JPS61139073A - Manufacture of infrared detector - Google Patents

Manufacture of infrared detector

Info

Publication number
JPS61139073A
JPS61139073A JP59261086A JP26108684A JPS61139073A JP S61139073 A JPS61139073 A JP S61139073A JP 59261086 A JP59261086 A JP 59261086A JP 26108684 A JP26108684 A JP 26108684A JP S61139073 A JPS61139073 A JP S61139073A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
substrate
impurity
infrared detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59261086A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hisa
義浩 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59261086A priority Critical patent/JPS61139073A/en
Publication of JPS61139073A publication Critical patent/JPS61139073A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1032Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIBVI compounds, e.g. HgCdTe IR photodiodes

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a PV type infrared detector having large Ro and high performance by making the forbidden band width of a surface layer section in a compound semiconductor substrate larger than that of the substrate through an interdiffusion. CONSTITUTION:A surface layer 8, forbidden band width thereof is larger than Hg1-xCdxTe(x=0.2) and which consists of a compound semiconductor such as CdTe, is formed to the upper section of a compound semiconductor substrate 1. An interdiffusion layer 9 is shaped on these opposite surface through treatment at a high temperature. The layers upper than the surface of the substrate 1 are removed, an impurity intrusion preventive layer functioning as an electrical insulating layer in combination is formed, an impurity is doped to the surface of the substrate 1 from an opening section in the layer 2 to shape an impurity doped layer 4, and a P-N junction is formed near the layer 4. Lastly, an electrically insulating protective film 6 through which infrared rays are transmitted is shaped onto the surface of the impurity doped layer 4, and a metallic electrode 3 is formed.

Description

【発明の詳細な説明】 【産業上の利用分野〕 この発明は、半導体を用いた赤外線検知器に関し、特に
長波長の赤外線の検出に適した高性能のpv型型外外線
検知器製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an infrared detector using a semiconductor, and particularly relates to a method for manufacturing a high-performance PV type external radiation detector suitable for detecting long wavelength infrared rays. It is something.

〔従来の技術〕[Conventional technology]

第2図は従来の赤外線検知器、例えば化合物半導体など
の基板上に不純物を導入してpn接合を形成した光起電
力型(Photo Voltaic型:以下PV型と略
称する)赤外線検知器を示し、1は化合物半導体基板、
2は不純物ドープ用の窓を備えた絶縁層、3は電極、5
は不純物ドープ層4の底部、6は不純物ドープ層4を被
覆保護する絶縁層である。
FIG. 2 shows a conventional infrared detector, for example, a photovoltaic type (hereinafter abbreviated as PV type) infrared detector in which impurities are introduced onto a substrate such as a compound semiconductor to form a pn junction. 1 is a compound semiconductor substrate,
2 is an insulating layer with a window for impurity doping, 3 is an electrode, and 5
is the bottom of the impurity doped layer 4, and 6 is an insulating layer that covers and protects the impurity doped layer 4.

次に動作について説明する。Next, the operation will be explained.

絶縁層6を通過して化合物半導体基板1に入射した光子
のうち、化合物半導体基板1の禁制帯幅より大きなエネ
ルギーを持つ光子は、充満帯の電子を伝導帯に励起し、
それと同数の正孔を充満帯に発生させる。励起した電子
及び正孔は、それぞれの拡散長゛だけ移動した後に再結
合する。この過程の中で、半導体ドープ層4の底部5に
ある空乏層内及び空乏層の近傍で励起した電子及び正孔
は、該空乏層内の電界に沿ってドリフトし、P、Nそれ
ぞれの側の少数キャリアとなって2層、N層間に起電力
を発生させる。その起電力により赤外線を検知するのが
pv型赤外線検知器である。
Among the photons that have passed through the insulating layer 6 and entered the compound semiconductor substrate 1, photons with energy greater than the forbidden band width of the compound semiconductor substrate 1 excite electrons in the full band to the conduction band,
The same number of holes are generated in the filled zone. The excited electrons and holes recombine after moving by their respective diffusion lengths. During this process, electrons and holes excited in and near the depletion layer at the bottom 5 of the semiconductor doped layer 4 drift along the electric field in the depletion layer, and becomes minority carriers and generates an electromotive force between the 2nd layer and the N layer. A PV type infrared detector detects infrared rays using the electromotive force.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、このpv型赤外線検知器は、低消費電力、高
速応答、高感度といった優れた特性を有し、近年広く開
発が進められている。このPv型検知素子はゼロバイア
ス状態でのインピーダンス(以下Roと略称する)によ
りその性能が左右される。ROはpn接合の基本的特性
から明らかなように、拡散電流1発生再結合電流(Ge
neration−Recombination Cu
rrent  :以下OR電流と略称する)及びトンネ
ル電流により決定され、赤外線検知器としての動作温度
では、GR雷電流Roを決定することが、例えばIEE
E、、 ED−29、No、2゜P、274〜279な
どにおいて報告されている。このGR雷電流、バルク内
のpn接合の空乏層領域で発生するものと基板表面に近
接したpn接合の表面領域で発生するものの2つに大別
できる。phy−sics  and Technol
ogy of Sem1conductor Devi
ces(A、S、Grove、 1967)の報告によ
れば、上記表面領域でのキャリア捕獲準位密度は、空乏
層領域中のキャリア捕獲準位密度に比して極めて太きく
、GR雷電流大きさを支配的に決定していると思われる
Incidentally, this PV type infrared detector has excellent characteristics such as low power consumption, high speed response, and high sensitivity, and has been widely developed in recent years. The performance of this Pv type sensing element is influenced by its impedance (hereinafter abbreviated as Ro) in a zero bias state. As is clear from the basic characteristics of pn junctions, RO is a diffusion current 1 generation recombination current (Ge
neration-Recombination Cu
rrent (hereinafter abbreviated as OR current) and tunnel current, and at the operating temperature as an infrared detector, it is possible to determine the GR lightning current Ro by, for example, IEE
E., ED-29, No. 2°P, 274-279, etc. This GR lightning current can be roughly divided into two types: one generated in the depletion layer region of the pn junction in the bulk, and one generated in the surface region of the pn junction close to the substrate surface. phy-sics and technology
ogy of Sem1conductor Devi
ces (A, S., Grove, 1967), the carrier trapping level density in the surface region is extremely thick compared to the carrier trapping level density in the depletion layer region, and the GR lightning current is large. It seems that this dominantly determines the

一般に表面領域のキャリア捕獲準位密度を減する構造と
して、第3図に示すような構造の電子が用いられる場合
が多い。7は化合物半導体基板1上に形成されこれより
大きな禁制帯幅を有する化合物半導体層である。pn接
合の表面領域でのGR雷電流、真性キャリア密度に比例
して大きくなる。この真性キャリア密度は主に半導体材
料の禁制帯幅Egと温度Tとの関数であり、Eg/2K
Tに指数関数的に依存している。よって半導体基板1の
表面に該半導体基板1より大きな禁制帯幅を有する層7
を形成することにより表面領域でのGR雷電流小さくし
ようとするものである。
Generally, as a structure for reducing the carrier trapping level density in the surface region, electrons having a structure as shown in FIG. 3 are often used. A compound semiconductor layer 7 is formed on the compound semiconductor substrate 1 and has a larger forbidden band width. The GR lightning current in the surface region of the pn junction increases in proportion to the intrinsic carrier density. This intrinsic carrier density is mainly a function of the forbidden band width Eg of the semiconductor material and the temperature T, and is Eg/2K
It depends exponentially on T. Therefore, a layer 7 having a larger forbidden band width than the semiconductor substrate 1 is formed on the surface of the semiconductor substrate 1.
This is intended to reduce the GR lightning current in the surface region.

しかし、この場合半導体基板1の表面の大きな禁制帯幅
を有する層7にどのような材料を用いるか、またどのよ
うに形成するかが問題になる。例えば半導体基板1との
格子整合が良くない材料を用いたとすると、半導体基板
1と表面層7の界面11における界面準位密度が増えこ
れは新たなGR電流発生の原因となる。
However, in this case, the problem is what material to use for the layer 7 having a large forbidden band on the surface of the semiconductor substrate 1 and how to form it. For example, if a material with poor lattice matching with the semiconductor substrate 1 is used, the density of interface states at the interface 11 between the semiconductor substrate 1 and the surface layer 7 increases, which causes new generation of GR current.

この発明は上記のような問題点を解消するためになされ
たもので、半導体基板表面層の界面準位密度を増やすこ
となく、表面領域でのGR雷電流小さくし、良好なRo
を得ることのできる赤外線検知器の製造方法を提供する
ことを目的とする。
This invention was made to solve the above-mentioned problems, and it reduces the GR lightning current in the surface region without increasing the interface state density of the surface layer of the semiconductor substrate, and improves the Ro
The object of the present invention is to provide a method for manufacturing an infrared detector that can obtain the following.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る赤外線検知器の製造方法は、例えば化合
物半導体基板の表面に、該化合物半導体の構成物質の一
部で該化合物半導体より大きい禁制帯幅をもつ化合物半
導体、あるいは構成物質は同じであるが禁制体幅が該化
合物半導体より大き(なるように組成制御された化合物
半導体からなる化合物半導体表面層を形成した後、高温
下で基板及び表面層の化合物半導体間に相互拡散層を形
成し、その後相互拡散層形成以前の化合物半導体基板の
表面より上部の層を除去し、その表面の必要とする部分
に不純物をドープするとともに、その不純物ドープ層を
相互拡散層より深くしたものである。
The method for manufacturing an infrared detector according to the present invention includes, for example, forming a compound semiconductor on the surface of a compound semiconductor substrate with a compound semiconductor that is part of the constituent substances of the compound semiconductor and has a larger forbidden band width than the compound semiconductor, or the constituent substances are the same. After forming a compound semiconductor surface layer made of a compound semiconductor whose composition is controlled so that the forbidden width is larger than that of the compound semiconductor, an interdiffusion layer is formed between the substrate and the compound semiconductor of the surface layer at high temperature, Thereafter, the layer above the surface of the compound semiconductor substrate before the formation of the interdiffusion layer is removed, and the required portions of the surface are doped with impurities, and the impurity doped layer is made deeper than the interdiffusion layer.

〔作用〕[Effect]

この発明においては、上記相互拡散層を形成したので、
不純物ドープ層の端部、即ちpn接合部が化合物半導体
表面に露出している部分では禁制体幅が化合物半導体基
板のそれより大きくなり、化合物半導体表面領域のGR
雷電流低減される。
In this invention, since the above interdiffusion layer is formed,
At the end of the impurity doped layer, that is, the part where the pn junction is exposed on the compound semiconductor surface, the forbidden width becomes larger than that of the compound semiconductor substrate, and the GR of the compound semiconductor surface area increases.
Lightning current is reduced.

また上記相互拡散層では、組成が急峻に変化しないため
、格子不整などによる界面準位密度も非常に少なくなり
、新たなGR雷電流発生することはない。
Further, in the interdiffused layer, since the composition does not change sharply, the density of interface states due to lattice misalignment and the like becomes extremely small, and no new GR lightning current is generated.

〔実施例〕〔Example〕

以下、この発明の一実施例による赤外線検知器の製造方
法を図について説明する。第1図(alにおいて、化合
物半導体基板1、例えばHg1−xCdxTe (x=
0.2 )基板の上部にHgt  )(CdxTe (
x=0.2 )より禁制帯幅が大きいCdTe、あるい
はHgl−x Cd xT e (x >Q、2 )な
どの化合物半導体からなる表面層8を、液相エピタキシ
ャル法1分子線エピタキシャル法などにより形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing an infrared detector according to an embodiment of the present invention will be described below with reference to the drawings. In FIG. 1 (al), a compound semiconductor substrate 1, for example Hg1-xCdxTe (x=
0.2) Hgt)(CdxTe(
A surface layer 8 made of a compound semiconductor such as CdTe or Hgl-x Cd x Te (x > Q, 2), which has a larger forbidden band width than x = 0.2), is formed by a liquid phase epitaxial method, a single molecular beam epitaxial method, or the like. Form.

次に高温処理を行なうことにより、化合物半導体基板1
及び化合物半導体表面N8の対向面に相互拡散層9を形
成する(第1図中)参照)。
Next, by performing high temperature treatment, the compound semiconductor substrate 1
Then, a mutual diffusion layer 9 is formed on the surface opposite to the compound semiconductor surface N8 (see FIG. 1).

なお、相互拡散に関してはJournal of El
ectro−nic Materials Vol、1
3. No、1 (1984) P、67〜80に報告
されている。その後、相互拡散層形成以前のHg1−x
 Cd xTe  (x−0,2)基板1の表面より上
部の層をBr2とCH30Hの混合液などで除去し、第
1図(C1に示す構造を得る。次にその上に電気的絶縁
層を兼ねた不純物侵入防止Fi2、例えばZnSあるい
は5i02などの層を形成し、その開口部から基板1の
表面に不純物をドープして不純物ドープ層4を形成し、
その近傍にpn接合を形成する(第1図(dl参照)。
Regarding mutual diffusion, see Journal of El
electro-nic Materials Vol.1
3. No. 1 (1984) P, 67-80. After that, Hg1-x before the formation of the interdiffusion layer
The layer above the surface of the Cd xTe (x-0,2) substrate 1 is removed using a mixture of Br2 and CH30H to obtain the structure shown in Figure 1 (C1). Next, an electrically insulating layer is formed on it. A layer of ZnS or 5i02, which also serves as an impurity intrusion prevention layer, is formed, and an impurity is doped into the surface of the substrate 1 from the opening thereof to form an impurity-doped layer 4.
A pn junction is formed in the vicinity thereof (see FIG. 1 (dl)).

最後に不純物ドープ層4表面に電気的に絶縁性で、赤外
線を透過する保護膜6、例えばZnSなどの膜を形成し
た後、金属電極3を形成する(第1図(el参照)。
Finally, an electrically insulating protective film 6 that transmits infrared rays, such as a ZnS film, is formed on the surface of the impurity doped layer 4, and then a metal electrode 3 is formed (see FIG. 1 (el)).

次に、本装置の動作の説明をする。第1図(e)におい
て、保護膜6を透過してHgr−xCdxTe(x=0
.2)基板1に入射した光子のうち、Hgt−xCdx
Te (x=0.2)の禁制帯幅より大きなエネルギー
を持つものは電子正孔対を生成する。不純物ドープ層4
の底部であるpn接合5近傍で生成した電子正孔対は、
不純物ドープ層4及び基板1のそれぞれの層中の少数キ
ャリアとなり起電力となって現われる。− ところで、この構造の素子性能を左右するものの一つに
pn接合の表面露出領域10で発生するOR電流がある
が、この領域°10では、相互拡散M9があることによ
って禁制帯幅がHgr−xCdxTe (X=0.2 
)層1のそれより大きいため、OR電流を低減させるこ
とができる。また、第3図(illの構造では相互拡散
層9があるため組成が急峻に変化せず、両者間の界面準
位密度を非常に小さくでき、新たなOR電流の発生を防
止できる。
Next, the operation of this device will be explained. In FIG. 1(e), Hgr-xCdxTe (x=0
.. 2) Of the photons incident on the substrate 1, Hgt-xCdx
Those with energy larger than the forbidden band width of Te (x=0.2) generate electron-hole pairs. Impurity doped layer 4
The electron-hole pairs generated near the pn junction 5, which is the bottom of the
These become minority carriers in each of the impurity-doped layer 4 and the substrate 1, and appear as an electromotive force. - By the way, one of the things that affects the element performance of this structure is the OR current generated in the surface exposed region 10 of the pn junction, and in this region °10, the forbidden band width is Hgr- due to the interdiffusion M9. xCdxTe (X=0.2
) is larger than that of layer 1, so the OR current can be reduced. Further, in the structure shown in FIG. 3 (ill), since there is an interdiffusion layer 9, the composition does not change abruptly, and the interface state density between the two can be made very small, making it possible to prevent the generation of new OR current.

なお、上記実施例では、化合物半導体基板1にHg1−
x CdxTe (x=0.2 )を用いたが、X値が
0.2以外のHg1−xcdxTe基板でもよい。
Note that in the above embodiment, Hg1− is applied to the compound semiconductor substrate 1.
Although xCdxTe (x=0.2) was used, a Hg1-xcdxTe substrate having an X value other than 0.2 may be used.

また、化合物半導体基板1にPbx−xSnxTeを用
いてもよく、この場合Xが0.8より小さい場合は化合
物半導体表面層8にPb5n等を用いればよい。
Further, Pbx-xSnxTe may be used for the compound semiconductor substrate 1, and in this case, if X is smaller than 0.8, Pb5n or the like may be used for the compound semiconductor surface layer 8.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る赤外線検知器の製造方法
によれば、化合物半導体基板の表層部の禁制帯幅を相互
拡散を行なうことによって該基板のそれより大きくした
ので、pn接合の表面露出領域でのOR電流を小さくす
ることができ、また、相互拡散層内では組成の急峻な変
化がないため界面準位密度も非常に小さくでき、ROの
大きい高性能のPV型赤外線検知器が得られる効果があ
る。
As described above, according to the method for manufacturing an infrared detector according to the present invention, the forbidden band width of the surface layer of the compound semiconductor substrate is made larger than that of the substrate by mutual diffusion, so that the surface of the pn junction is exposed. The OR current in the interdiffusion layer can be made small, and since there is no steep change in composition within the interdiffusion layer, the interface state density can be made very small, resulting in a high-performance PV-type infrared detector with a large RO. It has the effect of

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)はこの発明の一実施例によるPV
型赤外線検知器の製造工程を示す断面図、第2図。 第3図はそれぞれ従来のpv型赤外線検知器の断面図で
ある。 1・・・化合物半導体基板、4・・・不純物ドープ層、
8・・・化合物半導体層、9・・・相互拡散層。 なお図中、同一符号は同−又は相当部分を示す。
FIGS. 1(a) to (e) show a PV according to an embodiment of the present invention.
FIG. 2 is a sectional view showing the manufacturing process of the type infrared detector. FIG. 3 is a cross-sectional view of a conventional PV type infrared detector. 1... Compound semiconductor substrate, 4... Impurity doped layer,
8... Compound semiconductor layer, 9... Interdiffusion layer. In the drawings, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)化合物半導体を用いた赤外線検知器の製造方法に
おいて、化合物半導体基板の表面に該化合物半導体の構
成物質の一部あるいは該半導体と同じ構成物質が組成制
御されたものからなる禁制帯幅が上記基板より大きい化
合物半導体表面層を形成する工程と、その後熱処理によ
り上記化合物半導体基板及び上記化合物半導体表面層の
対向面に相互拡散層を形成する工程と、該相互拡散層形
成以前の上記化合物半導体基板の表面より上部の層を除
去する工程と、その表面の所定部分に不純物をドープし
て上記相互拡散層より深い不純物ドープ層を形成する工
程とを含むことを特徴とする赤外線検知器の製造方法。
(1) In a method for manufacturing an infrared detector using a compound semiconductor, a forbidden band consisting of a part of the constituent material of the compound semiconductor or a composition-controlled composition of the same constituent material as the semiconductor is formed on the surface of the compound semiconductor substrate. a step of forming a compound semiconductor surface layer larger than the substrate; a step of subsequently forming an interdiffusion layer on opposing surfaces of the compound semiconductor substrate and the compound semiconductor surface layer by heat treatment; and a step of forming the compound semiconductor before forming the interdiffusion layer. Manufacturing an infrared detector, comprising the steps of removing a layer above the surface of the substrate, and doping a predetermined portion of the surface with an impurity to form an impurity doped layer deeper than the interdiffusion layer. Method.
JP59261086A 1984-12-10 1984-12-10 Manufacture of infrared detector Pending JPS61139073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59261086A JPS61139073A (en) 1984-12-10 1984-12-10 Manufacture of infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59261086A JPS61139073A (en) 1984-12-10 1984-12-10 Manufacture of infrared detector

Publications (1)

Publication Number Publication Date
JPS61139073A true JPS61139073A (en) 1986-06-26

Family

ID=17356885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59261086A Pending JPS61139073A (en) 1984-12-10 1984-12-10 Manufacture of infrared detector

Country Status (1)

Country Link
JP (1) JPS61139073A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683391A1 (en) * 1991-11-06 1993-05-07 Mitsubishi Electric Corp INFRARED IMAGE SENSOR.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57107082A (en) * 1980-12-24 1982-07-03 Fujitsu Ltd Detector for infrared ray
JPS57204136A (en) * 1981-06-01 1982-12-14 Texas Instruments Inc Method of producing semiconductor alloy having desired band gap

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57107082A (en) * 1980-12-24 1982-07-03 Fujitsu Ltd Detector for infrared ray
JPS57204136A (en) * 1981-06-01 1982-12-14 Texas Instruments Inc Method of producing semiconductor alloy having desired band gap

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683391A1 (en) * 1991-11-06 1993-05-07 Mitsubishi Electric Corp INFRARED IMAGE SENSOR.
US5410168A (en) * 1991-11-06 1995-04-25 Mitsubishi Denki Kabushiki Kaisha Infrared imaging device

Similar Documents

Publication Publication Date Title
JP3468670B2 (en) Solar cell and manufacturing method thereof
US4231149A (en) Narrow band-gap semiconductor CCD imaging device and method of fabrication
US4972244A (en) Photodiode and photodiode array on a II-VI material and processes for the production thereof
US4206003A (en) Method of forming a mercury cadmium telluride photodiode
US4490573A (en) Solar cells
KR101111215B1 (en) Electromagnetic radiation converter and a battery
JP5266521B2 (en) Infrared sensor and infrared sensor IC
JPH0766981B2 (en) Infrared sensor
US8759873B2 (en) Bispectral multilayer photodiode detector and method for manufacturing such a detector
EP0075367B1 (en) Infra-red radiation imaging devices
US4137544A (en) Mercury cadmium telluride photodiode
RU2355066C2 (en) Electromagnetic emission converter
US4377904A (en) Method of fabricating a narrow band-gap semiconductor CCD imaging device
JPS62160776A (en) Photovoltage detector and manufacture of the same
US6730538B1 (en) Fabricating electronic devices using actinide oxide semiconductor materials
US4021833A (en) Infrared photodiode
US4831428A (en) Infrared ray detection device
KR100422294B1 (en) Passivation of HgCdTe Junction Diode By Annealing In Cd/Hg Atmosphere
JPS61139073A (en) Manufacture of infrared detector
IL103347A (en) Photoresponsive device and method for fabricating the same including composition grading and recessed contacts for trapping minority carriers
US4914495A (en) Photodetector with player covered by N layer
JP2008060161A (en) Optical detector, and method of manufacturing optical detector
US5004698A (en) Method of making photodetector with P layer covered by N layer
Gopal et al. Zener current contribution to the resistance-area product of 8-to 14-µm Hg 1-x Cd x Te photodiodes
JPS5846069B2 (en) Infrared charge transfer device