JPS61139562A - Fluid control unit in hydraulic steering device - Google Patents
Fluid control unit in hydraulic steering deviceInfo
- Publication number
- JPS61139562A JPS61139562A JP25965284A JP25965284A JPS61139562A JP S61139562 A JPS61139562 A JP S61139562A JP 25965284 A JP25965284 A JP 25965284A JP 25965284 A JP25965284 A JP 25965284A JP S61139562 A JPS61139562 A JP S61139562A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- valve hole
- reaction force
- hole
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、車速等に応じて操舵反力を発生させる反力機
構を備えた動力舵取装置において、前記反力機構に供給
する圧油を制御する流体制御装置に関するものである。[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a power steering system equipped with a reaction force mechanism that generates a steering reaction force according to vehicle speed, etc. The present invention relates to a fluid control device that controls a fluid control system.
〈従来の技術〉
動力舵取装置に反力機構を備えたものは公知であり、こ
の反力機構に供給する圧油を車速等に応じて制御する流
体制御装置として、ポンプ装置の圧力発生手段から発生
した圧油を動力舵取装置に必要な所定流量に制御し余剰
流をバイパス通路にバイパスする第1の流量制御弁と、
この第1の流量制御弁によってバイパスされたバイパス
流量を一定流量に制御し余剰流を低圧側にバイパスする
第2の流量制御弁と、この第2の流量制御弁によって制
御された一定流量の圧油を車速等に応じた制御圧にti
i+制御する電磁圧力制御弁と、この電磁圧力制御弁に
て制御された制御圧を前記反力機構に導入する手段とか
ら構成したものが考え出されている。<Prior Art> A power steering device equipped with a reaction force mechanism is known, and a pressure generating means of a pump device is used as a fluid control device that controls pressure oil supplied to the reaction force mechanism according to vehicle speed, etc. a first flow control valve that controls the pressure oil generated from the flow rate to a predetermined flow rate required for the power steering device and bypasses excess flow to a bypass passage;
a second flow rate control valve that controls the bypass flow rate bypassed by the first flow rate control valve to a constant flow rate and bypasses the surplus flow to the low pressure side; The oil is controlled to a control pressure according to the vehicle speed, etc.
A device has been devised that is composed of an electromagnetic pressure control valve that performs i+ control, and means for introducing the control pressure controlled by the electromagnetic pressure control valve into the reaction force mechanism.
〈発明が解決しようとする問題点〉
前記第1の流量制御弁、第2の流量制御弁をポンプ装置
のポンプ本体に設け、このポンプ本体に第2の流量制御
弁の前後に差圧を発生させる固定絞り部材を設け、前記
電磁圧力制御弁をポンプ装置と動力舵取装置の反力機構
とを結ぶパイプの途中に設けると、このパイプにブロッ
クを固定し、このブロックに電磁圧力制御弁を取付けな
ければならず、部品点数が多くなるとともに組付性が悪
くなる問題がある。又、前記固定絞り部材は第2の流量
制御弁を摺動可能に案内する弁孔の穴径より小さく、ア
ダプタを介して弁孔に取付けなければならず、部品点数
が多くなる問題があり、さらに固定絞り部材と電磁圧力
制御弁を同時に交換できない問題メジ。<Problems to be Solved by the Invention> The first flow control valve and the second flow control valve are provided in a pump body of a pump device, and a pressure difference is generated in the pump body before and after the second flow control valve. A block is fixed to this pipe, and the electromagnetic pressure control valve is installed in the middle of a pipe connecting the pump device and the reaction force mechanism of the power steering device. The problem is that the number of parts increases and the ease of assembly deteriorates. Further, the fixed throttle member is smaller than the hole diameter of the valve hole that slidably guides the second flow control valve, and must be attached to the valve hole via an adapter, which poses a problem of increasing the number of parts. Furthermore, there is the problem that the fixed throttle member and electromagnetic pressure control valve cannot be replaced at the same time.
く問題点を解決するための手段〉
本発明は、上記した問題を解決するためになされたもの
で、ポンプ装置のポンプ本体に圧油が導かれる弁孔およ
びこの弁孔と連通しタンク側に導かれるバイパス通路を
形成し、前記弁孔にバイパス通路の開度を調整する流量
調整用スプールを摺動可能に嵌挿し、この流量調整用ス
プールによって弁孔内を前室と後室とに区分し、この後
室内に前記流量調整用スプールをバイパス通路の閉じる
方向に押圧するスプリングを介挿し、前記前室側の開口
部に車速等に応じた電流が印加される電磁弁を固定し、
この電磁弁の弁本体に一方が前記弁孔と連通し他方が低
圧側へ連通ずる流路を形成し、この流路の上流側に固定
絞り部材を設け、下流側に前記電磁弁によって開口面積
若しくは開口する圧力が変えられる制御部を設け、弁本
体の固定絞り部材と制御部間に前記反力機構および前記
後室に圧油を導く導入孔を形成したものである。Means for Solving the Problems> The present invention was made to solve the above problems, and includes a valve hole through which pressure oil is introduced into the pump body of a pump device, and a valve hole communicating with the valve hole on the tank side. A flow rate adjustment spool for adjusting the opening degree of the bypass passage is slidably inserted into the valve hole, and the flow rate adjustment spool divides the inside of the valve hole into a front chamber and a rear chamber. After that, a spring is inserted in the chamber to press the flow rate adjustment spool in the direction of closing the bypass passage, and a solenoid valve to which a current is applied according to the vehicle speed or the like is fixed to the opening on the front chamber side.
A flow path is formed in the valve body of this solenoid valve, one side communicating with the valve hole and the other side communicating with the low pressure side, a fixed throttle member is provided on the upstream side of this flow path, and the opening area of the solenoid valve is formed on the downstream side. Alternatively, a control section that can change the opening pressure is provided, and an introduction hole for introducing pressure oil into the reaction force mechanism and the rear chamber is formed between the fixed throttle member of the valve body and the control section.
〈実施例〉 以下本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.
第2図において、10は動力舵取装置の本体をなすギヤ
ハウジングを示し、このギヤハウジング10にはピニオ
ン軸(出力軸)11が回転可能に軸承され、このピニオ
ン軸11はこれと交差する方向に摺動可能なラック軸1
4に噛合されている。In FIG. 2, reference numeral 10 denotes a gear housing forming the main body of the power steering device, and a pinion shaft (output shaft) 11 is rotatably supported in this gear housing 10, and this pinion shaft 11 is rotated in a direction crossing this. Rack shaft 1 that can be slid on
It is meshed with 4.
ラック軸14の両端は所要の操舵リンク機構を介して操
向車輪に連結され、またラック軸14には図示してない
がパワーシリンダのピストンが作動的に連結されている
。Both ends of the rack shaft 14 are connected to steering wheels via a required steering link mechanism, and a piston of a power cylinder (not shown) is operatively connected to the rack shaft 14.
前記ギヤハウジング10には弁ハウジング18が固定さ
れ、この弁ハウジング18内にロータリ形サーボ弁20
が収納されている。かかるロータリ形サーボ弁20は前
記ピニオン軸11の軸線を中心として相対回転可能なス
リーブ弁部材21とロータ弁部材22より構成され、こ
のロータ弁部材22は操向ハンドルに連結され麺操舵軸
(入力軸)24に一体的に形成されている。操舵軸24
は前記ピニオン軸11にトー゛ジョンバー25を介して
可撓的に連結され、また係合部43を介して=5−
所定量だけ相対回転可能に係合されている。A valve housing 18 is fixed to the gear housing 10, and a rotary servo valve 20 is disposed within the valve housing 18.
is stored. The rotary type servo valve 20 is composed of a sleeve valve member 21 and a rotor valve member 22, which are relatively rotatable about the axis of the pinion shaft 11. (shaft) 24. Steering shaft 24
is flexibly connected to the pinion shaft 11 via a torsion bar 25, and is also engaged via an engaging portion 43 so as to be relatively rotatable by a predetermined amount.
前記スリーブ弁部材21の内周及びロータ弁部材22の
外周には、複数のボート溝21a、’22aが円周上等
角度間隔に形成され、スリーブ弁部材21とロータ弁部
材22の相対回転により、供給ボート26を前記パワー
シリンダの画室に接続された給排ボー)28.29の一
方に連通し、他方を排出ボート27に連通ずるようにな
っている。A plurality of boat grooves 21a and 22a are formed on the inner periphery of the sleeve valve member 21 and the outer periphery of the rotor valve member 22 at equal angular intervals on the circumference. , the supply boat 26 is connected to one of the supply and discharge boats 28 and 29 connected to the compartment of the power cylinder, and the other is connected to the discharge boat 27.
前記ピニオン軸11の一端には、前記弁ハウジング18
内に回転可能に嵌合する円筒部30が形成され、この円
筒部30の一端はスリーブ弁部材21に連結ビン31を
介して連結されている。かかる円筒部30内にはピニオ
ン軸11と同心的に反力シリンダ室33が形成され、こ
の反力シリンダ室33に操舵軸24に形成されたフラン
ジ状の反力受部34が相対回転可能に嵌合されている。The valve housing 18 is attached to one end of the pinion shaft 11.
A cylindrical portion 30 that rotatably fits inside is formed, and one end of this cylindrical portion 30 is connected to the sleeve valve member 21 via a connecting pin 31. A reaction force cylinder chamber 33 is formed in the cylindrical portion 30 concentrically with the pinion shaft 11, and a flange-shaped reaction force receiving portion 34 formed on the steering shaft 24 can be relatively rotated in this reaction force cylinder chamber 33. It is fitted.
前記反力シリンダ室33には反力受部34に対向してリ
ング状の反力ビストン35が軸方向に摺動可能に嵌合さ
れ、この反力ビストン35は回り止めピン38によって
ピニオン軸11に対して回り止めされている。反力ビス
トン35の内周は前記操舵軸24に嵌合され、この反力
ビストン35によって反力シリング室33を左室と右室
に区画している。しかして左室は後述する如く反力油圧
が導入される導入ポー)40に連結され、右室はリザー
バに接続されたドレーンポート41に連結されている。A ring-shaped reaction force piston 35 is fitted into the reaction cylinder chamber 33 so as to be able to slide in the axial direction, facing the reaction force receiving portion 34 . It is prevented from rotating. The inner periphery of the reaction force piston 35 is fitted onto the steering shaft 24, and the reaction force piston 35 divides the reaction force shilling chamber 33 into a left chamber and a right chamber. The left ventricle is connected to an introduction port 40 into which reaction oil pressure is introduced, as will be described later, and the right ventricle is connected to a drain port 41 connected to a reservoir.
前記反力受部34と反力ビストン35の対向面には円錐
形状の凹み部34a、35aが円周上複数形成され、こ
れら凹み部34a、35aに係合する円周上複数の係合
ボール36を保持したリテーナ37が反力受部34と反
力ビストン35との間に介在されている。しかして反力
ビストン35はその背面に設けたウェブワッシャー39
によって常に係合ボール36に係合する方向に押圧され
ている。上述した反力シリング室33、反力受部34、
反力ビストン35、係合ボール36とで反力機構42が
構成されている。A plurality of conical recesses 34a, 35a are formed on the circumference of the opposing surfaces of the reaction force receiving part 34 and the reaction force piston 35, and a plurality of engagement balls are formed on the circumference that engage with these recesses 34a, 35a. 36 is interposed between the reaction force receiving portion 34 and the reaction force piston 35. Therefore, the reaction force piston 35 has a web washer 39 provided on its back side.
is constantly pressed in the direction of engagement with the engagement ball 36. The reaction force silling chamber 33, reaction force receiving part 34,
A reaction force mechanism 42 is constituted by the reaction force piston 35 and the engagement ball 36.
次に反力機構42に供給する圧油を制御する流体制御装
置について説明する。Next, a fluid control device that controls the pressure oil supplied to the reaction force mechanism 42 will be explained.
第1図におい、750はポンプ装置を示し、このポンプ
装置50内には自動車エンジンによって駆動され、圧油
を発生するベーン式の圧力発生手段51を備えている。In FIG. 1, reference numeral 750 indicates a pump device, and the pump device 50 is provided with a vane-type pressure generating means 51 that is driven by an automobile engine and generates pressure oil.
52はポンプ装置50のポンプ本体を示し、このポンプ
本体52には第1の弁孔53と、この第1の弁孔53と
平行に第2の弁孔54が形成されている。第1の弁孔5
3には第1の流量調整用スプール55が摺動可能に嵌挿
され、第2の弁孔54には第2の流量調整用スプール5
6が摺動可能に嵌挿されている。前記スプール55によ
って第1の弁孔53内は前室57aと後室57bとに区
分され、後室57b内にはスプール55を押圧するスプ
リング58が介挿されている。前室57a側の開口部に
はユニオン59が蝮着され、このユニオン59に固定絞
り60が形成されている。固定絞り60後の流体は第2
図に示す供給ポート26に供給されるとともに、導入通
路61を経て前記後室57’bに導かれるようになって
いる。固定絞り60前後の流体の圧力がスプール55の
前後に作用し、この圧力の差に応じてスプール55が摺
動し、スプール55によってポンプ本体52に第1の弁
孔53と直角に形成されたバイパス通路62の開度を調
整する。このバイパス通路62は第2の弁孔54に連通
されている。Reference numeral 52 indicates a pump body of the pump device 50, and the pump body 52 has a first valve hole 53 and a second valve hole 54 formed in parallel with the first valve hole 53. First valve hole 5
3, a first flow rate adjustment spool 55 is slidably inserted into the second valve hole 54, and a second flow rate adjustment spool 55 is slidably inserted into the second valve hole 54.
6 is slidably inserted. The interior of the first valve hole 53 is divided by the spool 55 into a front chamber 57a and a rear chamber 57b, and a spring 58 that presses the spool 55 is inserted in the rear chamber 57b. A union 59 is attached to the opening on the side of the front chamber 57a, and a fixed throttle 60 is formed in the union 59. The fluid after the fixed throttle 60 is the second
It is supplied to the supply port 26 shown in the figure and guided to the rear chamber 57'b through the introduction passage 61. The pressure of the fluid before and after the fixed throttle 60 acts on the front and back of the spool 55, and the spool 55 slides according to this pressure difference, and the spool 55 forms a hole in the pump body 52 at right angles to the first valve hole 53. The opening degree of the bypass passage 62 is adjusted. This bypass passage 62 communicates with the second valve hole 54 .
前記スプール56によって第2の弁孔54内は前室63
と後室64とに区分され、後室64内に設けられた止め
栓65とスプール56間にはスプリング66が介挿され
ている。前室63側の開口部には電磁流量制御弁67の
弁本体68が螺着され、この弁本体68には絞り部材6
9が一体的に結合されている。絞り部材69には第2の
弁孔54と連通する流路70が形成され、この流路70
の上流側には固定絞り71aを形成した固定絞り部材7
1が設けられ、流路70の下流側には可変絞り72が形
成されている。この可変絞り(制御部)72はロッド7
3が進退することにより絞りの開口面積が変えられ、ロ
ッド73はソレノイド80に印加された電流によりヨー
ク74側に吸引 ・されるスプール75に一体結合され
ている。可変絞り72後の流体は弁本体68に形成され
た排出通路76を経て、ポンプ装置50の吸入側へ還流
されるようになっている。弁本体68および絞り部材6
9には固定絞り部材71と可変絞り72間で流路70と
連通ずる導入孔77が形成され、導入孔77後の流体は
第2図に示す導入ポート40に導かれるとともに、ポン
プ本体52に形成された導入通路78を経て後室64に
導かれるようになっている。固定絞り71a前後の流体
の圧力がスプール56の前後に作用し、この圧力の差に
応じてスプール56が摺動し、スプール56によってポ
ンプ本体52に第2の弁孔54と直角に形成されたバイ
パス通路79の開度を調節する。このバイパス通路79
はポンプ装置50の吸入側に連通されている。A front chamber 63 is formed inside the second valve hole 54 by the spool 56.
and a rear chamber 64, and a spring 66 is interposed between a stopper 65 provided in the rear chamber 64 and the spool 56. A valve body 68 of an electromagnetic flow control valve 67 is screwed into the opening on the front chamber 63 side, and a throttle member 6 is attached to this valve body 68.
9 are integrally connected. A flow path 70 communicating with the second valve hole 54 is formed in the throttle member 69, and the flow path 70 communicates with the second valve hole 54.
A fixed aperture member 7 with a fixed aperture 71a formed on the upstream side of the
1 is provided, and a variable throttle 72 is formed on the downstream side of the flow path 70. This variable aperture (control section) 72 is connected to the rod 7
The aperture area of the diaphragm is changed by advancing and retracting the rod 73, and the rod 73 is integrally connected to a spool 75 that is attracted to the yoke 74 side by a current applied to a solenoid 80. The fluid after the variable throttle 72 passes through a discharge passage 76 formed in the valve body 68 and is returned to the suction side of the pump device 50. Valve body 68 and throttle member 6
9 is formed with an introduction hole 77 that communicates with the flow path 70 between the fixed throttle member 71 and the variable throttle member 72, and the fluid after the introduction hole 77 is guided to the introduction port 40 shown in FIG. It is led to the rear chamber 64 through an introduction passage 78 formed therein. The pressure of the fluid before and after the fixed throttle 71a acts on the front and back of the spool 56, and the spool 56 slides according to this pressure difference, and the spool 56 forms a hole in the pump body 52 at right angles to the second valve hole 54. The opening degree of the bypass passage 79 is adjusted. This bypass passage 79
is connected to the suction side of the pump device 50.
このように上述した実施例は、電磁流量制御弁67をポ
ンプ本体52の第2の弁孔54の開口部に直接取付けて
いるため部品点数を削減でき、組付けが容易である。又
固定絞り部材71は弁本体68を介してポンプ本体52
に取付けているため部品点数を削減でき、弁本体68を
ポンプ本体52から取り外すだけで固定絞り部材71と
電磁流量制御弁67を同時に交換できる”。In the embodiment described above, the electromagnetic flow control valve 67 is directly attached to the opening of the second valve hole 54 of the pump body 52, so the number of parts can be reduced and assembly is easy. Further, the fixed throttle member 71 is connected to the pump body 52 via the valve body 68.
The number of parts can be reduced because the valve body 68 is attached to the pump body 52, and the fixed throttle member 71 and the electromagnetic flow control valve 67 can be replaced at the same time by simply removing the valve body 68 from the pump body 52.
次に上述した構成に基づいて作用について説明する。圧
力発生手段51からの・圧油は第1の弁孔53に導かれ
、固定絞り60前後の圧力差に応じてスプール55を摺
動させ、バイパス通路62の開度を調整することにより
供給ポート26に導がれる油の量を一定流量に制御しミ
余剰流をバイパス通路62にバイパスする。このパイパ
ーされた油は第2の弁孔54に導かれ、固定絞り71a
前後の圧力差に応じてスプール56を摺動させ、バイパ
ス通路79の開度を調整することにより流路70に導か
れる”油の量を一定流量に制御し、余剰流をバイパス通
路79にバイパスする。Next, the operation will be explained based on the above-described configuration. The pressure oil from the pressure generating means 51 is guided to the first valve hole 53, and the spool 55 is slid according to the pressure difference before and after the fixed throttle 60, and the opening degree of the bypass passage 62 is adjusted to open the supply port. 26 is controlled to a constant flow rate, and excess flow is bypassed to the bypass passage 62. This piped oil is guided to the second valve hole 54, and the fixed throttle 71a
By sliding the spool 56 according to the pressure difference before and after and adjusting the opening degree of the bypass passage 79, the amount of oil guided to the passage 70 is controlled to a constant flow rate, and the excess flow is bypassed to the bypass passage 79. do.
車速等に応じた電流をソレノイド80に印加し、スプー
ル75をヨーク74側に帳引することによりスプール7
5と一体結合されたロッド73が進退する。ロッド73
の進退によ:′:チて可変絞り72の絞り面積が変化し
、可変絞り72前の油の圧力が変化する。可変絞り72
の絞り面積を制御することによって制御された油の圧力
は、導入孔77、導入ポート40を経て反力シリンダ室
33に導かれ、反力ビストン35に制御圧が作用する。By applying a current according to the vehicle speed etc. to the solenoid 80 and drawing the spool 75 to the yoke 74 side, the spool 7
A rod 73 integrally connected to 5 moves forward and backward. rod 73
As the variable throttle 72 advances and retreats, the throttle area of the variable throttle 72 changes, and the oil pressure in front of the variable throttle 72 changes. variable aperture 72
The oil pressure, which is controlled by controlling the constriction area, is guided to the reaction cylinder chamber 33 through the introduction hole 77 and the introduction port 40, and the control pressure acts on the reaction force piston 35.
反力ビストン35に作用した油の圧力を係合ボール36
を介して反力受部34に押し付けることにより操舵軸2
4とピニオン軸11との相対回転が生じにくくなりハン
ドルトルクが変化する。バイパス通路79および排出通
路76に導かれた油はポンプ装置50の吸入側へ還流さ
れる。The oil pressure acting on the reaction force piston 35 is transferred to the engagement ball 36.
By pressing the steering shaft 2 against the reaction force receiving part 34 through
4 and the pinion shaft 11 becomes difficult to occur, and the handle torque changes. The oil guided to the bypass passage 79 and the discharge passage 76 is returned to the suction side of the pump device 50.
本発明は電磁弁として第1図るこ示す電磁流量制御弁6
7に限定されず、第3図に示すような電磁レリーフ弁9
0をポンプ本体91に取付けたものでも良い。このもの
は弁本体92に一体結合されている絞り部材93に弁孔
94と連通する流路95を形成し、この流路95の上流
側に固定絞り部材96を設け、流路95の下流側にボー
ル弁97によって開閉される制御部98を設ける。弁本
体92および制御部材93に固定絞り部材96と絞り部
98間で流路95と連通ずる導入孔99を形成し、この
導入孔99後の油は反力機構および後室100に導かれ
るようになっている。制御部98後の油はポンプ装置の
吸入側へ還流されるようになっている。ソレノイド10
1に印加された電流の大きさに応じてスプール102は
ヨーク1゜3側へ吸引され、ボール弁97を押圧するス
プリング104の押圧力が変えられる。固定絞り部材9
6後の油の圧力がスプリング104に設定された圧力以
上になると制御部98を介して逃がされ、固定絞り部材
96後の油の圧力は所定の圧力に制御される。The present invention is an electromagnetic flow control valve 6 as shown in Fig. 1 as a solenoid valve.
7, an electromagnetic relief valve 9 as shown in FIG.
0 may be attached to the pump body 91. In this device, a flow path 95 communicating with a valve hole 94 is formed in a throttle member 93 integrally connected to a valve body 92, a fixed throttle member 96 is provided on the upstream side of this flow path 95, and a fixed throttle member 96 is provided on the downstream side of the flow path 95. A control section 98 that is opened and closed by a ball valve 97 is provided. An introduction hole 99 is formed in the valve body 92 and the control member 93 between the fixed throttle member 96 and the throttle part 98 and communicates with the flow path 95, so that the oil after the introduction hole 99 is guided to the reaction force mechanism and the rear chamber 100. It has become. The oil after the control section 98 is returned to the suction side of the pump device. Solenoid 10
The spool 102 is attracted toward the yoke 1°3 depending on the magnitude of the current applied to the ball valve 97, and the pressing force of the spring 104 that presses the ball valve 97 is changed. Fixed aperture member 9
When the pressure of the oil after the fixed throttle member 96 exceeds the pressure set in the spring 104, it is released via the control section 98, and the pressure of the oil after the fixed throttle member 96 is controlled to a predetermined pressure.
〈発明の効果〉
以上述べたように本発明はミ電整弁をポンプ本体に直接
取けるようにしたので組付けが容易になるとともに余分
な部品が要らなくなる利点が得られる。又、固定絞り部
材を弁本体を介してポンプ本体に取付けるようにしたの
で固定絞り部材をポンプ本体に取付けるのに余分な部品
が要らなくなり、弁本体を取りはずすすどけて電磁弁お
よび固定絞り部材を同時に交換できるため交換が容易に
なる利点が得られる。<Effects of the Invention> As described above, the present invention allows the electric regulating valve to be attached directly to the pump body, which has the advantage of facilitating assembly and eliminating the need for extra parts. Also, since the fixed throttle member is attached to the pump body via the valve body, no extra parts are required to attach the fixed throttle member to the pump body, and the solenoid valve and fixed throttle member can be attached by removing the valve body. Since they can be replaced at the same time, there is an advantage that replacement is easy.
第1図は本発明の実施の一例を示す流体制御装置の断面
図、第2図は動力舵取装置の断面図、第3図は他の実施
例を示す流体制御装置の断面図。
42・・−反力機構、52.91・・・ポンプ本体、5
′4.94・・・第2の弁孔、56・・・スプール、6
3・・・前室、64.100・・・後室、66・・・ス
プリング、67・・・電磁流量制御弁、68.、’92
・・−弁本体、・69..93・・・絞り部材、7.0
.95・・・□流路、71゜96・・・固定絞り部材、
71a・・・固定絞り、72・・・可変絞り(制御部)
、77.99・・・導入孔、79・・・バイパス通路、
90・・・電磁レリーフ弁、97・・・ボール弁、98
・・・制御部。FIG. 1 is a sectional view of a fluid control device showing an example of an embodiment of the present invention, FIG. 2 is a sectional view of a power steering device, and FIG. 3 is a sectional view of a fluid control device showing another embodiment. 42...-reaction force mechanism, 52.91... pump body, 5
'4.94...Second valve hole, 56...Spool, 6
3... Front chamber, 64. 100... Rear chamber, 66... Spring, 67... Solenoid flow control valve, 68. ,'92
...-valve body, 69. .. 93... Aperture member, 7.0
.. 95...□Flow path, 71°96...Fixed throttle member,
71a...Fixed aperture, 72...Variable aperture (control unit)
, 77.99...Introduction hole, 79...Bypass passage,
90...Electromagnetic relief valve, 97...Ball valve, 98
...control section.
Claims (1)
備えた動力舵取装置において、ポンプ装置からの圧油を
前記反力機構に供給する圧力に制御する流体制御装置で
あって、前記ポンプ装置のポンプ本体に圧油が導かれる
弁孔およびこの弁孔と連通しタンク側に導かれるバイパ
ス通路を形成し、前記弁孔にバイパス通路の開度を調整
する流量調整用スプールを摺動可能に嵌挿し、この流量
調整用スプールによって弁孔内を前室と後室とに区分し
、この後室内に前記流量調整用スプールをバイパス通路
の閉じる方向に押圧するスプリングを介挿し、前記前室
側の開口部に車速等に応じた電流が印加される電磁弁を
固定し、この電磁弁の弁本体に一方が前記弁孔と連通し
他方が低圧側へ連通する流路を形成し、この流路の上流
側に固定絞り部材を設け、下流側に前記電磁弁によって
開口面積若しくは開口する圧力が変えられる制御部を設
け、弁本体の固定絞り部材と制御部間に前記反力機構お
よび前記後室に圧油を導く導入孔を形成したことを特徴
とする動力舵取装置における流体制御装置。(1) In a power steering device equipped with a reaction force mechanism that generates a steering reaction force according to vehicle speed, etc., a fluid control device that controls pressure oil from a pump device to a pressure that is supplied to the reaction force mechanism. , a valve hole through which pressure oil is guided to the pump body of the pump device, a bypass passage communicating with the valve hole and guided to the tank side, and a flow rate adjustment spool for adjusting the opening degree of the bypass passage in the valve hole. The flow rate adjustment spool is slidably inserted into the valve hole to divide the inside of the valve hole into a front chamber and a rear chamber, and a spring is inserted in the rear chamber to press the flow rate adjustment spool in a direction to close the bypass passage. A solenoid valve to which a current is applied according to vehicle speed, etc. is fixed to the opening on the front chamber side, and a flow path is formed in the valve body of the solenoid valve, one side communicating with the valve hole and the other side communicating with the low pressure side. A fixed throttle member is provided on the upstream side of this flow path, and a control section is provided on the downstream side where the opening area or opening pressure can be changed by the electromagnetic valve, and the reaction force is generated between the fixed throttle member of the valve body and the control section. 1. A fluid control device for a power steering device, characterized in that an introduction hole is formed for introducing pressure oil into a mechanism and the rear chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25965284A JPS61139562A (en) | 1984-12-07 | 1984-12-07 | Fluid control unit in hydraulic steering device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25965284A JPS61139562A (en) | 1984-12-07 | 1984-12-07 | Fluid control unit in hydraulic steering device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61139562A true JPS61139562A (en) | 1986-06-26 |
Family
ID=17337022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25965284A Pending JPS61139562A (en) | 1984-12-07 | 1984-12-07 | Fluid control unit in hydraulic steering device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61139562A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5217689A (en) * | 1989-10-26 | 1993-06-08 | Baxter International Inc. | Blood oxygenation system |
US5316724A (en) * | 1989-03-31 | 1994-05-31 | Baxter International Inc. | Multiple blood path membrane oxygenator |
-
1984
- 1984-12-07 JP JP25965284A patent/JPS61139562A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5316724A (en) * | 1989-03-31 | 1994-05-31 | Baxter International Inc. | Multiple blood path membrane oxygenator |
US5217689A (en) * | 1989-10-26 | 1993-06-08 | Baxter International Inc. | Blood oxygenation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6116172A (en) | Steering force controlling device for power steering device | |
US5253730A (en) | Power steering apparatus | |
US4410058A (en) | Vehicle steering apparatus | |
JPS61247575A (en) | Steering force control device in power steering device | |
JPS60229870A (en) | Steering force control device in power steering device | |
US4681184A (en) | Hydraulic reaction force apparatus for power steering system | |
JPS5928762B2 (en) | hydraulic steering system | |
JPS61139562A (en) | Fluid control unit in hydraulic steering device | |
JPS60191873A (en) | Power steering | |
US4605085A (en) | Power steering | |
US4206827A (en) | Steering gears | |
US4385493A (en) | Hydraulically assisted steering device | |
US4182427A (en) | Control mechanism for an integrated brake and steering system | |
US4586582A (en) | Power steering system with vehicle speed-sensitive flow | |
JPH025623B2 (en) | ||
JPS61102382A (en) | Steering force controller of power steering unit | |
JP2516410B2 (en) | Dual cylinder type power steering used in automobiles | |
JP2639536B2 (en) | Speed-sensitive power steering device | |
JP2608423B2 (en) | Speed-sensitive power steering device | |
JPS61193968A (en) | Steering force controller for power steering | |
EP0405860B1 (en) | Power assisted steering mechanism | |
JPH0232543Y2 (en) | ||
JPS61184172A (en) | Flow rate controller of power steering working fluid | |
JPH0577743A (en) | Hydraulic power steering device | |
JPS6299262A (en) | Steering force control device of power steering device |