JPS61139567A - Walking machine - Google Patents
Walking machineInfo
- Publication number
- JPS61139567A JPS61139567A JP59259320A JP25932084A JPS61139567A JP S61139567 A JPS61139567 A JP S61139567A JP 59259320 A JP59259320 A JP 59259320A JP 25932084 A JP25932084 A JP 25932084A JP S61139567 A JPS61139567 A JP S61139567A
- Authority
- JP
- Japan
- Prior art keywords
- leg
- weight
- force
- walking machine
- legs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D57/00—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
- B62D57/02—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業」−の利用分野〉
本発明は歩行機械に関し、重量による制御誤差をなくす
よう企図したものである。[Detailed Description of the Invention] <Industry> Field of Application The present invention relates to a walking machine and is intended to eliminate control errors due to weight.
〈従来の技術及びその問題点〉
近年、複数の脚を持つ歩行機械が開発された。第1図は
各脚に3自由度を持たせた関節形4脚歩行機械の一例を
示す。第1図において、1は本体、2は股水平回転軸、
3は股垂直回転軸、4は瞠目転軸、5は、ト腿、6ば下
腿である。またθ1.θ2.θ3は各回転軸2,3゜4
の回転角すなわち関節角である。この歩行機械において
脚の各回転軸2,3.4には、歩行機械の本体]の自重
2脚の自重、慣性。<Prior art and its problems> In recent years, walking machines with multiple legs have been developed. FIG. 1 shows an example of an articulated four-legged walking machine in which each leg has three degrees of freedom. In Fig. 1, 1 is the main body, 2 is the crotch horizontal rotation axis,
3 is the vertical axis of rotation of the crotch, 4 is the axis of rotation of eyes, 5 is the upper thigh, and 6 is the lower leg. Also θ1. θ2. θ3 is each rotation axis 2, 3°4
This is the rotation angle of , or the joint angle. In this walking machine, each axis of rotation 2, 3.4 of the legs has the weight of the main body of the walking machine, the weight of the two legs, and the inertia.
負荷及び摩擦等の外乱が加わるが、このうち本体1の自
重による影響が最も大きくこれが誤差の最大の原因にな
っている。その理由は回転軸2,3.4を駆動する直流
モータの特性が、第2図のトルク(T)−回転数(N)
特性に示すようになっており、同し指令値(電圧V)−
(1’あっても負荷(トルクT)が異なれば速度(回転
数N)が変ってしまうことになるからである。これを解
決するためには、第3図に示すように、目標値と現在値
との偏差△X(位置制御の場合は位置偏差)に応した出
力■二l(△X
(但しkばケ、イノ)
を与え制細ずればよい。しかしながら、モー夕にかかる
1−ルクが大幅に変動j7且つその関係がランダムとな
る場合は、精度の高い制御を行うためには、上式のゲイ
ンl(を複雑(こ変える必要が生し回転軸の数が増えれ
ば、新たに制御手法を開発しなければならす、また計算
時間(CPUタイム)の増大等を招来し大変な労力を要
する。Although external disturbances such as load and friction are added, the influence of the own weight of the main body 1 is the greatest and this is the largest cause of error. The reason for this is that the characteristics of the DC motor that drives the rotating shafts 2 and 3.4 are as follows: Torque (T) - Rotation speed (N)
The same command value (voltage V) -
(This is because even if there is 1', the speed (rotational speed N) will change if the load (torque T) differs. In order to solve this problem, as shown in Figure 3, the target value and It is sufficient to reduce the output by giving an output corresponding to the deviation △X (position deviation in case of position control) from the current value. If the torque fluctuates widely and the relationship is random, in order to perform highly accurate control, it is necessary to change the gain l in the above formula in a complicated manner. Therefore, it is necessary to develop a control method, which also increases calculation time (CPU time) and requires a great deal of effort.
位置制御または速度制御をして歩行を行なう従来の歩行
機械では、サーボ剛性の向上により、自重に起因する制
御誤差を解消しようとしていたが満足な結果は得られな
か、っな。In conventional walking machines that use position control or speed control for walking, attempts have been made to eliminate control errors caused by self-weight by improving servo rigidity, but satisfactory results have not been obtained.
その理由を、第4図を参照しつつ説明する。The reason for this will be explained with reference to FIG.
なお、この説明においてサーボ剛性の大小は機械的剛性
の大小と対応するため、機械的剛性を用いて説明し理解
を容易にする。Note that in this explanation, the magnitude of servo rigidity corresponds to the magnitude of mechanical rigidity, so the explanation will be made using mechanical rigidity to facilitate understanding.
実際に脚を制御するとその軌跡には必ず誤差が生し、ま
た接地面には凹凸がある。この場合、第4図1alに正
面図で示すように、本体1及び脚1’、、 12,13
.14が完全剛体であるとすると、たとえ1μlでも位
置誤差が生ずると、平面を構成する3本の脚1..12
,13のみが接地し、脚44が浮いてしまう。P#14
が浮くと、平面図で示す第4図[blかられかるように
、脚1!4と対角線位置にある脚12にかかる負荷も減
少し、本体1はほとんど脚1..13で支えることにな
る。更に障害物を越えて歩行する場合では、平面図で示
す第4図(C1かられかるように、脚e4が浮くと脚e
2の負荷が軽くなり、脚1.1でほとんどの負荷を支え
、更に非対称であるため脚13にかかる負荷が極めて大
きくなる。このように各脚にかかる負荷が異なると、第
2図を基にすでに説明したように、各脚の回転軸を駆動
する直流モータによる制御が乱れ振動現象が生じてしま
う。結局サーボ剛性を高めると脚が浮いてしまうという
欠点が出るばかりでなく、場合によっては振動現象が生
してしまう。When actually controlling the legs, there are always errors in the trajectory, and the ground surface is uneven. In this case, as shown in the front view in FIG. 4 1al, the main body 1 and the legs 1', 12, 13
.. Assuming that 14 is a completely rigid body, if a position error of even 1 μl occurs, the three legs 1. .. 12
, 13 are in contact with the ground, and the legs 44 are floating. P#14
When the body 1 floats, the load applied to the leg 12 diagonally to the leg 1!4 decreases, as shown in the plan view of FIG. .. It will be supported by 13. Furthermore, when walking over an obstacle, as shown in Figure 4 (C1) shown in the plan view, when leg e4 floats, leg e
The load on leg 1.2 is lighter, with leg 1.1 carrying most of the load, and furthermore, the asymmetry causes the load on leg 13 to be extremely high. If the load applied to each leg is different in this way, as already explained with reference to FIG. 2, the control by the DC motor that drives the rotating shaft of each leg will be disrupted, and a vibration phenomenon will occur. In the end, increasing the servo rigidity not only has the disadvantage that the legs float, but also causes vibration phenomena in some cases.
なお制御上の誤差により生ずる拘束や歩行機械の自重に
より脚にかかる負荷のアンバランスを解決するために脚
の剛性を落とし積極的にコンプライアンスを用いる方法
がある。In order to solve the unbalance of the load on the legs due to restraints caused by control errors and the weight of the walking machine, there is a method of reducing the stiffness of the legs and actively using compliance.
この方法では多少位置がずれていても、それにより生ず
るバネ反力が小さいため、脚の拘束力は減少し脚の浮き
上がりはなくなる。しかし、第4図(d)゛に正面図で
示すように、脚l。With this method, even if the position is slightly deviated, the resulting spring reaction force is small, so the restraining force on the legs is reduced and the legs do not lift up. However, as shown in the front view in FIG. 4(d), the leg l.
12)I13,14が接地しているときに脚13を上げ
た場合には荷重分布が変化し、荷重の大きい脚14がた
わみ歩行機械は図中矢印で示すように」、す不安定な方
向に傾く。特に重心が高い場合にこの現象は著しい。12) If the leg 13 is raised while the I13 and 14 are on the ground, the load distribution will change, and the leg 14 with the larger load will bend, causing the walking machine to move in an unstable direction as shown by the arrow in the figure. lean towards. This phenomenon is particularly noticeable when the center of gravity is high.
一方、力制御をして歩行を行なう歩行機械では、脚の浮
き上がりは生じにくいが、十分なコノプラ・イアンスが
ないと信頼性及び精度の高い力の検出はむづかしく、安
定な制御ができず実用には至らなかっtこ。On the other hand, in a walking machine that uses force control to walk, lifting of the legs is less likely to occur, but without sufficient conoplasty, it is difficult to detect force with high reliability and accuracy, and stable control cannot be achieved for practical use. It didn't reach that point.
本発明は、上記従来技術に鑑み、精度の高い制御か行な
え、安定かつ効率的な動作をすることのできる歩行機械
を提供することを目的とする。SUMMARY OF THE INVENTION In view of the above-mentioned prior art, it is an object of the present invention to provide a walking machine that can perform highly accurate control and operate stably and efficiently.
く問題点を解決するための手段〉
上記目的を達成する本発明は、複数の脚を持つ歩行機械
において、自重により各脚にかかる負荷と均衡する力を
発生する弾性体を、各脚に夫々備えたことを特徴とする
。Means for Solving the Problems> The present invention achieves the above object by providing a walking machine with a plurality of legs, in which each leg is provided with an elastic body that generates a force that balances the load applied to each leg due to its own weight. It is characterized by being equipped.
〈作 用〉
歩行時に発生する最も大きな力の一つである自重支持力
の一部を、構造が簡単で軽量・安価なバネ、ゴム、形状
記憶合金等の弾性体で負担でき、アクチュエータが発生
しなければならない力を減少させ、かつ制御性が向上す
る。<Function> Part of the self-weight support force, which is one of the largest forces generated when walking, can be borne by elastic bodies such as springs, rubber, and shape memory alloys, which have a simple structure, are lightweight, and are inexpensive, and actuators are generated. This reduces the force that must be applied and improves controllability.
く実 施 例〉
第1図に示す4脚3関節形歩行機械の例で本発明を説明
する。歩行機械上の前後方向、左右方向、上下方向にX
、y、Z軸をとる。Embodiments The present invention will be explained using an example of a four-legged, three-jointed walking machine shown in FIG. X in the front/back, left/right, and up/down directions on the walking machine
, take the y and Z axes.
歩行m械の傾きが小さい場合、自重はZ軸方向のみであ
る。本体1が大きく傾いた場合には、傾斜セッサや視覚
等で傾斜角を測定することにより自重のX成分及びX成
分を容易に算出される。脚の関節角をθ1、θ2)θ3
とするとこれらはエンコーダやポテンショメータ等で測
定でき、脚先の接地点の位置も容易に算出される。これ
らの重心位置、傾き、脚先位置から自重により各回転軸
2.3.4にかかる負荷は次式で求められる。When the inclination of the walking machine is small, its own weight is only in the Z-axis direction. If the main body 1 is tilted significantly, the X component and the X component of its own weight can be easily calculated by measuring the tilt angle using a tilt sensor or visually. The joint angle of the leg is θ1, θ2) θ3
These can be measured using encoders, potentiometers, etc., and the position of the grounding point of the leg tip can also be easily calculated. The load applied to each rotating shaft 2.3.4 due to its own weight can be calculated from the following equation based on the position of the center of gravity, the inclination, and the position of the tip of the leg.
t=、l−f
但し
【 : 3関節にかかる負荷によるトルクを表わずベ
クトル
1 : 自重により1つの脚にかかる力を表わずベタ
1〜ル
J”: 3×3行列の変換行列
本発明では、上式で求めた自重補償トルク九を後述する
弾性体で各回転軸2.3.4に発生させる。このため、
自重により各回転軸2.3.4にかかる負荷と自重補償
1〜ルクとが均衡ずろ。この結果、位置制御あるいは速
度制御を行なうアクチュエータは、位置あるいは速度を
制御するための力を発生させるだけてよく、精度の高い
制御を行なうことができる。t=, l-f However, [: does not represent the torque due to the load applied to 3 joints, vector 1: represents the force applied to one leg due to its own weight. In the invention, the self-weight compensation torque 9 obtained by the above formula is generated on each rotating shaft 2.3.4 by an elastic body to be described later.For this reason,
There is a balance between the load applied to each rotating shaft 2.3.4 due to its own weight and the self-weight compensation 1~l. As a result, the actuator that performs position control or speed control only needs to generate force for controlling the position or speed, and can perform highly accurate control.
また移動指令により歩行した後に停止したとき、誤差に
より脚が接地面から離れようとした場合には、弾性体に
よる自重補償1−ルク6が脚を接地させる方向に動かす
ため浮き上がりを防止でき、各脚が所要トルクを分担し
て安定した状態で静止する。一方移動指令を与えて歩行
を行なう場合には、自重と自重補償トルクtが均衡(ッ
ているため自重の影響がなくなり、各脚とも無負荷で重
作するモー l’となるから非常に安定した位置追従が
でき各脚の同期が滑らかに行なえる。In addition, when you stop after walking according to a movement command, if your legs try to leave the ground due to an error, the elastic body's own weight compensation 1 - Luk 6 moves your legs in the direction of touching the ground, preventing them from lifting up. The legs share the required torque and stand still in a stable state. On the other hand, when walking by giving a movement command, the self-weight and self-weight compensation torque t are in balance, so the influence of the self-weight disappears, and each leg becomes a heavy load with no load, resulting in extremely stable motion l'. This enables smooth position tracking and synchronization of each leg.
ここで本発明の具体例を瞠目転軸で説明する。第5図に
示すように、瞠目転軸4では軸受10により上腿5と下
腿6とが回動自在に連結されており、軸受10内に備え
たアクチュエータ (直流モータ)により駆動する。バ
ネ11ばバネ固定具12により、その一端が上腿5に固
定されており、その他端が下腿6に固定されている。し
たがってこのバネ11の全部又は一部を補償することが
できる。この効果は、脚の動作範囲があまり大きくなく
自重によって脚にかかる力の方向が極端に変化しない場
合に有効である。この場a1バネ11による補償力は必
ずしも自重による負荷と同してなくてもよく、これより
も大きくてもよい。要は、アクチュエータ (モータ)
にかかる自重)・ルクの一部でも平均的に補償できれば
、それtlけアクチュエータの負担する動力が軽減され
省力化が図れ、更に高移動が可能となる。具体例を説明
すると、第6図[alに示すように自重による力の変化
があった場合、自重補償力が与えられていると、アクチ
ュエータが実際に出力する力は第6図(blに示すよう
に少なくてよい。Here, a specific example of the present invention will be explained with reference to the axis of rotation. As shown in FIG. 5, the upper leg 5 and lower leg 6 are rotatably connected to each other by a bearing 10 in the eye roll shaft 4, and is driven by an actuator (DC motor) provided within the bearing 10. One end of the spring 11 is fixed to the upper leg 5 by a spring fixture 12, and the other end is fixed to the lower leg 6. All or part of this spring 11 can therefore be compensated. This effect is effective when the motion range of the legs is not very large and the direction of the force applied to the legs due to its own weight does not change drastically. In this case, the compensating force by the a1 spring 11 does not necessarily have to be the same as the load due to its own weight, and may be larger than this. In short, the actuator (motor)
If even a part of the self-weight (self-weight) and the torque applied to the actuator can be compensated on an average basis, the power borne by the actuator will be reduced, saving labor and making it possible to move even further. To explain a specific example, when there is a change in force due to its own weight as shown in Fig. 6 [al], if the self-weight compensation force is given, the force actually output by the actuator will be as shown in Fig. 6 (bl). As in, less is better.
補償力を発生ずる弾性体としてはバネ、ゴヤの他、形状
記憶合金(超弾性合金)を用いることができる。形状記
憶合金は、第7図に示すように、変位がある値より大き
くなると弾性力が一定となるため、脚の稼動角によって
はバネやコムよりもすぐれた効果を発揮ずろこともてき
る。As the elastic body that generates the compensating force, in addition to springs and Goya, shape memory alloys (superelastic alloys) can be used. As shown in Figure 7, shape memory alloys have a constant elastic force when the displacement exceeds a certain value, so depending on the operating angle of the legs, they may be more effective than springs or combs.
〈発明の効果〉
以上実施例とともに具体的に説明したように本発明によ
れば、負荷と均衡する力を発生する弾性体を備えたため
、アクチュエータは自重支持のための大きな力を発生す
る必要がなくなり制御性が向上する。また本発明では軽
量・安価な弾性体を用いるtlけで、浮き上がりを防止
でき、円滑な歩行を行なうことができる。<Effects of the Invention> As specifically explained above in conjunction with the embodiments, according to the present invention, since the actuator is provided with an elastic body that generates a force that balances the load, it is not necessary for the actuator to generate a large force to support its own weight. This improves controllability. Furthermore, in the present invention, by using a lightweight and inexpensive elastic body, lifting can be prevented and smooth walking can be achieved.
本発明の制御方法は歩行機械全般に適用されるものであ
り、特に、原子炉格納容器内軽作業点検用ロボソ1−(
C/Vロホット)、極限作業用ロホッ1−1原子炉用小
形点検ロボット、原子炉用搬送口ホットに適用して有用
である。The control method of the present invention is applicable to walking machines in general, and is particularly applicable to the robot robot 1-(
It is useful for application to C/V Rohot), Rohot 1-1 small inspection robot for nuclear reactors for extreme work, and nuclear reactor transfer port hot.
第1図は4脚3関節形歩行機械を示す斜視図、第2図は
直流モータの特性を示す特性図、第3図はゲイン特性を
示す特性図、第4図は従来の歩行機械の歩行状態を説明
するものであり、第4図1a) ldlは正面図、第4
図tb+ (C)は平面図である。
第5図は本発明の一実4施例を示す構成図、第6図(a
+、(b)は脚にかかる力の関係を示す特性図、第7図
は弾性体のばね特性を示す特性図である。
図 面 中、
1は本体、
2は股水平回転軸、
3は股垂直回転軸、
4ば瞠目転軸、
5は上腿、
6は下腿、
10はアクチュエータ)
11はバネ、
12はバネ固定具、
1、、 12’、 J3. 14は脚である。
第1図
ζ に
上池さくk)
第41
(a)
(b)(c)
(d)第5図
第6図
(a)
(b)
。
第7図
変 4立 (角 度)Figure 1 is a perspective view of a four-legged, three-jointed walking machine, Figure 2 is a characteristic diagram showing the characteristics of a DC motor, Figure 3 is a characteristic diagram showing gain characteristics, and Figure 4 is a conventional walking machine walking machine. This is to explain the condition, Figure 4 1a) ldl is the front view,
Figure tb+ (C) is a plan view. FIG. 5 is a block diagram showing a fourth embodiment of the present invention, and FIG. 6 (a
+, (b) is a characteristic diagram showing the relationship between the forces applied to the legs, and FIG. 7 is a characteristic diagram showing the spring characteristics of the elastic body. In the drawing, 1 is the main body, 2 is the horizontal rotation axis of the crotch, 3 is the vertical rotation axis of the crotch, 4 is the rotation axis of the thigh, 5 is the upper leg, 6 is the lower leg, 10 is the actuator), 11 is the spring, and 12 is the spring fixing device. , 1,, 12', J3. 14 is a leg. 41 (a)
(b)(c)
(d) Figure 5 Figure 6 (a) (b)
. Figure 7 4 standing (angle)
Claims (2)
脚にかかる負荷と均衡する力を発生する弾性体を、各脚
に夫々備えたことを特徴とする歩行機械。(1) A walking machine having a plurality of legs, characterized in that each leg is provided with an elastic body that generates a force that balances the load applied to each leg due to its own weight.
憶合金であることを特徴とする歩行機械。(2) A walking machine according to claim 1, wherein the elastic body is a shape memory alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59259320A JPS61139567A (en) | 1984-12-10 | 1984-12-10 | Walking machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59259320A JPS61139567A (en) | 1984-12-10 | 1984-12-10 | Walking machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61139567A true JPS61139567A (en) | 1986-06-26 |
Family
ID=17332440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59259320A Pending JPS61139567A (en) | 1984-12-10 | 1984-12-10 | Walking machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61139567A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4862980A (en) * | 1988-10-06 | 1989-09-05 | Quest Systems, Inc. | Walking machine |
US5842533A (en) * | 1994-12-02 | 1998-12-01 | Agency Of Industrial Science And Technology, Ministry Of International Trade And Industry | Multi-legged walking apparatus |
US7938708B2 (en) | 2005-11-03 | 2011-05-10 | Mattel, Inc. | Articulated walking toy device |
CN104008698A (en) * | 2014-05-23 | 2014-08-27 | 天津商业大学 | Four-footed walking robot consisting of multi-connecting-rod mechanism |
CN104176146A (en) * | 2014-09-17 | 2014-12-03 | 哈尔滨理工大学 | Toe-supporting type quadruped robot with climbing, grabbing and excavating functions |
CN112027549A (en) * | 2020-10-12 | 2020-12-04 | 苏州品超智能设备有限公司 | Transport mechanical dog and use method thereof |
CN114524058A (en) * | 2022-02-21 | 2022-05-24 | 南通大学 | Bionic water strider scientific research ship |
-
1984
- 1984-12-10 JP JP59259320A patent/JPS61139567A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4862980A (en) * | 1988-10-06 | 1989-09-05 | Quest Systems, Inc. | Walking machine |
US5842533A (en) * | 1994-12-02 | 1998-12-01 | Agency Of Industrial Science And Technology, Ministry Of International Trade And Industry | Multi-legged walking apparatus |
US7938708B2 (en) | 2005-11-03 | 2011-05-10 | Mattel, Inc. | Articulated walking toy device |
CN104008698A (en) * | 2014-05-23 | 2014-08-27 | 天津商业大学 | Four-footed walking robot consisting of multi-connecting-rod mechanism |
CN104176146A (en) * | 2014-09-17 | 2014-12-03 | 哈尔滨理工大学 | Toe-supporting type quadruped robot with climbing, grabbing and excavating functions |
CN104176146B (en) * | 2014-09-17 | 2016-03-30 | 哈尔滨理工大学 | A kind of finger support type quadruped robot with climbing crawl and data mining duty |
CN112027549A (en) * | 2020-10-12 | 2020-12-04 | 苏州品超智能设备有限公司 | Transport mechanical dog and use method thereof |
CN112027549B (en) * | 2020-10-12 | 2021-11-19 | 苏州品超智能设备有限公司 | Transport mechanical dog and use method thereof |
CN114524058A (en) * | 2022-02-21 | 2022-05-24 | 南通大学 | Bionic water strider scientific research ship |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11738456B2 (en) | Palletizing boxes | |
JP2520019B2 (en) | Drive controller for legged mobile robot | |
US5049797A (en) | Device and method for control of flexible link robot manipulators | |
Tso et al. | Vibration control for a flexible-link robot arm with deflection feedback | |
US8868240B2 (en) | Walking robot and pose control method thereof | |
US20120083922A1 (en) | Walking robot and control method thereof | |
WO2020175949A1 (en) | Gravity compensation assembly, and robot waist structure including same | |
JP6914344B2 (en) | Master arm and robot | |
CN113348129A (en) | Gyro-stabilized leg type robot | |
JPS61139567A (en) | Walking machine | |
CN113631324A (en) | Multi-body controller and robot | |
JPH03264280A (en) | Industrial robot | |
JP6934640B2 (en) | Robot control method | |
Yi et al. | Biped locomotion by reduced ankle power | |
KR102154922B1 (en) | Gravity Compensation Assembly Having Elasticity Unit and Waist Structure Having the Same | |
JPS61134805A (en) | Controlling method of walking machine | |
JP4646640B2 (en) | Mobile cart and control method of mobile cart | |
JPS61139566A (en) | Walking machine | |
JPS62251284A (en) | Harmonious control method for multi-leg mechanism | |
JP2995660B2 (en) | Rotary shaft support structure without friction | |
JP2003080478A (en) | Attitude control device and control method of machine having leg | |
WO2021162851A1 (en) | Non-planar linear actuator | |
JPS61134806A (en) | Controlling method of walking machine | |
KR102154921B1 (en) | Gravity Compensation Assembly Having Link Unit and Waist Structure Having the Same | |
JPH01257589A (en) | Industrial robot |