JPS6113960Y2 - - Google Patents

Info

Publication number
JPS6113960Y2
JPS6113960Y2 JP9365379U JP9365379U JPS6113960Y2 JP S6113960 Y2 JPS6113960 Y2 JP S6113960Y2 JP 9365379 U JP9365379 U JP 9365379U JP 9365379 U JP9365379 U JP 9365379U JP S6113960 Y2 JPS6113960 Y2 JP S6113960Y2
Authority
JP
Japan
Prior art keywords
gas
reaction
purge gas
flow
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9365379U
Other languages
Japanese (ja)
Other versions
JPS5610841U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9365379U priority Critical patent/JPS6113960Y2/ja
Publication of JPS5610841U publication Critical patent/JPS5610841U/ja
Application granted granted Critical
Publication of JPS6113960Y2 publication Critical patent/JPS6113960Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

【考案の詳細な説明】 この考案は熱重量測定などの熱分析装置のふん
いきガス制御系の改良に関するものである。
[Detailed description of the invention] This invention relates to an improvement of the gas control system of a thermal analysis device such as a thermogravimetric measurement device.

熱分析の分野における熱重量測定
(Thermogravimetry略してTG)は示差熱分析
(DTA)とともに従来から物性の解析に広く用い
られている。このTGすなわち熱天びんでは金属
材料の耐食性試験がしばしば行われ、このばあい
反応管を用い、試料を加熱しながら腐食性ガスを
流して接触反応させその重量変化を長時間測定す
る。この反応管は石英で作られ二重構造になつて
おり試料は白金製の試料皿にのせ、同じく白金の
つり線が上記反応管の内管を通して天びんのさお
に試料皿をつり下げている。腐食性の反応ガスは
反応管の上部に設けたガス入口から一定流量で流
し込んで上記内管を経て試料に接触させたのち、
外管を通つて外管上部のガス出口から排出され
る。この際反応ガスが天びんのさお、支点、なら
びに分銅、皿などの天びん機構部や秤量検出部に
流入するのを防止するため空気またはN2ガスな
どの不活性のパージガスを通常20〜50ml/min位
の流速でパージ室のガス入口から流し込み、上記
反応管内管にて反応ガスと合流させ、ともに排出
されるようにしてある。このパージガスが正常に
流れている限り反応ガスが天びん室に流れ込むこ
とは無く天びん機構部などの金属部品は腐食され
る心配はない。しかしながら従来熱天びんなどの
反応ガス配管とパージガス配管とは別のものであ
り、それぞれのガスを遮断、または流量調整のた
めのコツクや調圧弁(ベローズバルブなど)も個
別に設けられており、その両流路の制御系には何
等の運動性が設けられていないのが通常である。
このため、たとえば測定終了時反応ガスコツクと
パージガスコツクをほとんど同時に閉止したとす
ると、反応管内の試料部にはパージガスとともに
反応ガスが残留し、これが時間の経過に伴ない天
びん室内に拡散することとなり前述した天びん機
構部や秤量検出部の金属部品を腐食し、その機能
を破壊する。また測定開始時においても誤まつて
パージガスコツクより先に反応ガスコツクを開い
たとすると天びん室に一時的ではあるが反応ガス
が流入し、機構の各部に浸入して、つぎにパージ
ガスが流れても機構の微小ギヤツプなどに反応ガ
スが残留するおそれがあり、上記同様腐食事故の
因となる。従来一般に熱分析装置は測定が長時間
にわたることが多くとくに金属試料の耐食性試験
などは数100〜1000時間にも及ぶため任意時間後
に測定を自動的に停止するリミツトスイツチをは
じめ停電対策、加熱炉温度暴走防止策など各種の
安全機能を備えたものは多いが上記のような測定
者の瞬間的な操作ミスに起因する腐食事故防止機
能を設けた熱分析装置が無く、往々にして高価な
装置が腐食によつて使用不能となることがある。
腐食環境での熱分析が盛んになている現在、安全
機能を具備した装置が強く要望されている。
In the field of thermal analysis, thermogravimetry (TG), along with differential thermal analysis (DTA), has traditionally been widely used to analyze physical properties. This TG (thermal balance) is often used to test the corrosion resistance of metal materials. In this case, a reaction tube is used to heat the sample while flowing a corrosive gas to cause a contact reaction and measure the weight change over a long period of time. This reaction tube is made of quartz and has a double structure, and the sample is placed on a platinum sample plate, with a platinum suspension wire passing through the inner tube of the reaction tube and suspending the sample plate from the balance pole. . The corrosive reaction gas is introduced at a constant flow rate from the gas inlet provided at the top of the reaction tube, passes through the inner tube, and comes into contact with the sample.
The gas passes through the outer tube and is discharged from the gas outlet at the top of the outer tube. At this time, in order to prevent the reaction gas from flowing into the balance rod, fulcrum, balance mechanism parts such as weights and pans, and the weighing detection part, an inert purge gas such as air or N2 gas is usually added at 20 to 50 ml/min. It is made to flow into the purge chamber from the gas inlet at a flow rate of about 10 min, merge with the reaction gas in the reaction tube inner tube, and be discharged together. As long as this purge gas is flowing normally, the reaction gas will not flow into the balance chamber, and there is no fear that metal parts such as the balance mechanism will be corroded. However, conventionally, the reactant gas piping and purge gas piping in thermobalances, etc., are separate, and separate valves and pressure regulating valves (bellows valves, etc.) are provided to shut off each gas or adjust the flow rate. Normally, the control systems for both channels are not provided with any kind of mobility.
For this reason, for example, if the reaction gas tank and purge gas tank are closed almost simultaneously at the end of a measurement, the reaction gas will remain in the sample section in the reaction tube along with the purge gas, and this will diffuse into the balance chamber over time, causing the above-mentioned Corrodes the metal parts of the balance mechanism and weighing detection part, destroying their functions. Also, if you accidentally open the reaction gas tank before the purge gas tank at the start of a measurement, the reaction gas will flow into the balance chamber, albeit temporarily, and enter various parts of the mechanism, and even if the purge gas flows next, the mechanism will not be able to function properly. There is a risk that reactive gases may remain in small gaps, etc., which can cause corrosion accidents as described above. Conventional thermal analyzers typically take measurements over a long period of time, especially corrosion resistance tests on metal samples, which can take several hundred to 1,000 hours.Therefore, there are limit switches that automatically stop the measurement after an arbitrary period of time, power outage countermeasures, and heating furnace temperature. Although many of them are equipped with various safety features such as measures to prevent runaway, there are no thermal analysis instruments equipped with functions to prevent corrosion accidents caused by instantaneous operational errors by the operator as mentioned above, and expensive instruments are often required. It may become unusable due to corrosion.
Nowadays, thermal analysis in corrosive environments is becoming popular, and there is a strong demand for equipment equipped with safety functions.

この考案は上記の現況に鑑みてなされたもの
で、従来の熱天びんなどの熱分析装置の試料物質
を反応させる腐食性ガスが反応管以外の装置機構
部たとえば天びん機構部などに拡散するこを防止
するパージガスの操作を測定者に委せていたため
欠点を解消し、上記パージガスおよび反応ガス流
路に改良を加えることによつて反応ガスの反応管
以外の装置内部への拡散を完全に防止しうる機能
を備え、腐食事故のおそれがなく、測定者の操作
を簡単容易にした装置の提供を目的とするもので
ある。すなわち腐食性反応ガスの流通ふんい気内
で物質の熱的変化を計測する装置において、上記
反応ガスをパージするパージガスの流路にその流
れを確認する手段を設け、その流れの存在する時
にのみ反応ガス流路の開閉弁を開くように構成し
たことを特徴とする熱分析装置にかかるものであ
る。
This idea was made in view of the above-mentioned current situation, and it prevents the corrosive gas that reacts with the sample material of conventional thermal analysis devices such as thermal balances from diffusing into the device mechanism other than the reaction tube, such as the balance mechanism. By eliminating the shortcomings of relying on the operator to operate the purge gas, and by making improvements to the purge gas and reaction gas flow paths, we have completely prevented the reaction gas from diffusing into the inside of the device other than the reaction tube. The object of the present invention is to provide a device that is equipped with a function that allows measurement, is free from corrosion accidents, and is simple and easy to operate for a measurer. In other words, in a device that measures the thermal change of a substance in a corrosive reactive gas flowing atmosphere, a means is provided in the flow path of the purge gas that purges the reactive gas, and a means is provided to check the flow only when the flow is present. The present invention relates to a thermal analysis apparatus characterized in that an on-off valve of a reaction gas flow path is configured to open.

以下図面によつてこの考案の実施例装置を説明
する。第1図はこの考案の熱天びんに適用したば
あいの構成を示すブロツク図(反応管断面図を含
む)で、1は電子天びんのさお、2は支点でトー
トバンド式でその支承部は図示を省く。3はつり
線、4は試料、5はカウントウエイト、6はひよ
う量検出部で、ランプ、シヤツタ、光電変換素止
などを内蔵している。7はガラス容器で天びん室
10を外気に対して密封している。11は二重反
応管上部外管で熱電対12の挿入口および反応ガ
ス入口14が設けてあり、その下端11Aで内管
15を融着している。16は二重反応管下部外管
でガス排出口17が設けてある。ガス排出口17
は機構により底部にあるものもある。18は加熱
炉である。ブロツク20はパージガス供給源でパ
ージガスが空気のばあいはブロア、N2のときは
ガスボンベなどである。21は腐食性反応ガス供
給源でSO2,NO2,C,NH3などのガスボン
ベで、22,23はそれぞれの流路である。24
は天びん室のパージガス入口である。以上の構成
は従来の熱天びんのふんい気試験装置と同一であ
るが、この考案の特徴はつぎに述べる電磁弁
SV1,SV2および電磁弁制御装置25を含む自動
制御系にある。26は交流電源、SA,SB,SC
は前述した長時間測定中の各種の安全機能の操作
信号で図示しない記録計、熱分析装置その他から
発信されて制御装置25に伝送されるもので、詳
しくは第2図でその説明を行なう。第2図は電磁
弁制御装置25の電気回路で、26はAC電源端
子、Sは電源スイツチ、PBは分析開始用の手動
操作自動復帰接点で、これをONするとタイマ接
点Tsが常時ONのためリレーR1が付勢され、その
a接点R1aがONとなり、R1を自己保持する。R1
の付勢と同時に第1図で示したパージガス流路の
電磁弁SV1を開きパージガスPGを矢印のように
天びん室10内に20〜50ml/minの流速で流し、
そのパージガスPGは反応管上部入口から上部外
管11に流入し、さらに内管15の上端15Aか
ら内管15内に流入して試料4に接し、下部外管
16のガス排出口17から排出される。これを第
3図のタイムチヤートでは図のt1時点でパージ
ガスPGのフローが発生したことを示している。
つぎに第3図のt2時、反応ガスRGのフローが
発生するまでのデレータイムTDをたとえば30秒
とか1分とかというように任意に設定するのが第
2図の遅延リレーTLである。このデレータイム
TD後にTLのa接点TLa1がONとなり、反応ガス
用電磁弁SV2が開く。同時にTLの今一つのa接
点TLa2がONとなるが、この回路はリレーR2のb
接点R2bがOFFであり、後記するt3時点まで導通
しない。この直列回路のLSA,LSB,LSCはすべ
てリミツトスイツチなどであり、これらは常時
ONで、LSAは測定終了時手動でガスを止めるリ
セツトスイツチであり、これは分析操作盤に設け
られている。LSBは加熱炉18保護用のリミツト
スイツチであり、これは例えば記録計に制限温度
にて作動するようにしてある。LSCは停電対策用
リミツトスイツチであり、これは停電時OFFす
るリレーなどのb接点などである。第1図にもど
つて電磁弁SV2が開くことで反応ガスRGは反応
管外管のガス入口14から点線矢印のように流入
するがパージガスPGの流れに押され天びん室1
0へは入らず内管入口15Aからパージガスと合
流して試料4と接触反応させたのち17の排出口
から排出される。この2つのガスの流れが測定時
間TAたとえば数100時間の間定常状態で続けら
れ腐食性試験がされるのである。つぎに予定時間
たつてt3時点LSAのリセツトスイツチをOFFする
と電磁弁SV2は閉となる。このときリレーR2は同
時にOFFとなり、R2のb接点R2bが図のように
ONすると、機械式タイマ(ぜんまい時計内蔵)
TのクラツチコイルTCが作動してクラツチを解
放し、タイマTは作動開始し、反応ガスRGの反
応管内の残留ガスをパージガスPGが完全にパー
ジする一定時間△tの間SV1を開のままにしてお
く。△t経過後t4時点でタイマ接点TSがはじめ
てOFFとなり、電磁弁SV1が閉じて測定は完了す
る。以上がこの考案のパージガスと反応ガスの流
れの自動制御動作であり、パージガスが流れてい
ない状態で反応ガスが流入する心配もなく、また
測定後の反応管の残留腐食性ガスが天びん室に拡
散することも未然に防止できるものとなつてい
る。また機械式タイマを用いているので測定修了
時停電していても確実に△tの清浄時間は確保さ
れる。ただ停電が永いときはSV1も閉となるので
バイパスを設け、手動でパージガスを△間流すこ
とも必要である。22,23のガス流路は出来る
だけ短かくし制御性を良くしている。以上がこの
考案のふんいきガス制御系を熱天びんに適用した
実施例の説明であるが、この考案は熱天びんに限
定されるものではなく、腐食性反応ガスを用いこ
れが分析装置を腐食させるおそれのある熱分析装
置のどのようなものにも同様に適用できるもので
ある。また電磁弁制御回路も図示に限定されるも
のでなく、たとえば最初のスタート時、2段式押
ボタンにて上記デレータイムTDを与えるもので
もよい。要は第3図のようなタイムチヤートが形
成できるものであればよいのであり、そのような
各種考えられるものがこの考案の範囲に入ること
はいうまでもない。
An embodiment of the invention will be explained below with reference to the drawings. Figure 1 is a block diagram (including a cross-sectional view of the reaction tube) showing the configuration of this invention when applied to a thermobalance. 1 is the electronic balance rod, and 2 is the fulcrum, which is a tote band type, the supporting part of which is not shown in the figure. Omit. 3 is a suspension wire, 4 is a sample, 5 is a count weight, and 6 is a weighing quantity detection section, which has a built-in lamp, shutter, photoelectric conversion device, etc. 7 is a glass container that seals the balance chamber 10 from the outside air. Reference numeral 11 denotes an upper outer tube of a double reaction tube, which is provided with an insertion port for a thermocouple 12 and a reaction gas inlet 14, and an inner tube 15 is fused at its lower end 11A. Reference numeral 16 denotes a lower outer tube of a double reaction tube, and a gas outlet 17 is provided therein. Gas outlet 17
Some are located at the bottom depending on the mechanism. 18 is a heating furnace. Block 20 is a purge gas supply source, such as a blower when the purge gas is air, and a gas cylinder when the purge gas is N2 . 21 is a corrosive reaction gas supply source, which is a gas cylinder such as SO 2 , NO 2 , C 2 , NH 3 , etc., and 22 and 23 are respective flow paths. 24
is the purge gas inlet of the balance chamber. The above configuration is the same as the conventional thermobalance air test equipment, but the feature of this invention is the solenoid valve described below.
The automatic control system includes SV 1 , SV 2 and a solenoid valve control device 25 . 26 is an AC power supply, S A , S B , S C
are operation signals for various safety functions during the long-term measurement described above, which are transmitted from a recorder, thermal analyzer, etc. (not shown) and transmitted to the control device 25, and will be explained in detail with reference to FIG. Figure 2 shows the electric circuit of the solenoid valve control device 25, where 26 is the AC power terminal, S is the power switch, and PB is the manual operation automatic return contact for starting analysis.When this is turned on, the timer contact Ts is always on. Relay R 1 is energized and its a contact R 1a is turned on, self-holding R 1 . R 1
At the same time as energizing, open the solenoid valve SV 1 of the purge gas flow path shown in Fig. 1 and let the purge gas P G flow into the balance chamber 10 at a flow rate of 20 to 50 ml/min as shown by the arrow.
The purge gas PG flows into the upper outer tube 11 from the upper inlet of the reaction tube, further flows into the inner tube 15 from the upper end 15A of the inner tube 15, contacts the sample 4, and is discharged from the gas outlet 17 of the lower outer tube 16. Ru. The time chart in FIG. 3 shows that the flow of purge gas PG occurs at time t1 in the diagram.
Next, at time t2 in FIG. 3, the delay time TD until the flow of the reactant gas RG is generated is arbitrarily set to, for example, 30 seconds or 1 minute using the delay relay TL shown in FIG. this delay time
After TD, TL's a contact TL a1 turns ON and reactant gas solenoid valve SV 2 opens. At the same time, another a contact of TL, TL a2 , turns on, but this circuit is connected to the b of relay R2.
Contact R2b is OFF and does not conduct until time t3 , which will be described later. LS A , LS B , and LS C in this series circuit are all limit switches, etc., and these are always
When ON, LSA is a reset switch that manually stops the gas at the end of the measurement, and this is located on the analysis operation panel. LS B is a limit switch for protecting the heating furnace 18, which is set to operate at a limited temperature in the recorder, for example. LS C is a limit switch for power outage protection, and this is a b contact such as a relay that turns off in the event of a power outage. Returning to Fig. 1, when the solenoid valve SV 2 opens, the reaction gas RG flows in from the gas inlet 14 of the reaction tube outer tube as shown by the dotted arrow, but is pushed by the flow of the purge gas PG and enters the balance chamber 1.
0, but joins with the purge gas from the inner tube inlet 15A, causes a contact reaction with the sample 4, and is then discharged from the outlet 17. The flow of these two gases is continued in a steady state for a measuring time TA, for example, several hundred hours, and the corrosion test is performed. Next, when the scheduled time has elapsed and the reset switch of LS A is turned off at time t3 , solenoid valve SV 2 is closed. At this time, relay R 2 turns OFF at the same time, and the b contact R 2b of R 2 turns OFF as shown in the figure.
When turned on, a mechanical timer (built-in wind-up clock)
The clutch coil TC of T operates to release the clutch, the timer T starts operating, and SV 1 remains open for a certain period of time △t during which the purge gas PG completely purges the residual gas in the reaction tube of the reaction gas RG. Keep it. After Δt has elapsed, at time t4 , timer contact TS turns OFF for the first time, solenoid valve SV 1 closes, and the measurement is completed. The above is the automatic control operation of the flow of purge gas and reaction gas of this invention, so there is no need to worry about reaction gas flowing in when purge gas is not flowing, and corrosive gas remaining in the reaction tube after measurement will diffuse into the balance chamber. It is now possible to prevent this from happening. Furthermore, since a mechanical timer is used, the cleaning time of Δt can be ensured even if there is a power outage when the measurement is completed. However, if the power outage is long, SV 1 will also be closed, so it is necessary to install a bypass and manually flow purge gas for △. The gas flow paths 22 and 23 are kept as short as possible to improve controllability. The above is an explanation of an example in which the gas control system of this invention is applied to a thermal balance. However, this invention is not limited to thermal balances, and uses a corrosive reactive gas, which may corrode the analyzer. It is equally applicable to any existing thermal analysis device. Further, the electromagnetic valve control circuit is not limited to that shown in the drawings, and the delay time TD may be provided using a two-stage push button at the first start, for example. In short, any device that can form a time chart like the one shown in FIG. 3 will suffice, and it goes without saying that various possible devices fall within the scope of this invention.

この考案は以上のように構成されているので、
従来の熱分析装置とくに熱天びんなどにおいて、
腐食性反応ガスとパージガスの流路制御が測定者
の手動操作を主体としていたため測定手段の不適
やミスが高価な装置機構部を腐食させ分析装置の
機能の破壊の因となつていた欠点を解消し、上記
パージガスの流れているときだけ反応ガスを流す
ように構成し装置機構部への腐食性ガスの流入や
拡散を完全に防止し、腐食事故のおそれが全くな
く安心して使用でき、かつ操作容易な便宜な装置
を提供しえたものといえる。
This idea is structured as above, so
In conventional thermal analyzers, especially thermobalances,
The flow path control of the corrosive reaction gas and purge gas was mainly performed manually by the measurer, so an inappropriate measurement method or mistake could corrode the expensive device mechanism and destroy the function of the analyzer. The reactor gas is configured to flow only when the purge gas is flowing, completely preventing the inflow and diffusion of corrosive gases into the mechanical parts of the device, allowing for safe use without any risk of corrosion accidents, and It can be said that we have provided a convenient device that is easy to operate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の実施例としての熱重量測定
装置(熱天びん)の反応管断面図ならびにその他
の構成を示すブロツク図、第2図は電磁弁制御装
置の電気回路図、第3図はパージガスおよび腐食
性反応ガスの流れのタイムチヤートである。 RG……腐食性反応ガス(SO2,NO2,C
、NH3など)、PG……パージガス(空気、N2
ど)、1……天びんのさお、2……天びんの支
点、3……つり線、4……試料、5……分銅、6
……ひよう量検出部、10……天びん室、11…
…反応管上部外管、14……反応ガス入口、15
……反応管内管、16……反応管下部外管、17
……ガス排出口、18……加熱炉、SV1……パー
ジガス流路電磁弁、SV2……反応ガス流路電磁
弁、R1,R2……リレーコイル、TL……遅延リレ
ー、T……機械式タイマ、TC……タイマクラツ
チコイル、TD……測定前のパージガスのみの時
間、△t……測定後のパージガスのみの時間。
Fig. 1 is a cross-sectional view of a reaction tube and other components of a thermogravimetric measuring device (thermobalance) as an embodiment of this invention, Fig. 2 is an electric circuit diagram of a solenoid valve control device, and Fig. 3 is a block diagram showing other components. This is a time chart of the flow of purge gas and corrosive reaction gas. RG...Corrosive reactive gas (SO 2 , NO 2 , C
2 , NH3, etc.), PG...purge gas (air, N2 , etc.), 1...balance rod, 2...balance fulcrum, 3...hanging wire, 4...sample, 5...weight, 6
...Weight detection unit, 10...Balance chamber, 11...
... Reaction tube upper outer tube, 14 ... Reaction gas inlet, 15
... Reaction tube inner tube, 16 ... Reaction tube lower outer tube, 17
...Gas outlet, 18...Heating furnace, SV 1 ...Purge gas flow path solenoid valve, SV 2 ...Reaction gas flow path solenoid valve, R1 , R2 ...Relay coil, TL...Delay relay, T ...Mechanical timer, TC...Timer clutch coil, TD...Time for only purge gas before measurement, △t...Time for only purge gas after measurement.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 腐食性反応ガスの流通ふんい気内で物質の熱的
変化を計測する装置において、上記反応ガスを試
料室部以外の計測部に対してパージするパージガ
スの流路にその流れを確認する手段を設け、その
流れの存在する時にのみ反応ガス流路の開閉弁を
開くように構成したことを特徴とする熱分析装
置。
In an apparatus for measuring thermal changes of a substance in a corrosive reaction gas flow atmosphere, a means for checking the flow of the reaction gas is provided in the purge gas flow path for purging measurement parts other than the sample chamber part. 1. A thermal analysis device characterized in that the on-off valve of the reactant gas flow path is opened only when the flow is present.
JP9365379U 1979-07-05 1979-07-05 Expired JPS6113960Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9365379U JPS6113960Y2 (en) 1979-07-05 1979-07-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9365379U JPS6113960Y2 (en) 1979-07-05 1979-07-05

Publications (2)

Publication Number Publication Date
JPS5610841U JPS5610841U (en) 1981-01-29
JPS6113960Y2 true JPS6113960Y2 (en) 1986-04-30

Family

ID=29326560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9365379U Expired JPS6113960Y2 (en) 1979-07-05 1979-07-05

Country Status (1)

Country Link
JP (1) JPS6113960Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8926171B2 (en) * 2009-04-29 2015-01-06 Waters Technologies Corporation Simultaneous differential thermal analysis system

Also Published As

Publication number Publication date
JPS5610841U (en) 1981-01-29

Similar Documents

Publication Publication Date Title
US3985505A (en) Combustion system
WO2002048705A2 (en) Gas sensor calibration system
AU2002222165A1 (en) Gas sensor calibration system
US20060286674A1 (en) Method and device for an accelerated oxidation test of fuels or petroleum products, as well as a computer program for controlling such a device, and a corresponding computer readable storage medium
EP0466067B1 (en) Apparatus for detecting leaks in a system for delivering gaseous fuel
US7062952B2 (en) Combustible gas detector having flow-through sensor container and method for measuring such gases
JPS6113960Y2 (en)
US2762568A (en) Gas analysis and combustion control apparatus
US3305318A (en) Rapid carbon determination
JP3138009B2 (en) Method and apparatus for evaluating impurity adsorption amount
US3886929A (en) Breath tester null memory system
JPH1019865A (en) Exhalation analyzer
US5377532A (en) Method and system for in-line detection of moisture in uranium-containing powders
US3172732A (en) Analytical method and apparatus
JPS61262646A (en) Apparatus for calibrating gas detection alarm
JP2010276589A (en) Thermal desorption gas analyzer
Hozumi et al. An automatic microdetermination of carbon, hydrogen, and nitrogen in organic compounds using data printing system
JPS62118241A (en) Solid moisture measuring instrument for continuously measuring many samples
US20230341343A1 (en) Gas detection device and gas detection process with a sensor and with an oxidizer
Hemmerich et al. Advances in temperature derivative control and calorimetry
JP3194728B2 (en) Weight change measuring instrument and weight change measuring device using the same
GB2278203A (en) Device and method for calibration of sensors
US2422129A (en) Measurement of oxygen in gas mixtures
JPS5831412A (en) Controlling method and its apparatus for multipoint sampling values
JPH0718858B2 (en) Catalyst automatic test equipment