JPS6113959Y2 - - Google Patents

Info

Publication number
JPS6113959Y2
JPS6113959Y2 JP14575079U JP14575079U JPS6113959Y2 JP S6113959 Y2 JPS6113959 Y2 JP S6113959Y2 JP 14575079 U JP14575079 U JP 14575079U JP 14575079 U JP14575079 U JP 14575079U JP S6113959 Y2 JPS6113959 Y2 JP S6113959Y2
Authority
JP
Japan
Prior art keywords
plasma
spectrometer
argon
atoms
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14575079U
Other languages
Japanese (ja)
Other versions
JPS5662564U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14575079U priority Critical patent/JPS6113959Y2/ja
Publication of JPS5662564U publication Critical patent/JPS5662564U/ja
Application granted granted Critical
Publication of JPS6113959Y2 publication Critical patent/JPS6113959Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【考案の詳細な説明】 本考案はプラズマ炎を光源とする発光分光分析
における雑音を低減した発光分光分析装置に関す
る。
[Detailed Description of the Invention] The present invention relates to an optical emission spectrometer that reduces noise in optical emission spectrometry using a plasma flame as a light source.

発光分光分析法の一つに高周波誘導結合プラズ
マを光源とする方法がある。この場合プラズマを
構成する元素としてアルゴンがよく用いられる。
アルゴンを用いた高周波誘導結合プラズマではア
ルゴンガスの温度は10000〓、電子温度はそれ以
上になつている。このような状態ではプラズマ領
域内ににはアルゴン原子の励起状態のもの、イオ
ン化されたもの、更にイオンの励起状態のもの等
があり、アルゴンの原子及びイオンが発光してい
る。発光分析はこのようなプラズマの中に試料を
導入し、試料成分の原子を熱或は電子衝撃によつ
て励起してその原子個有のスペクトル線を発光さ
せ、それを分光装置を通して検出することによつ
て元素の検出,定量を行う。このとき上述したよ
うにプラズマを構成する元素(上例のアルゴン)
の原子及びイオンも発光しているがそれは全く不
要の光であり測定上雑音の一つである。本考案は
プラズマ炎を光源とする発光分光分析における上
記した雑音を低減することを目的としてなされ
た。
One of the methods of emission spectroscopy is a method that uses high-frequency inductively coupled plasma as a light source. In this case, argon is often used as an element constituting the plasma.
In high-frequency inductively coupled plasma using argon, the temperature of the argon gas is 10,000, and the electron temperature is higher than that. In such a state, there are excited argon atoms, ionized argon atoms, and further ion excited states in the plasma region, and the argon atoms and ions emit light. In optical emission analysis, a sample is introduced into such plasma, and the atoms of the sample components are excited by heat or electron bombardment to emit spectral lines unique to the atoms, which are then detected through a spectrometer. Detect and quantify elements using At this time, as mentioned above, the elements that make up the plasma (argon in the above example)
Atoms and ions also emit light, but this is completely unnecessary light and is a type of noise in measurements. The present invention was made with the aim of reducing the above-mentioned noise in emission spectroscopic analysis using a plasma flame as a light source.

本考案装置は原子吸光を利用して試料加熱源と
してのプラズマ自身が出している光を吸収除去す
ることを特徴とするものである。
The device of the present invention is characterized by utilizing atomic absorption to absorb and remove light emitted by the plasma itself, which serves as a sample heating source.

原子はそのエネルギー準位間のエネルギー差E
と等しいエネルギーを有する光子を吸収して励起
状態となる。即ち原子はE=hνの関係で振動数
νの光を吸収する(共鳴吸収)。アルゴンガスプ
ラズマ内のアルゴンから発せられる光スペクトル
のうち特に強いエネルギーを有する共鳴線が分析
装置の光路中に置かれたアルゴンガスの原子によ
つて共鳴吸収されることになる。
An atom has an energy difference E between its energy levels
absorbs a photon with energy equal to , becoming excited. That is, atoms absorb light of frequency ν (resonance absorption) with the relationship E=hν. A resonance line having particularly strong energy in the optical spectrum emitted from argon in the argon gas plasma is resonantly absorbed by the argon gas atoms placed in the optical path of the analyzer.

以下実施例によつて本考案を説明する。1はプ
ラズマトーチで外周に高周波コイル2が設けら
れ、アルゴンガスが供給されてプラズマ炎3を形
成している。試料は霧状にしてキヤリヤガスによ
りプラズマトーチ1内に導入され、プラズマ炎中
で加熱励起されて試料成分原子個有のスペクトル
線を出す。プラズマ炎3から発せられた光はコン
デンサレンズ5によつて分光器4の入射スリツト
S上に集光される。分光器4内には凹面回析格子
Gと、分析対象元素のスペクトル線の回析像の形
成される位置に受光素子P1〜Pnが配置されて
いる。分光器4は密閉構造で中にアルゴンガスが
充してある。このため入射スリツトSから入射し
た光のうちプラズマ炎を形成しているアルゴン原
子から出たスペクトル線は分光器4内でS→G→
P1〜Pnの光路を進行中に分光器内のアルゴン
ガスに吸収される。このため受光素子P1〜Pn
の出力におけるアルゴン原子の共鳴線による背景
雑音が著るしく低減される。
The present invention will be explained below with reference to Examples. Reference numeral 1 denotes a plasma torch, which is provided with a high-frequency coil 2 around its outer periphery, and is supplied with argon gas to form a plasma flame 3. The sample is atomized and introduced into the plasma torch 1 using a carrier gas, and heated and excited in a plasma flame to emit spectral lines unique to the atoms of the sample components. The light emitted from the plasma flame 3 is focused by a condenser lens 5 onto an entrance slit S of a spectrometer 4. Inside the spectrometer 4, a concave diffraction grating G and light receiving elements P1 to Pn are arranged at positions where diffraction images of spectral lines of the element to be analyzed are formed. The spectrometer 4 has a sealed structure and is filled with argon gas. Therefore, among the light incident from the entrance slit S, the spectral lines emitted from the argon atoms forming the plasma flame are transmitted from S→G→
While traveling along the optical path P1 to Pn, it is absorbed by the argon gas inside the spectrometer. Therefore, the light receiving elements P1 to Pn
The background noise due to resonance lines of argon atoms at the output of is significantly reduced.

上述実施例では光源のプラズマを形成させる元
素ガスの発する共鳴スペクトルを吸収する吸収槽
として分光器そのものを利用しているが、光源プ
ラズマから分光器までの光路内にプラズマ形成元
素と同じ元素を充した槽を配置してもよい。吸収
率は元素の濃度に比例するから充填ガス圧を高め
ることによつて槽の所要長さを短縮することがで
きる。
In the above embodiment, the spectrometer itself is used as an absorption tank that absorbs the resonance spectrum emitted by the elemental gas that forms the plasma of the light source, but the optical path from the light source plasma to the spectrometer is filled with the same element as the plasma forming element. A tank may also be installed. Since the absorption rate is proportional to the concentration of the element, the required length of the tank can be reduced by increasing the filling gas pressure.

本考案装置は上述したような構成でプラズマ炎
を形成する元素(上例ではアルゴン)と同じ元素
を充した槽を光源のプラズマ炎から分光器の受光
素子に至る間の光路内に配置したもので、プラズ
マ炎から放射される雑音スペクトルのうち特に強
度が大で測定の妨害作用の大なるプラズマ炎形成
元素自身の発する共鳴線を効果的に吸収すること
によつてプラズマ炎を利用した発光分光分析の感
度を高めることができる。
The device of the present invention has the above-mentioned configuration, and a tank filled with the same element that forms the plasma flame (argon in the above example) is placed in the optical path between the plasma flame of the light source and the light receiving element of the spectrometer. In the noise spectrum emitted from a plasma flame, emission spectroscopy using a plasma flame is achieved by effectively absorbing resonance lines emitted by the plasma flame forming elements themselves, which have a particularly high intensity and have a large interference effect on measurements. The sensitivity of analysis can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の一実施例装置の平面図である。 1……プラズマトーチ、4……分光器、G……
凹面回折格子、P1〜Pn……受光素子。
The drawing is a plan view of an apparatus according to an embodiment of the present invention. 1... Plasma torch, 4... Spectrometer, G...
Concave diffraction grating, P1 to Pn...photodetector.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 光源用プラズマ形成装置と密閉型の分光器とよ
りなり、上記分光器内に試料を除くプラズマ形成
用元素と同じ元素を充填してプラズマの発する光
を吸収する吸光槽に兼用したプラズマ光源発光分
光分析装置。
Plasma light emission spectroscopy consists of a plasma formation device for a light source and a closed-type spectrometer, and the spectrometer is filled with the same elements as those for plasma formation, excluding the sample, and doubles as an absorption tank to absorb the light emitted by the plasma. Analysis equipment.
JP14575079U 1979-10-20 1979-10-20 Expired JPS6113959Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14575079U JPS6113959Y2 (en) 1979-10-20 1979-10-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14575079U JPS6113959Y2 (en) 1979-10-20 1979-10-20

Publications (2)

Publication Number Publication Date
JPS5662564U JPS5662564U (en) 1981-05-27
JPS6113959Y2 true JPS6113959Y2 (en) 1986-04-30

Family

ID=29376926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14575079U Expired JPS6113959Y2 (en) 1979-10-20 1979-10-20

Country Status (1)

Country Link
JP (1) JPS6113959Y2 (en)

Also Published As

Publication number Publication date
JPS5662564U (en) 1981-05-27

Similar Documents

Publication Publication Date Title
Lajunen et al. Spectrochemical analysis by atomic absorption and emission
Wrede et al. Continuum state spectroscopy: A high resolution ion imaging study of IBr photolysis in the wavelength range 440–685 nm
Butcher et al. Laser-excited atomic fluorescence spectrometry in flames, plasmas and electrothermal atomisers. A review
JP5085578B2 (en) Aerosol spectrometer and calibration method thereof
US5088820A (en) Laser enhanced ionization detector for Raman spectroscopy
JPS6113959Y2 (en)
Meijer et al. Degenerate four-wave mixing on weak transitions in the gas phase using a tunable excimer laser
Winefordner Principles, methodologies and applications of atomic fluorescence spectrometry
US4743111A (en) Emission spectrochemical analyzer
US3503686A (en) Atomic absorption spectrophotometer
JP2002328090A (en) Concentration measuring device for trace amount of component
Turk et al. Simultaneous detection of laser-enhanced ionization and laser-induced fluorescence in flames: noise correlation studies
Puxley et al. Fluorescent Molecular Hydrogen in the Extragalactic Giant H II Region NGC 5461
Bolshov et al. Analytical characterization of laser excited atomic fluorescence of bismuth
Pappas et al. Formation of a cesium plasma by continuous-wave resonance excitation
Schlemmer et al. AAS: a simple and rugged system for trace and ultratrace elemental analysis
SU842429A1 (en) Absorbtion analysis method
JPS6318249A (en) Laser emission spectral analysis method and apparatus
Jenke et al. Carbon furnace atomic emission spectrometry with a constant temperature atomizer
KR100506812B1 (en) A method analyzing infinitesimal quantity of metallic contaminants in ammounium hydroxide sample for semiconductor device
MocHIzuKI et al. Analysis of black inclusions of fused silica by inductively coupled plasma mass spectrometry using laser ablation technique
JPH02242140A (en) Breakdown spectral analysis method and apparatus
Shaw et al. The influence of Rydberg states on the photodissociation of nitrous oxide
JP2003075408A (en) Method and apparatus for analysis of metal element in solid sample
Kristianpoller et al. Luminescence and the generation of F-centres by synchrotron radiation in NaF crystals