithium iodide powder 60gr and alumina powder 30gr
and 5g each of lithium chloride and lithium hydroxide powders
These were thoroughly mixed in a mortar to obtain a mixed powder consisting of four components. This mixed powder was heat-treated at a temperature of 580° C. for 4 hours in an argon atmosphere, and then pulverized to obtain a powdery solid electrolyte. Next, 300 mg in weight was taken out from any part of the powdered solid electrolyte obtained in Examples 1 and 2, and this was placed in a molding jig (not shown) to produce 2000 kg/
It was pressurized at cm 2 and molded into a tablet with a diameter of 10 mm. This was sandwiched between electrodes made of two lithium metal plates, a DC voltage was applied, the current was measured, and the ionic conductivity was determined. This ionic conductivity measurement is
The test was carried out in a box (not shown) called a glove box, which was cut off from outside air and into which argon gas with a dew point of -60°C was introduced. Further, for comparison with the present invention, the ionic conductivity of the solid electrolyte obtained in the conventional example was determined by the same method. The results are shown in the ionic conductivity comparison table of solid electrolytes below.

【表】 また、第1図に従来例および本発明による固体
電解質の室温におけるイオン導電率の組成依存性
を示す。図中Aは従来例によるものであり、イオ
ン導電率と沃化リチウムのアルミナに対する混合
重量比(重量%)との関係を示す。BおよびCは
本発明によるものであり、Bは塩化リチウム、C
は酸化リチウムが添加されており、各々沃化リチ
ウムとの重量比が1:6(リチウム塩:沃化リチ
ウム)になるように混合したものである。リチウ
ム塩と沃化リチウムの重量化は任意の値をとりう
るが、高イオン導電率を得るためにはリチウム塩
の沃化リチウムに対する重量化が50wt%以下で
あることがのぞましい。 上表のように本発明によれば、固体電解質のイ
オン導電率を従来の2倍以上にも高めることがで
きた。例えば本発明の固体電解質を電池に適用し
た場合、その内部抵抗が従来の固体電解質を適用
した場合のほぼ半分になると考えて良く、より大
きな出力電流の電池が作製できるようになる。 以上、本発明によれば、イオン導電率の高い固
体電解質を得ることができる。
[Table] Furthermore, FIG. 1 shows the composition dependence of the ionic conductivity at room temperature of the solid electrolytes according to the conventional example and the present invention. In the figure, A is based on a conventional example, and shows the relationship between the ionic conductivity and the mixing weight ratio (weight %) of lithium iodide to alumina. B and C are according to the invention, B is lithium chloride, C
Lithium oxide is added, and each is mixed with lithium iodide in a weight ratio of 1:6 (lithium salt: lithium iodide). The weight of the lithium salt and lithium iodide can be any value, but in order to obtain high ionic conductivity, it is preferable that the weight of the lithium salt to the lithium iodide is 50 wt% or less. As shown in the above table, according to the present invention, the ionic conductivity of the solid electrolyte could be increased to more than twice that of the conventional one. For example, when the solid electrolyte of the present invention is applied to a battery, the internal resistance can be considered to be approximately half of that when a conventional solid electrolyte is used, making it possible to produce a battery with a larger output current. As described above, according to the present invention, a solid electrolyte with high ionic conductivity can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は沃化リチウム−アルミナを主成分とす
る固体電解質の室温におけるイオン導電率と沃化
リチウムおよびリチウム塩のアルミナに対する混
合重量比との関係を表わす。 A……従来例の固体電解質、BおよびC……本
発明実施例の固体電解質。
FIG. 1 shows the relationship between the ionic conductivity at room temperature of a solid electrolyte mainly composed of lithium iodide and alumina and the mixing weight ratio of lithium iodide and lithium salt to alumina. A: solid electrolyte of conventional example, B and C: solid electrolyte of example of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 沃化リチウムと酸化アルミニウムに、塩化リ
チウム、臭化リチウム、水酸化リチウム、酸化リ
チウム、過塩素酸リチウムなどのリチウム塩を1
種以上含有させた混合物の熱処理体からなること
を特徴とするリチウムイオン導電性固体電解質。
1 Add lithium salt such as lithium chloride, lithium bromide, lithium hydroxide, lithium oxide, lithium perchlorate to lithium iodide and aluminum oxide.
A lithium ion conductive solid electrolyte comprising a heat-treated mixture containing at least one lithium ion conductive solid electrolyte.
JP56026503A 1981-02-25 1981-02-25 Lithium ion conductive solid electrolyte Granted JPS57140368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56026503A JPS57140368A (en) 1981-02-25 1981-02-25 Lithium ion conductive solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56026503A JPS57140368A (en) 1981-02-25 1981-02-25 Lithium ion conductive solid electrolyte

Publications (2)

Publication Number Publication Date
JPS57140368A JPS57140368A (en) 1982-08-30
JPS6114103B2 true JPS6114103B2 (en) 1986-04-17

Family

ID=12195284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56026503A Granted JPS57140368A (en) 1981-02-25 1981-02-25 Lithium ion conductive solid electrolyte

Country Status (1)

Country Link
JP (1) JPS57140368A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108565494B (en) * 2018-04-28 2020-04-10 中国地质大学(武汉) Method for preparing glass electrolyte capable of effectively controlling water vapor removal rate

Also Published As

Publication number Publication date
JPS57140368A (en) 1982-08-30

Similar Documents

Publication Publication Date Title
US4352869A (en) Solid state electrolytes
US3713897A (en) Electrolyte materials for high voltage solid electrolyte battery systems
JPH0654687B2 (en) Glassy oxidation-phosphorus sulfide solid lithium electrolyte
US3837920A (en) A battery containing a solid electrolyte having cationic defects
JPS6215995B2 (en)
Gibbard High temperature, high pulse power lithium batteries
JPH0670906B2 (en) Solid electrolyte battery
JPS6114103B2 (en)
JPH0458149B2 (en)
US2534403A (en) Primary cell
US3730775A (en) Tin halide cathode for solid electrolyte batttery systems
JPS6357913B2 (en)
US3533843A (en) Zinc electrode and method of forming
JPS6036064B2 (en) solid electrolyte battery
JP3379331B2 (en) Lead storage battery
JPH0430151B2 (en)
JPS60115169A (en) Solid electrolyte battery
JPS5942407B2 (en) Copper ion conductive solid electrolyte
JPS55111075A (en) Lithium battery
JPS6154161A (en) Lithium-ion-conducting solid electrolyte material
JP2553858B2 (en) Lead acid battery
JPS5861573A (en) Solid electrolyte cell and its production method
JPS5832359A (en) Alkaline zinc secondary battery
Abens et al. Development of high energy density primary batteries Fourth quarterly report, 22 Mar.-21 Jun. 1966
JP2001155736A (en) Sealed lead acid storage battery