JPS61134805A - Controlling method of walking machine - Google Patents

Controlling method of walking machine

Info

Publication number
JPS61134805A
JPS61134805A JP59255680A JP25568084A JPS61134805A JP S61134805 A JPS61134805 A JP S61134805A JP 59255680 A JP59255680 A JP 59255680A JP 25568084 A JP25568084 A JP 25568084A JP S61134805 A JPS61134805 A JP S61134805A
Authority
JP
Japan
Prior art keywords
control
leg
walking machine
force
revolving shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59255680A
Other languages
Japanese (ja)
Inventor
Takeo Omichi
武生 大道
Akihisa Okino
晃久 沖野
Shigetaka Hosaka
保坂 重孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59255680A priority Critical patent/JPS61134805A/en
Publication of JPS61134805A publication Critical patent/JPS61134805A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent floating-up, and to make walking smooth by adding a force control to a position control or a speed control. CONSTITUTION:A four leg and three joint type walking machine is formed by a body 1, a groin horizontal revolving shaft 2, a groin vertical revolving shaft 3, a knee revolving shaft 4, legs of a thigh 5 and a crural part 6, etc., and these legs are walked. In this case, when (x)-(y) axes are set in front and rear, right and left, and upper and lower directions of the walking machine, in case when an inclination of the walking machine is small, the empty weight is in only the Z axis direction and in case when its inclination is large, (x)-(y) components of the empty weight are calculated by measuring an inclination angle by an inclination sensor and a visual sense, etc. A load applied to each revolving shaft 2-4 is derived by the empty weight from these position of the center of gravity, inclination,and leg tip position, and force control flor generating a force which is balanced to this calculated load, in each revolving shaft 2-4 is executed. In this way, it will suffice that a position control system or a speed control system generates only a force for controlling a position and a speed, and the control can be executed with a high accuracy.

Description

【発明の詳細な説明】 〈産業上の利用分針〉 本発明は歩行機械の制御方法に関し、重量による制御誤
差をなくすよう企図したものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Minute Hand> The present invention relates to a method of controlling a walking machine, and is intended to eliminate control errors due to weight.

〈従来の技術及びその問題点〉 近年、複数の脚を持つ歩行機械が開発された。第1図は
各脚に3自由度を持たせた関節形4脚歩行機械の一例を
示す。第1図において、1は本体、2は股水平回転軸、
3は股垂直回転軸、4は膝回転軸、5は上腿、6は下腿
である。またθ、、θ2.θ3は各回転軸2,3゜4の
回転角すなわち関節角である。この歩行機械において脚
の各回転軸2,3.4には、歩行機械の本体1の自重2
脚の自重、慣性。
<Prior art and its problems> In recent years, walking machines with multiple legs have been developed. FIG. 1 shows an example of an articulated four-legged walking machine in which each leg has three degrees of freedom. In Fig. 1, 1 is the main body, 2 is the crotch horizontal rotation axis,
3 is a hip vertical rotation axis, 4 is a knee rotation axis, 5 is an upper leg, and 6 is a lower leg. Also θ,, θ2. θ3 is the rotation angle of each rotating shaft 2, 3°4, that is, the joint angle. In this walking machine, each rotation axis 2, 3.4 of the leg has the weight 2 of the main body 1 of the walking machine.
Weight of the legs, inertia.

負荷及び摩擦等の外乱が加わるが、このうち本体1の自
重による影響が最も大きくこれが誤差の最大の原因にな
っている。その理由は回転軸2,3,4を駆動する直流
モータの特性が、第2図のトルク(T)−回転数(N)
特性に示すようになっており、同じ指令値(電圧V)で
あっても負荷(トルクT)が興なれば速度(回転数N)
が変ってしまうことになるからである。これを解決する
ためには、第3図に示すように、目標値と現在値との偏
差ΔX(位置制御の場合は位WII差)に応じた出力V
=にΔX (但しkはゲイン) を与え制御すればよい。しかしながら、モー夕にかかる
トルクが大幅に変動し且つその関係がランダムとなる場
合は、精度の高い制御を行うためには、上式のゲインk
to複雑に変える必要が生じ回転軸の数が増えれば、新
tコに制御手法を開発しなければならず、また計算時間
(CPUタイム)の増大等を招来し大変な労力を要する
Although external disturbances such as load and friction are added, the influence of the own weight of the main body 1 is the greatest and this is the largest cause of error. The reason for this is that the characteristics of the DC motor that drives the rotating shafts 2, 3, and 4 are as follows: torque (T) - rotation speed (N) as shown in Figure 2.
As shown in the characteristics, even if the command value (voltage V) is the same, if the load (torque T) increases, the speed (rotational speed N) will change.
This is because it will change. In order to solve this problem, as shown in Fig. 3, the output V according to the deviation ΔX (position WII difference in the case of position control) between the target value and the current value
= may be controlled by giving ΔX (where k is the gain). However, if the torque applied to the motor fluctuates significantly and the relationship is random, in order to perform highly accurate control, it is necessary to use the gain k in the above formula.
If it becomes necessary to make complicated changes and the number of rotating axes increases, a new control method must be developed, which also increases calculation time (CPU time) and requires a great deal of effort.

位置制御または速度制御をして歩行を行なう従来の歩行
機械では、サーボ剛性の向上により、自重に起因する制
御誤差を解消しようとしていたが満足な結果は得られな
かった。
In conventional walking machines that use position control or speed control for walking, attempts have been made to eliminate control errors caused by self-weight by improving servo rigidity, but satisfactory results have not been obtained.

その理由を、第4図を参照しつつ説明する。The reason for this will be explained with reference to FIG.

なお、この説明においてサーボ剛性の大小は機械的剛性
の大小と対応するため、機械的剛性を用いて説明し理解
を容易にする。
Note that in this explanation, the magnitude of servo rigidity corresponds to the magnitude of mechanical rigidity, so the explanation will be made using mechanical rigidity to facilitate understanding.

実際に脚を制御するとその軌跡には必ず誤差が生じ、ま
た接地面には凹凸がある。この場合、第4図(a)に正
面図で示すように、本体1及び脚j、、 12. j3
.14が完全剛体であるとすると、たとえ1声でも位置
誤差が生ずると、平面を構成する3本の脚1..12.
13のみが接地し、脚I4が浮いてしまう。脚14が浮
くと、平面図で示す第4図(blかられかるように、脚
14と対角線位置にある脚12にかかる負荷も減少し、
本体1はほとんど脚1.. i3で支えることになる。
When actually controlling the legs, there are always errors in the trajectory, and the ground surface is uneven. In this case, as shown in the front view in FIG. 4(a), the main body 1 and the legs j, 12. j3
.. Assuming that 14 is a completely rigid body, if a position error occurs even in one voice, the three legs 1. .. 12.
Only leg 13 touches the ground, and leg I4 floats. When the leg 14 floats, the load applied to the leg 12 diagonally to the leg 14 also decreases, as shown in FIG.
Main body 1 is mostly legs 1. .. It will be supported by i3.

更に障害物を越えて歩行する場合では、平面図で示す第
4図(01かられかるように、脚14が浮くと脚12の
負荷が軽くなり、脚1、、13でほとんどの負荷を支え
、更に非対称であるため脚13にかかる負荷が極めて大
きくなる。このように各脚にかかる負荷が異なると、第
2図を基にすでに説明したように、各脚の回転軸を駆動
する直流モータによる制御が乱れ振動現象が生じてしま
う。結局サーボ剛性を高めると脚が浮いてしまうという
欠点     1が出るばかりでなく、場合によっては
振動現象が生じてしまう。
Furthermore, when walking over an obstacle, as shown in Figure 4 (01) shown in the plan view, when leg 14 floats, the load on leg 12 becomes lighter, and legs 1, 13 support most of the load. , furthermore, since it is asymmetrical, the load applied to the legs 13 becomes extremely large.If the loads applied to each leg are different in this way, as already explained based on FIG. The control is disturbed and a vibration phenomenon occurs.In the end, increasing the servo rigidity not only causes the disadvantage 1 that the legs float, but also causes a vibration phenomenon in some cases.

なお制御上の誤差により生ずる拘束や歩行機械の自重に
より脚にかかる負荷のアンバランスを解決するために脚
の剛性を落とし積極的にコンプライアンスを用いる方法
がある。
In order to solve the unbalance of the load on the legs due to restraints caused by control errors and the weight of the walking machine, there is a method of reducing the stiffness of the legs and actively using compliance.

この方法では多少位置がずれていても、それにより生ず
るバネ反力が小さいtこめ、脚の拘束力は減少し脚の浮
き上がりはなくなる。しかし、第4図(diに正面図で
示すように、脚11゜j2.13.14が接地している
ときに脚13を上げた場合には荷重分布が変化し、荷重
の大きい脚14がtコわみ歩行機械は図中矢印で示すよ
うにより不安定な方向に傾く。特に重心が高い場合にこ
の現象は著しい。
In this method, even if the position is slightly deviated, the resulting spring reaction force is small, the restraint force on the leg is reduced, and the leg does not lift up. However, as shown in the front view in FIG. The walking machine tilts in an unstable direction as shown by the arrow in the figure.This phenomenon is particularly noticeable when the center of gravity is high.

一方、力制御をして歩行を行なう歩行機械では、脚の浮
き上がりは生じにくいが、十分なコンプライアンスがな
いと信頼性及び精度の高い力の検出はむづかしく、安定
な制御ができず実用には至らなかった。
On the other hand, in a walking machine that uses force control to walk, lifting of the legs is less likely to occur, but without sufficient compliance, it is difficult to detect force with high reliability and precision, and stable control cannot be achieved, making it impractical. It didn't work out.

本発明は、上記従来技術に鑑み、精度の高い制御が行な
え、安定かつ効率的な動作をすることのできる歩行機械
の制御方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned prior art, it is an object of the present invention to provide a method for controlling a walking machine that can perform highly accurate control and operate stably and efficiently.

く問題点を解決するための手段〉 上記目的を達成する本発明方法は、複数の脚を位置制御
あるいは速度制御して歩行する歩行機械において、各脚
にかかる自軍による負荷からその脚の各回転軸にかかる
負荷を算出し、算出した負荷に対し均衡するような力を
各回転軸に発生させる力制御を付加したことを特徴とす
る。
Means for Solving the Problems〉 The method of the present invention for achieving the above object is a walking machine that walks by controlling the position or speed of a plurality of legs. It is characterized by the addition of force control that calculates the load applied to the shaft and generates a force on each rotating shaft that is balanced against the calculated load.

〈作   用〉 本発明では、位置制御、速度制御の安定な動作と、力制
御の柔軟性を組み合わせているため、安定な動作ができ
る。更に自重補償量を位置制御ゲインあるいは速度制御
ゲインより適当な量t!け小さくとることで系を安定化
させることもできる。
<Function> In the present invention, stable operation is possible because the stable operation of position control and speed control is combined with the flexibility of force control. Furthermore, the self-weight compensation amount is set to an amount t! that is more appropriate than the position control gain or speed control gain. The system can also be stabilized by making it small.

く実 施 例〉 第1図に示す4脚3関節形歩行機械の例で本発明を説明
する。歩行機械上の前後方向、左右方向、竿下方向にx
、y、z軸をとる。
Embodiments The present invention will be explained using an example of a four-legged, three-jointed walking machine shown in FIG. x in the front-rear direction, left-right direction, and downward direction on the walking machine
, take the y and z axes.

歩行機械の傾きが小さい場合、自重はZ軸方向のみであ
る。本体1が大きく傾いた場合には、傾斜センサや視覚
等で傾斜角を測定することにより自重のX成分及びy成
分を容易に算出される。脚の関節角を01、θ2、θ3
とするとこれらはエンコーダやポテンショメータ等で測
定でき、脚先の接地点の位置も容易に算出される。これ
らの重心位置、傾き、脚先位置から自重により各回転軸
2.3.4にかかる負荷は次式で求められる。
When the inclination of the walking machine is small, its own weight is only in the Z-axis direction. If the main body 1 is tilted significantly, the X and Y components of its own weight can be easily calculated by measuring the tilt angle using a tilt sensor or visually. The joint angles of the legs are 01, θ2, θ3
These can be measured using encoders, potentiometers, etc., and the position of the grounding point of the leg tip can also be easily calculated. The load applied to each rotating shaft 2.3.4 due to its own weight can be calculated from the following equation based on the position of the center of gravity, the inclination, and the position of the tip of the leg.

t=J−f 但し ! :  3関節にかかる負荷によるトルクを表わすベ
クトル f : 自重により1つの脚にかかる力を表わすベクト
ル JT:  3X3行列の変換行列 本発明方法では、上式で求めた自重補償トルクtを各回
転軸2.3.4に発生させる。このため、自重により各
回転軸2.3.4にかかる負荷と自重補償トルクとが均
衡する。この結果、位置制御系あるいは速度制御系は、
位置あるいは速度を制御するための力を発生させるだけ
でよく、精度の高い制御を行なうことができる。また移
動指令により歩行した後に停止しtコとき、誤差により
脚が接地面がら離れようとした場合には、自重補償トル
ク番が脚を接地させる方向に動かすため浮き上がりを防
止でき、各脚が所要トルクを分担して安定した状態で静
止する。一方移動指令を与えて歩行を行なう場合には、
自重と自重補償l・ルクtが均衡しているため自重の影
響がすくすり、各脚とも無負荷で重作するモードとなる
から非常に安定した位置追従ができ各脚の同期が滑らか
に行なえる。
t=J-f However! : Vector f representing the torque due to the load applied to the three joints : Vector JT representing the force applied to one leg due to its own weight: Transformation matrix of 3×3 matrix In the method of the present invention, the self-weight compensation torque t obtained by the above formula is applied to each rotation axis 2. .3.4. Therefore, the load applied to each rotating shaft 2.3.4 due to its own weight and the self-weight compensation torque are balanced. As a result, the position control system or speed control system
It is only necessary to generate force to control the position or speed, and highly accurate control can be performed. In addition, when you stop after walking according to a movement command, if your legs try to leave the ground due to an error, the self-weight compensation torque number moves the legs in the direction of the ground, which prevents them from lifting up. It shares the torque and stands still in a stable state. On the other hand, when walking by giving a movement command,
Since the self-weight and self-weight compensation l and lukut are balanced, the influence of self-weight is reduced, and each leg is in a mode of heavy production without any load, allowing extremely stable position tracking and smooth synchronization of each leg. Ru.

更に本発明方法によれば、第5図に示すよ     1
うに、動作点Pが自重補償トルクで嵩上げされるt、=
め安定しtこ領域で制御を行なうことができる。なお第
5図において斜線で示す領域は摩擦等による不安定領域
である。
Furthermore, according to the method of the present invention, as shown in FIG.
In other words, the operating point P is raised by the self-weight compensation torque t,=
Control can be performed in a stable region. Note that the shaded area in FIG. 5 is an unstable area due to friction and the like.

〈発明の効果〉 以上実施例とともに具体的に説明したように本発明によ
れば、位置制御または速度制御に力制御を付加したため
、浮き上がりを防止でき、また円滑な歩行を行なうこと
ができる。
<Effects of the Invention> As specifically explained above in conjunction with the embodiments, according to the present invention, since force control is added to position control or speed control, lifting can be prevented and smooth walking can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は4脚3関節形歩行機械を示す斜視図、第2図は
直流モータの特性を示す特性図、第3図はゲイン特性を
示す特性図、第4図は従来の歩行機械の歩行状態を説明
するものであり、第4図(al (dlは正面図、第4
図(b) (C1は平面図である。 第5図は本発明による制御の領域を示す特性図である。 図 面 中、 1は本体、 2は股水平回転軸、 3は股垂直回転軸、 4は膝回転軸、 5は上腿、 6は下腿、 11、 j、、 13. j4は脚である。
Figure 1 is a perspective view of a four-legged, three-jointed walking machine, Figure 2 is a characteristic diagram showing the characteristics of a DC motor, Figure 3 is a characteristic diagram showing gain characteristics, and Figure 4 is a conventional walking machine walking machine. It explains the condition, and Figure 4 (al (dl is the front view,
Figure (b) (C1 is a plan view. Figure 5 is a characteristic diagram showing the control area according to the present invention. In the figure, 1 is the main body, 2 is the crotch horizontal rotation axis, and 3 is the crotch vertical rotation axis) , 4 is the knee rotation axis, 5 is the upper leg, 6 is the lower leg, 11, j,, 13. j4 is the leg.

Claims (1)

【特許請求の範囲】[Claims] 複数の脚を位置制御あるいは速度制御して歩行する歩行
機械において、各脚にかかる自重による負荷からその脚
の各回転軸にかかる負荷を算出し、算出した負荷に対し
均衡するような力を各回転軸に発生させる力制御を付加
したことを特徴とする歩行機械の制御方法。
In a walking machine that walks by controlling the position or speed of multiple legs, the load on each axis of rotation of each leg is calculated from the load due to its own weight on each leg, and a force that is balanced against the calculated load is applied to each leg. A method for controlling a walking machine characterized by adding force control to be generated on a rotating shaft.
JP59255680A 1984-12-05 1984-12-05 Controlling method of walking machine Pending JPS61134805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59255680A JPS61134805A (en) 1984-12-05 1984-12-05 Controlling method of walking machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59255680A JPS61134805A (en) 1984-12-05 1984-12-05 Controlling method of walking machine

Publications (1)

Publication Number Publication Date
JPS61134805A true JPS61134805A (en) 1986-06-21

Family

ID=17282131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59255680A Pending JPS61134805A (en) 1984-12-05 1984-12-05 Controlling method of walking machine

Country Status (1)

Country Link
JP (1) JPS61134805A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278773A (en) * 1987-05-11 1988-11-16 新技術事業団 Method of controlling gait four-leg walking machine
JPH04314107A (en) * 1990-09-29 1992-11-05 Danfoss As Method and apparatus for controlling motion of working apparatus
CN103085070A (en) * 2013-01-15 2013-05-08 上海交通大学 Quadruped robot motion planning method for facing complex terrain
CN103921267A (en) * 2014-03-18 2014-07-16 上海交通大学 All-directional movable manipulator with four feet
CN104302453A (en) * 2012-06-08 2015-01-21 艾罗伯特公司 Carpet drift estimation using differential sensors or visual measurements
CN105383587A (en) * 2015-11-25 2016-03-09 济南大学 Four-leg robot for detecting mine tunnel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278773A (en) * 1987-05-11 1988-11-16 新技術事業団 Method of controlling gait four-leg walking machine
JPH04314107A (en) * 1990-09-29 1992-11-05 Danfoss As Method and apparatus for controlling motion of working apparatus
CN104302453A (en) * 2012-06-08 2015-01-21 艾罗伯特公司 Carpet drift estimation using differential sensors or visual measurements
CN104302453B (en) * 2012-06-08 2016-07-06 艾罗伯特公司 Use the carpet bias estimation of differential pick-up or vision measurement
CN103085070A (en) * 2013-01-15 2013-05-08 上海交通大学 Quadruped robot motion planning method for facing complex terrain
CN103921267A (en) * 2014-03-18 2014-07-16 上海交通大学 All-directional movable manipulator with four feet
CN105383587A (en) * 2015-11-25 2016-03-09 济南大学 Four-leg robot for detecting mine tunnel

Similar Documents

Publication Publication Date Title
US5355064A (en) Control system for legged mobile robot
JP4466715B2 (en) Legged robot and control method thereof
US5432417A (en) Locomotion control system for legged mobile robot
JP3269852B2 (en) Posture stabilization control device for legged mobile robot
US6243623B1 (en) Leg type mobile robot control apparatus
JP3167404B2 (en) Robot joint drive controller
KR100581372B1 (en) Two-legged walking locomotion apparatus and its walking controller
KR101687630B1 (en) Walking robot and method for controlling balancing the same
CN113348129B (en) Gyroscope-stabilized leg type robot
JPH0332582A (en) Leg-type mobile robot driving control device and joint mechanism for working robot including leg-tye mobile robot
KR20060126649A (en) Control device for mobile body
JPH04141379A (en) Walk control device for leg type mobile robot
JPH10277969A (en) Control device of leg type moving robot
US20110172823A1 (en) Robot and control method thereof
US8509948B2 (en) Walking robot and method of controlling the same
JPH05305579A (en) Walking control device for leg type mobile robot
JP3148830B2 (en) Walking control device for legged mobile robot
JPH05305585A (en) Walking control device for leg type mobile robot
JPS61134805A (en) Controlling method of walking machine
JPS61139567A (en) Walking machine
JP5040693B2 (en) Legged robot and control method thereof
JP2009107032A (en) Legged robot and its control method
JPS61139566A (en) Walking machine
JP2002086373A (en) Real-time optimal control method for leg type robot
JP2003080478A (en) Attitude control device and control method of machine having leg