JPS61139659A - Production of steel sheet plated with zn-al alloy with less blister - Google Patents
Production of steel sheet plated with zn-al alloy with less blisterInfo
- Publication number
- JPS61139659A JPS61139659A JP26261284A JP26261284A JPS61139659A JP S61139659 A JPS61139659 A JP S61139659A JP 26261284 A JP26261284 A JP 26261284A JP 26261284 A JP26261284 A JP 26261284A JP S61139659 A JPS61139659 A JP S61139659A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- plating
- less
- alloy
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
〈産業−Lの利用分野〉
本発明は、溶融亜鉛アルミニウム合金めっき鋼板のめっ
き表面欠陥、特に水素フクレの少ないZn−Al合金め
っき鋼板の製造方法に関するものである。
〈従来技術とその問題点〉
鋼板の耐食性を向上する方法の1つに溶融亜鉛めっき法
があり、その製品である溶融亜鉛めっき鋼板は、建材、
自動車、家電製品など種々の用途に広く使用されている
。
近年、これらの分野で耐食性を主とした品質向−1−が
さかんに試みられており、そのうちのいくつかは既に製
品化されている。ここで、品質向−Hのために採用され
ている方法は、亜鉛中へアルミニウムを主とする金属元
素を添加する方法がほとんどであり、添加部の大小によ
りその製品の品質」二の特徴はかなり異なったものにな
っている。
その中で、アルミニウム量が10%未満の亜鉛アルミニ
ウム合金めっき鋼板は、溶融亜鉛めっき鋼板と同様の犠
牲防食作用を有し、耐食性に優れることから、近年詳し
く研究されており、特開昭50−46528号、公表昭
7−500475号などに、その工業的な製造方法が開
示されている。
しかし、かかるめっき鋼板は、溶融めっき直後、あるい
は数11後にめっき層のふくれを生じることがあり、検
討の結果、溶融めっきラインの通元焼鈍過程で鋼板中に
吸収された水素がめつき後に放出されるためと推定され
た。
この現象は溶融亜鉛めっき鋼板の場合にも認められ、鋼
板の種類によりふくれの程度にちがいが生じるとされて
いる。
溶融亜鉛アルミニウム合金めっき鋼板のふくれは溶融亜
鉛めっき鋼板のものよりやや多いので、その防1ト法を
検討し、ふくれの少ない溶融めっき鋼板用鋼板を得て本
発明を完成した。
〈発明の目的〉
本発明はめつき表面欠陥すなわち水素ふくれの少ないZ
n−Al合金めっき鋼板の製造方法を提供することを[
]的とする。
〈発明の構成〉
本発明は、C: 0.003 wt%以下、O: 0.
03wt%以上、0.06wt%以下残部実質的にFe
よりなる鋼スラブを連続鋳造法で製造し、熱間圧延酸洗
後、冷間圧延するに際し、鋼中0量(%)と、冷延圧下
率(%)の積が少なくとも2.4以上となるように冷間
圧延し、鋼帯となし、次いで連続溶融めっきラインによ
り焼鈍およびAl:3wt%以上、10wt%以下、希
土類元素5 ppffl以」−11%以下、残部が実質
的にZnよりなるめっきを施すことを特徴とする、ふく
れの少ないZn−Al合金めっき鋼板の製造方法を提供
するものである。
以下に本発明を更に詳細に説明する。
高温で鋼中に吸蔵された水素が、温度の低下とともに放
出され−るのを防ぐために、鋼中に酸化物、炭化物、窒
化物、硫化物等の第2相を分散させることが有効である
ことは、はうろう用鋼板において、つまとびを防市する
方法としてよく知られている。特に冷延鋼板の場合、酸
化物を分散させることが有効である。これは冷間圧延時
、鋼素地と、酸化物の変形能の差により、酸化物の周辺
に空隙が形成され、その空隙に水素が吸蔵されるためと
考えられている。
したがって、はうろう用鋼板としては、鋼中酸素T14
が高いキャップド鋼が使用されている。しかし、キャッ
プド鋼は造塊、分塊工程を経て、スラブとされるため、
コスト高となるでけでなく、溶鋼の凝固に比較的時間が
かかるため、表面層に粗大な酸化物が存在する。かかる
粗大酸化物は、はうろうよりも厚みの薄い溶融金属めっ
きを施す場合、ピンホール等の表面欠陥の原因となるた
め、めっき用素材としては好ましいものではなかった。
そこで、酸素星の高い鋼を比較的急冷して凝固させ得る
連続鋳造法により製造し、酸化物を微細化する必要があ
る。しかし、酸素含有量が高い鋼を連続鋳造する場合、
鋼中にCが存在すると、COガスを発生し、その気泡が
スラブ中の表面近傍に残存し、熱延、冷延後、表面欠陥
を発生する。
かかるCOガス気泡の発生を防1にするためには鋼中の
C都を 0.003%以下とすればよい。
C撃を0.003%以下とすれば、鋼中O量が0.06
%以下の範囲では、CO気泡に起因する表面欠陥は現わ
れない。また、鋼中O量が0.03%未満では、水素フ
クレを防1卜する効果が期待できない。
上記のように成分調整された鋼は、常法により熱間圧延
、冷間圧延され、めっき原板とされるが、冷延圧下率を
適当にとることにより、水素ふくれの発生を効果的に防
市することができる。
すなわち、高酪素連鋳鋼においては、キャップド鋼と比
べ、酸化物が微細化しているため、十分に高い圧下率と
しなければ、空隙の形成は十分でなく、水素フクレ防1
に効果を発揮しない。このために必要な圧下率は、冷延
圧下率(%)と、鋼中のO量(wt%)の積が2.4以
−ヒであればよい。
かかる方法で製造された鋼板にZn−Al合金めっきを
施すに際し、焼鈍とめっきを連続的に行う連続めっき設
備により行う。
焼鈍温度は必要に応じめつき浴温以上の温度であれば、
いかなる温度であってもめつきは可能であるが、特に加
工…の鋼板を得る場合には、再結晶温度以上、Arβ変
態点以下とすることが好ましい。
めっきはZnを基するいかなるめっきにも、通常の冷延
鋼板と同様、適用可能であるが、特に水素ふくれが発生
しやすい3〜10%のAIを含有す、るZn−Al合金
めっきに適用すれば、その効果は特にN3著である。
さらにめっきのつきまわり性を改善し、ピンホール欠陥
の発生を防ぐために、めっき浴中に5ppmNtwt%
の範囲テRE M (Rare EarthMetal
)を添加すれば良好なめっき表面が得られる。REMと
しては、La 、 Ceなどを代表的に挙げることがで
きる。これが5 ppm未満ではつきまわり性改善の効
果が得られず、1wt%をこえると、つきまわり性改善
の効果が飽和し、コストアップとなるだけでなく、浴の
流動性が低下し、かえって表面欠陥を生じる原因となる
。
く実 施 例〉
以下に、本発明を実施例につき具体的に説明する。
(実施例■)
めっき浴中に、REMを添加することの効果を確かめる
ため、以下の実験を行った。5%A1−Zn中にREM
をそれぞれOlo、0005.0.001.0.005
、0.01.0.1豐t%含有する溶融金属浴に焼鈍
後の冷延鋼板を5 sec浸漬し、不めっきの程度を目
視判定した。用いた冷延鋼板はCを0.0025%、0
を0.042%含有する連鋳スラブを熱間圧延、酸洗脱
スケール後冷延圧下率75%で、圧延した板厚0.5
mmのものである。めっきに先立つ焼鈍は20%)+2
− N2雰囲気中で、750°C12m1nの焼鈍後4
70℃まで冷却し、440°C1又は470°Cに保持
しためっき浴に浸漬した。
めっきつきまわり性を表1に示す。
REM添加量が浴温440℃では、REM添加量が0.
0005%以下では不めっきが、発生する。また、浴温
か470℃ではREM添加量が、0.0005%以−4
二で健全なめっき表面が得られた。
すなわち、めっき浴中にREMを添加すれば、安定して
良好なめっき表面が得られることがわかった。
表 1
0:不めっき無
×:不めっき有
(実施例2)
C−Iil−を 0.003賢t%以下とし、0@が0
.025.0.031 、0.038 、0.043、
O,Q52賛t%の鋼を出鋼し、連続鋳造によりスラブ
となした後、常法にしたがい、熱間圧延により板厚3.
2 ll1m熱延板を得た。次いで、冷間圧延により
板厚0.4、0.6.0.8、1.0、1.2、1.4
mmの冷延鋼板とし、連続溶融めっき設備で焼鈍し、
熔融法で5%Al−Znめっきを施し、圧下率0.5%
の調質圧延して製品とした。
めっき浴浸漬前の焼鈍は750℃、120 secの均
熱で、雰囲気は20%H2−N2混合ガスとした。めっ
き浴の温度は440 ’0、めっき浴に浸漬する直前の
板温は470°Cとし、めっき厚さは20ルmとした。
各製品から切り出されたサンプルは100 ’Oの恒温
槽に1週間放置された後、水素フクレの有無の検査に供
された。第1図に板厚0.4mm(圧下率87.5%)
および1.0mm(圧下率68.8%)の時の鋼中の0
含有量と水素ふくれ発生情況の関係を示す。
高圧下率(87,5%)が得られた0、4 mmのもの
は、O含有量0.03%以トで、水素フクレを発生しな
い。圧下率(88,8%)が低い1 mmの方は、水素
フクレを防11−するためには、0.035%以上のO
が必要である。すなわち、水素ふくれ防]1−には鋼中
O量と冷延圧下率が高い程効果がある。鋼中O量が0.
03%以下となると、水素フクレ防止のためには・90
%以上の圧下率が必要となり、冷延の効率が低下し、工
業的には意味がなくなる。
したがって、鋼中O廣を0.03%以」二とした上で、
冷延圧下車を適当に選ぶことが必要である。
第2図に冷延圧下率と、鋼中O含有量の関係を示す。川
下率〔%〕×<Field of Application of Industry-L> The present invention relates to a method for manufacturing a Zn-Al alloy coated steel plate with fewer surface defects, particularly hydrogen blisters, on the hot-dip zinc-aluminum alloy coated steel plate. <Prior art and its problems> One of the methods for improving the corrosion resistance of steel sheets is hot-dip galvanizing, and the product, hot-dip galvanized steel sheets, can be used as building materials,
It is widely used in various applications such as automobiles and home appliances. In recent years, many attempts have been made to improve quality, mainly corrosion resistance, in these fields, and some of these have already been commercialized. Here, most of the methods adopted for quality improvement-H are methods of adding metal elements, mainly aluminum, to zinc, and the quality of the product depends on the size of the added part. It's quite different. Among them, zinc-aluminum alloy coated steel sheets with an aluminum content of less than 10% have the same sacrificial corrosion protection as hot-dip galvanized steel sheets and are excellent in corrosion resistance, so they have been studied in detail in recent years. No. 46528, Publication No. 7-500475, and other publications disclose industrial methods for producing the same. However, in such galvanized steel sheets, blistering of the plating layer may occur immediately after hot-dip plating or after a few seconds, and as a result of investigation, it has been found that hydrogen absorbed in the steel sheet during the original annealing process of the hot-dip galvanizing line is released after plating. It was assumed that this was to prevent This phenomenon is also observed in the case of hot-dip galvanized steel sheets, and it is said that the degree of blistering varies depending on the type of steel sheet. Since hot-dip zinc-aluminum alloy coated steel sheets have slightly more blisters than hot-dip galvanized steel sheets, we investigated ways to prevent such blisters, and completed the present invention by obtaining a steel sheet for hot-dip galvanized steel sheets with less blisters. <Object of the invention> The present invention provides Z with few plating surface defects, that is, hydrogen blisters.
To provide a method for manufacturing n-Al alloy plated steel sheet [
] target. <Structure of the Invention> The present invention provides C: 0.003 wt% or less, O: 0.003 wt% or less.
0.03 wt% or more, 0.06 wt% or less, the balance is substantially Fe
When manufacturing a steel slab by a continuous casting method and cold rolling it after hot rolling pickling, the product of the amount (%) in the steel and the cold rolling reduction (%) is at least 2.4 or more. Cold rolled to form a steel strip, then annealed on a continuous hot-dip plating line, Al: 3wt% or more, 10wt% or less, rare earth elements: 5 ppffl or less - 11% or less, the balance essentially consisting of Zn. The present invention provides a method for manufacturing a Zn-Al alloy plated steel sheet with less blistering, which is characterized by applying plating. The present invention will be explained in more detail below. In order to prevent hydrogen stored in steel at high temperatures from being released as the temperature drops, it is effective to disperse second phases such as oxides, carbides, nitrides, and sulfides in steel. This is a well-known method for preventing foot jumps in steel plates for crawlers. Particularly in the case of cold-rolled steel sheets, it is effective to disperse oxides. This is thought to be because, during cold rolling, voids are formed around the oxide due to the difference in deformability between the steel base and the oxide, and hydrogen is stored in the voids. Therefore, as a steel plate for crawling, oxygen in steel T14
Capped steel with high resistance is used. However, since capped steel is made into a slab through an ingot making and blooming process,
Not only is the cost high, but it also takes a relatively long time to solidify the molten steel, so coarse oxides are present in the surface layer. Such coarse oxides are not preferable as plating materials because they cause surface defects such as pinholes when performing hot-dip metal plating that is thinner than wax. Therefore, it is necessary to produce steel with a high oxygen star content by a continuous casting method that allows the steel to be cooled and solidified relatively quickly, and to refine the oxide. However, when continuously casting steel with high oxygen content,
When C exists in steel, CO gas is generated, and its bubbles remain near the surface of the slab, causing surface defects after hot rolling and cold rolling. In order to prevent the generation of such CO gas bubbles, the carbon content in the steel should be 0.003% or less. If the C impact is 0.003% or less, the O amount in the steel is 0.06
%, surface defects due to CO bubbles do not appear. Further, if the amount of O in the steel is less than 0.03%, no effect of preventing hydrogen blisters can be expected. The steel whose composition has been adjusted as described above is hot-rolled and cold-rolled by conventional methods and used as a plating base plate. By setting an appropriate cold-rolling reduction ratio, the occurrence of hydrogen blistering can be effectively prevented. City can. In other words, in high-butyric continuously cast steel, the oxides are finer than in capped steel, so unless the reduction rate is sufficiently high, the formation of voids is insufficient, and hydrogen blistering prevention is 1.
is not effective. The necessary rolling reduction for this purpose is such that the product of the cold rolling reduction (%) and the amount of O (wt%) in the steel is 2.4 or more. When applying Zn-Al alloy plating to the steel sheet manufactured by this method, it is performed using continuous plating equipment that continuously performs annealing and plating. The annealing temperature can be adjusted as required, as long as it is higher than the plating bath temperature.
Although plating is possible at any temperature, especially when obtaining a processed steel plate, it is preferable to set the temperature to be above the recrystallization temperature and below the Arβ transformation point. Plating can be applied to any Zn-based plating in the same way as ordinary cold-rolled steel sheets, but it is especially applicable to Zn-Al alloy plating containing 3 to 10% AI, which is prone to hydrogen blistering. Then, the effect is especially by N3. Furthermore, in order to improve the coverage of plating and prevent the occurrence of pinhole defects, 5ppmNtwt% was added to the plating bath.
Rare EarthMetal
), a good plating surface can be obtained. Representative examples of REM include La and Ce. If it is less than 5 ppm, the effect of improving the throwing power cannot be obtained, and if it exceeds 1 wt%, the effect of improving the throwing power is saturated, which not only increases the cost, but also reduces the fluidity of the bath, and the surface This may cause defects. EXAMPLES The present invention will be specifically described below with reference to Examples. (Example ■) In order to confirm the effect of adding REM to the plating bath, the following experiment was conducted. REM in 5% A1-Zn
Olo, 0005.0.001.0.005 respectively
The annealed cold-rolled steel sheet was immersed in a molten metal bath containing 0.01.0.1% by weight for 5 seconds, and the degree of unplating was visually determined. The cold-rolled steel sheet used contained 0.0025% C and 0
A continuously cast slab containing 0.042% of
It is of mm. Annealing prior to plating is 20%) +2
- After annealing at 750°C 12ml in N2 atmosphere 4
It was cooled to 70°C and immersed in a plating bath maintained at 440°C or 470°C. Table 1 shows the plating throwing power. At a bath temperature of 440°C, the amount of REM added is 0.
If it is less than 0.0005%, non-plating will occur. Furthermore, at a bath temperature of 470°C, the amount of REM added is 0.0005% or more.
In step 2, a sound plating surface was obtained. That is, it was found that by adding REM to the plating bath, a stable and good plated surface could be obtained. Table 1 0: No plating ×: No plating (Example 2) C-Iil- was set to 0.003% or less, and 0@ was 0
.. 025.0.031, 0.038, 0.043,
After tapping O, Q52 t% steel and forming it into a slab by continuous casting, it is hot-rolled to a thickness of 3.
A 2 11 m hot rolled sheet was obtained. Next, the plate thickness is 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 by cold rolling.
mm cold-rolled steel plate, annealed in continuous hot-dipping equipment,
5% Al-Zn plating is applied using the melting method, and the reduction rate is 0.5%.
The product was made into a product by temper rolling. The annealing before immersion in the plating bath was performed by soaking at 750° C. for 120 seconds, and the atmosphere was a 20% H2-N2 mixed gas. The temperature of the plating bath was 440'0, the temperature of the plate immediately before immersion in the plating bath was 470°C, and the plating thickness was 20 lm. Samples cut from each product were left in a constant temperature bath at 100'O for one week, and then tested for the presence of hydrogen blisters. Figure 1 shows a plate thickness of 0.4 mm (reduction rate of 87.5%).
and 0 in steel at 1.0 mm (reduction rate 68.8%).
The relationship between the content and the hydrogen blistering situation is shown. The 0.4 mm one with a high reduction rate (87.5%) has an O content of 0.03% or less and does not generate hydrogen blisters. For 1 mm with a low rolling reduction rate (88.8%), in order to prevent hydrogen blisters, an O of 0.035% or more is required.
is necessary. That is, the hydrogen blistering prevention] 1- is more effective as the O amount in the steel and the cold rolling reduction rate are higher. The amount of O in the steel is 0.
If it is less than 0.3%, in order to prevent hydrogen blisters, ・90
% or more is required, which reduces the efficiency of cold rolling and makes it industrially meaningless. Therefore, after setting the O-hiro in the steel to 0.03% or more,
It is necessary to select a cold rolling rolling car appropriately. Figure 2 shows the relationship between cold rolling reduction and O content in steel. Downstream rate [%] ×
〔0〕〔w七%〕≧2.4の領域で、水素
ふくれが発生しないことがわかる。
(実施例3)
実施例1と同様に製造した板厚1.4■の冷延板にAl
早の異なるAl−Zn合金めっきを溶融法で施し、水素
ふくれに及ぼすめっき中のAl量の影響を調べた。
焼鈍条件は、実施例2と同様とし、浴中のAllは0.
02.3.5.10および10%と変化させ、R,E
Mとしてはミツシュメタル(LaとCeの約手々の混合
物)を用い、これはすべての浴において0.005wt
%と一定とした。浴温はそれぞれの合金の融点より30
℃高くし、浴中に侵入する際の板温は浴温より更に20
°C高くした。
第3図に100℃、1週間の加熱処理をした後の水素ふ
くれの発生傾向を示す。
めっき槽中のAI濃度0.5%の時、最も水素ふくれが
でやすく、鋼中(0) (wt%)×〔圧下率〕(%
)が2.4以上の時に水素ふくれが防1Lされるが、め
っき中のAI濃度がこれよりも高くても、逆に低くても
水素ふくれが出難くなることがわかる。したがって、本
発明は特にZn中にAIが3〜10%の範囲で含有され
るめっき鋼板に適用することが適当である。
〈発明の効果〉
以上説明したところから明らかなように、本発明によれ
ば、Cを0.003%以下−10を0.03〜0.06
%含むスラブを、鋼中の酸素量(賛t%)と冷延圧下率
(%)の積が2.4以Hになるように圧延し、この冷延
鋼板HにAIを3〜10wt%を含むZn−Al合金め
っきを施せば、水素ふくれの少ないZn−Al合金めっ
き鋼板が得られる。It can be seen that hydrogen blistering does not occur in the range of [0] [w7%]≧2.4. (Example 3) Al
Al-Zn alloy plating with different speeds was applied by a melting method, and the effect of the amount of Al in the plating on hydrogen blistering was investigated. The annealing conditions were the same as in Example 2, and All in the bath was 0.
02.3.5.10 and 10%, R,E
Mitshu metal (a mixture of La and Ce) was used as M, which was 0.005wt in all baths.
It was set as a constant %. The bath temperature is 30° below the melting point of each alloy.
℃, and the plate temperature when entering the bath is 20°C higher than the bath temperature.
°C increased. Figure 3 shows the tendency of hydrogen blistering after heat treatment at 100°C for one week. When the AI concentration in the plating tank is 0.5%, hydrogen blisters are most likely to occur, and the hydrogen blisters in the steel (0) (wt%) x [reduction rate] (%
) is 2.4 or more, hydrogen blisters can be prevented by 1L, but it can be seen that hydrogen blisters are less likely to occur even if the AI concentration in the plating is higher or lower than this. Therefore, the present invention is particularly suitable for application to plated steel sheets containing Zn in a range of 3 to 10% of AI. <Effects of the Invention> As is clear from the above explanation, according to the present invention, C is 0.003% or less - 10 is 0.03 to 0.06
A slab containing % of AI is rolled so that the product of the amount of oxygen in the steel (t%) and the cold rolling reduction (%) is 2.4 or more H, and this cold rolled steel sheet H is coated with 3 to 10 wt% of AI. If Zn-Al alloy plating containing the following is applied, a Zn-Al alloy plated steel sheet with less hydrogen blistering can be obtained.
第1図はO含有量が水素ふくれの発生傾向に及ぼす影響
を示すグラフである。
第2図は冷延圧下率およびO含有量を水素ふくれ発生傾
向との関連で示すグラフである。
第3図は、めっき層中のAl量と水素ふくれの発生傾向
を示すグラフである。
;“゛)
、7′
:、、1
13 −33・6−FIG、1
08有量(wt ’ム)
○ネン棗7クレなし
△100’C、Iweek J&+=4”!×め一7
!遣後に発生
FIG、2
牟止仄下串(’/、)
FIG、3FIG. 1 is a graph showing the influence of O content on the tendency of hydrogen blistering. FIG. 2 is a graph showing cold rolling reduction and O content in relation to hydrogen blistering tendency. FIG. 3 is a graph showing the amount of Al in the plating layer and the tendency of hydrogen blistering. ;"゛), 7':,, 1 13 -33・6-FIG, 1 08 abundance (wt 'mu) ○Nenjutsu 7 creases △100'C, Iweek J&+=4"! × Meichi 7
! Occurs after the dispatch FIG, 2 Mutaku Kushigekushi ('/,) FIG, 3
Claims (1)
0.06wt%以下、残部実質的にFeよりなる鋼スラ
ブを連続鋳造法で製造し、熱間圧延酸洗後、冷間圧延す
るに際し、鋼中の酸素量(wt%)と、冷延圧下率(%
)の積が、少なくとも2.4以上となるように冷間圧延
して、鋼帯となし、次いで連続溶融めっきラインにより
焼鈍およびAl:3wt%以上、10wt%以下、希土
類元素5ppm以上、1%以下、残部が実質的にZnよ
りなるめっきを施すことを特徴とするふくれの少ないZ
n−Al合金めっき鋼板の製造方法。C: 0.003wt% or less, O: 0.03wt% or more,
When manufacturing a steel slab consisting of 0.06 wt% or less with the remainder substantially Fe by a continuous casting method, and cold rolling it after hot rolling pickling, the amount of oxygen in the steel (wt%) and the cold rolling reduction are determined. rate(%
) is cold rolled to form a steel strip so that the product is at least 2.4, and then annealed by a continuous hot-dip plating line and Al: 3 wt% or more, 10 wt% or less, rare earth elements 5 ppm or more, 1%. Hereinafter, Z with less blistering is characterized by being plated with the remainder essentially consisting of Zn.
A method for manufacturing an n-Al alloy plated steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26261284A JPS61139659A (en) | 1984-12-12 | 1984-12-12 | Production of steel sheet plated with zn-al alloy with less blister |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26261284A JPS61139659A (en) | 1984-12-12 | 1984-12-12 | Production of steel sheet plated with zn-al alloy with less blister |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61139659A true JPS61139659A (en) | 1986-06-26 |
Family
ID=17378205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26261284A Pending JPS61139659A (en) | 1984-12-12 | 1984-12-12 | Production of steel sheet plated with zn-al alloy with less blister |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61139659A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007098159A (en) * | 2004-11-16 | 2007-04-19 | Keiko Suda | Storage implement |
-
1984
- 1984-12-12 JP JP26261284A patent/JPS61139659A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007098159A (en) * | 2004-11-16 | 2007-04-19 | Keiko Suda | Storage implement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3636790B1 (en) | Hot dipped high manganese steel and manufacturing method therefor | |
JP2707928B2 (en) | Hot-dip galvanizing method for silicon-containing steel sheet | |
KR101428151B1 (en) | Zn-coated hot rolled steel sheet having high mn and method for manufacturing the same | |
JP3267178B2 (en) | Zn-Al alloy plated steel sheet with excellent workability | |
JPH06256903A (en) | Galvannealed steel sheet excellent in press workability and plating peeling resistance | |
JP3126911B2 (en) | High strength galvanized steel sheet with good plating adhesion | |
JP2848250B2 (en) | Hot-dip galvanized steel sheet | |
JPS61139659A (en) | Production of steel sheet plated with zn-al alloy with less blister | |
JPH06212383A (en) | Hot dip galvanizing method for silicon-containing steel sheet | |
JPS6048571B2 (en) | Manufacturing method of alloyed galvanized steel sheet for deep drawing | |
JPS6152321A (en) | Manufacture of zn-al alloy plated steel sheet having little blister | |
KR101568512B1 (en) | Method for manufacturing hot dip galvanized steel sheet with superior weldability | |
JP2002173756A (en) | High strength galvannealed steel sheet having excellent plating adhesion and corrosion resistance, and method of manufacturing the same | |
JPH04176854A (en) | Production of aluminized steel sheet excellent in adhesive strength of plating and external appearance characteristic | |
JP3198900B2 (en) | Manufacturing method of thin galvanized steel sheet | |
JPH0971851A (en) | Production of zinc-tin alloy plated steel sheet | |
US20240344190A1 (en) | Zinc alloy coated press-hardenable steels and method of manufacturing the same | |
JP3449244B2 (en) | Manufacturing method of galvannealed steel sheet | |
JPH08144036A (en) | Production of galvanized steel sheet by using hot rolled steel sheet as base metal | |
JPH0466647A (en) | Hot-dip galvanized cold rolled steel sheet for deep drawing having galvanized film excellent in adhesion and its manufacture | |
JP2001192795A (en) | High tensile strength hot dip plated steel plate and producing method therefor | |
JP2630136B2 (en) | Hot-dip galvanizing method for silicon-containing steel sheet | |
JPH0885858A (en) | Production of high tensile strength hot dip galvanized steel sheet | |
JPH0353380B2 (en) | ||
JPH02236263A (en) | Hot dip coating method for zinc or zinc alloy of low-temperature heating and reduction omission type |