JPS61138844A - Air-fuel ratio controlling method in diesel engine - Google Patents

Air-fuel ratio controlling method in diesel engine

Info

Publication number
JPS61138844A
JPS61138844A JP59261607A JP26160784A JPS61138844A JP S61138844 A JPS61138844 A JP S61138844A JP 59261607 A JP59261607 A JP 59261607A JP 26160784 A JP26160784 A JP 26160784A JP S61138844 A JPS61138844 A JP S61138844A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
exhaust gas
exhaust pressure
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59261607A
Other languages
Japanese (ja)
Other versions
JPH0541821B2 (en
Inventor
Yoshiki Nakajo
中條 芳樹
Toshiyasu Katsuno
歳康 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59261607A priority Critical patent/JPS61138844A/en
Publication of JPS61138844A publication Critical patent/JPS61138844A/en
Publication of JPH0541821B2 publication Critical patent/JPH0541821B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To control an air-fuel ratio to be constant, by making a relative current value in a lean sensor larger in proportion as exhaust pressure comes high. CONSTITUTION:An output current I and exhaust pressure sensor output PE of a lean sensor are made into digital conversion and written in a random access memory at a step 110. At a step 112, a compensation value K correspond ing to the exhaust pressure sensor output PE is calculated from a map, finding a compensation relative current value IR at a step 114. With this constitution, even if lean sensor output is varied, an air-fuel ratio is always controllable to the desired value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ディーゼル機関の空燃比制御方法に係り、特
に燃料噴射量と排ガス再循環(EGR)量を制御するこ
とによって空燃比を目標空燃比に制御するディーゼル機
関の空燃比制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air-fuel ratio control method for a diesel engine, and in particular, the present invention relates to an air-fuel ratio control method for a diesel engine. The present invention relates to an air-fuel ratio control method for a diesel engine that controls the fuel ratio.

〔従来の技術〕[Conventional technology]

従来より、スモークを常に所定値に制御すると共に、エ
ミッションおよび燃費を良好にするために、排気通路に
排ガス中の酸素濃度を検出する酸素濃度検出器を取付け
、この酸素濃度検出器出力に基づいて吸気量、EGR量
および燃料噴射量をフィードバック制御する空燃比制御
装置(特開昭56−2433号公報)が知られている。
Conventionally, in order to always control smoke to a predetermined value and improve emissions and fuel efficiency, an oxygen concentration detector that detects the oxygen concentration in exhaust gas is installed in the exhaust passage, and the output of the oxygen concentration detector is An air-fuel ratio control device (Japanese Unexamined Patent Publication No. 56-2433) that performs feedback control on intake air amount, EGR amount, and fuel injection amount is known.

また、酸素濃度検出器として第2図に示す構造のり一ン
センサ(限界電流式酸素分圧検出器)が知られている。
Further, as an oxygen concentration detector, a glue sensor (limiting current type oxygen partial pressure detector) having a structure shown in FIG. 2 is known.

このリーンセンサは、酸素イオン伝導性固体電解質lを
備えており、この電解質に各々陽極、陰極として作用す
る通気性プラナ、す電極2,3により挾持されている。
This lean sensor includes an oxygen ion conductive solid electrolyte 1, which is sandwiched between permeable planar electrodes 2 and 3, which act as an anode and a cathode, respectively.

この電極2.3には各々リードsza、aaが接続され
ている。
Leads sza and aa are connected to the electrodes 2.3, respectively.

プラチナ電′S3の外周には拡散抵抗層としての多孔質
せラミックス層4が被覆され、プラチナ電極2の内部に
は空気孔5aを備えてセ/すを加熱するセラミックヒー
タ5が挿入され、このヒータ5にはリードpJ5J5c
が接続されている。そして、このヒータ5とプラチナ電
極2との間Kn絶縁ブツシュt6が介在されている。な
お、71−を多数の孔7aが穿設されたケーシングであ
る。このセッサは、排気管壁8を貫通して排気管内へ突
出して取付けられる。
The outer periphery of the platinum electrode S3 is coated with a porous ceramic layer 4 as a diffusion resistance layer, and a ceramic heater 5 having air holes 5a and heating the cell is inserted inside the platinum electrode 2. This heater 5 has a lead pJ5J5c.
is connected. A Kn insulating bush t6 is interposed between the heater 5 and the platinum electrode 2. Note that 71- is a casing in which a large number of holes 7a are bored. This processor is attached so as to penetrate through the exhaust pipe wall 8 and protrude into the exhaust pipe.

そして、リード線2BT3a問およびリード紳5b、5
c間に所定の電圧を印加することにより排ガス空燃比に
対応した出力電流工を得ることができる。この出力電流
Iけ以下の式で表わされ、排圧が一定ならば第3図に示
すようKなる。
Then, lead wire 2BT3a and lead wire 5b, 5
By applying a predetermined voltage across c, an output current corresponding to the exhaust gas air-fuel ratio can be obtained. This output current is expressed by the following equation, and if the exhaust pressure is constant, it becomes K as shown in FIG.

ただし、Pは排圧、PO7は排ガス中の酸素分圧、Tづ
リー/セ/す素子温度、k+  X+  ’lに定数で
ある。
However, P is a constant for the exhaust pressure, PO7 is the oxygen partial pressure in the exhaust gas, T series/cell element temperature, and k+X+'l.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のリーンセ/すにヒータ5により素子温度Tを一定
に保持することができるが、機関回転数やアクセルレバ
−開度の変化、大気圧の変化によって排圧が変化し、更
に過給機が装着されている場合には過給圧に応じて排圧
が変化し、上記(1)式に基づいてセ/すの出力電流工
が変化してし壕うという問題があった。第4図は、排ガ
ス空燃比が一定の場合の排圧の変化に対する出力電流l
の変化を示すものである。図から理解されるように排圧
が高くなると出力電流工の値が太きくなり、出力電流I
d実際の排ガス空燃比よりリーフ側の値を示すことにな
る。したがって、このリー/セ/すを用いて燃料噴射量
やEGR量を制御して空燃比をフィードバック制御する
場合には、排圧の変化に応じてセッサの出力電流が変化
し、空燃比を目標空燃比に制御できず、スモークやエミ
ツショ/が発生する、という問題があった。
Although the element temperature T can be kept constant by the heater 5 mentioned above, the exhaust pressure changes due to changes in engine speed, accelerator lever opening, and atmospheric pressure, and the supercharger also changes. When installed, there is a problem in that the exhaust pressure changes depending on the supercharging pressure, and the output current of the cell changes based on the above equation (1). Figure 4 shows the output current l for changes in exhaust pressure when the exhaust gas air-fuel ratio is constant.
This shows the change in As can be understood from the figure, as the exhaust pressure increases, the value of the output current increases, and the output current I
d indicates a value on the leaf side of the actual exhaust gas air-fuel ratio. Therefore, when feedback controlling the air-fuel ratio by controlling the fuel injection amount and EGR amount using this leakage/sensor, the output current of the processor changes in accordance with the change in exhaust pressure, and the air-fuel ratio is adjusted to the target air-fuel ratio. There was a problem that the air-fuel ratio could not be controlled, resulting in smoke and emissions.

本発明は上記問題点を解決すべく成されたもので、排圧
が変化しても空燃比を一定に制御することがてきるディ
ーゼル機関の空燃比制御方法を提供することを目的とす
る。
The present invention was made to solve the above problems, and an object of the present invention is to provide an air-fuel ratio control method for a diesel engine that can control the air-fuel ratio to be constant even if the exhaust pressure changes.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために本発明は、上記リー/セ/
すを用いて排ガス空燃比を検出し、この排ガス空燃比に
基づいて燃料噴射量およびEGR量を制御して混合気の
空燃比を要求空燃比に制御する場合に、全負荷域では排
ガス空燃比に基づいてスモーク限界を推定してスモーク
限界に対応する排ガス空燃比を越えないように燃料噴射
量を制御することによって空燃比を制御する。このとき
、排圧が高くなるように変化すればリーフ七ノサー出力
の予め設定された比較電流値を大きくする。
In order to solve the above problems, the present invention provides
When controlling the air-fuel ratio of the air-fuel mixture to the required air-fuel ratio by detecting the exhaust gas air-fuel ratio and controlling the fuel injection amount and EGR amount based on this exhaust gas air-fuel ratio, the exhaust gas air-fuel ratio is The air-fuel ratio is controlled by estimating the smoke limit based on the smoke limit and controlling the fuel injection amount so as not to exceed the exhaust gas air-fuel ratio corresponding to the smoke limit. At this time, if the exhaust pressure changes to become higher, the preset comparison current value of the leaf 7 noser output is increased.

一方、排圧が低くなるように変化すれば、リー/セ/サ
ー出力の比較電流値を小さくする。したがって排圧が変
化しても空燃比を一定に制御することができる。また、
全負荷以外の領域では排ガス空燃比に基づいて吸気系に
再循環させる排ガス量すなわちEGRtを制御すること
によって空燃比を目標空燃比に制御する。このとき、全
負荷の領域と同様に排圧が高くなるように変化すれば、
リーフセンサ出力の比較電流値を大きくし、排圧が低く
なれば比較電流値を小さくする。
On the other hand, if the exhaust pressure changes to become lower, the comparison current value of the Lee/Sensor/Ser output is reduced. Therefore, even if the exhaust pressure changes, the air-fuel ratio can be controlled to be constant. Also,
In areas other than full load, the air-fuel ratio is controlled to the target air-fuel ratio by controlling the amount of exhaust gas recirculated to the intake system, that is, EGRt, based on the exhaust gas air-fuel ratio. At this time, if the exhaust pressure changes to become higher as in the full load area,
The comparison current value of the leaf sensor output is increased, and if the exhaust pressure becomes low, the comparison current value is decreased.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、排圧によってソー
/センサ出力が変化しても空燃比を常に目標の値に制御
できるので、排圧変化によってスモークが発生したり、
エミツショ/および燃費が悪化するのを防止することが
できる、という効果が得られる。
As explained above, according to the present invention, the air-fuel ratio can always be controlled to the target value even if the saw/sensor output changes due to exhaust pressure.
The effect is that it is possible to prevent deterioration of exhaust gas/fuel efficiency.

〔実施例〕〔Example〕

以下図面を参照して本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第5図は、本発明が適用される燃料噴射装置およびEG
R装置を備えたディーゼル機関の概略図を示すものであ
る。エアクリーナ10は吸気管12およびイノテークマ
ニホールド14を介してディーゼル機関本体20の吸気
ボートに連通されている。ディーゼル機関本体20の排
気ポートにエキゾーストマニホールド16を介して排気
管18に連通されている。ディーゼル機関本体20には
、本体20の各気筒に設けられた燃料噴射弁に燃料を圧
送する周知の分配型燃料噴射ボ/ブ22が取付けられ、
また本体20のウォータジャケット内に突出するように
機関冷却水温セ/す24が取付けられている。
FIG. 5 shows a fuel injection device and an EG to which the present invention is applied.
1 shows a schematic diagram of a diesel engine equipped with an R device. The air cleaner 10 is communicated with an intake boat of the diesel engine main body 20 via an intake pipe 12 and an innotheque manifold 14. An exhaust port of the diesel engine main body 20 is connected to an exhaust pipe 18 via an exhaust manifold 16. The diesel engine main body 20 is equipped with a well-known distribution type fuel injection valve 22 that pumps fuel to the fuel injection valves provided in each cylinder of the main body 20.
Further, an engine cooling water temperature control unit 24 is attached so as to protrude into the water jacket of the main body 20.

排気管18と吸気管12とを連通ずるようにEGR通路
26が設けられており、このEGR通路26にはEGR
通路26に流れるEGR量を制御するEGRパルプ28
が取付けられている。このE G RtZ n・プ28
はアクチュエータ30によって制御される。
An EGR passage 26 is provided to communicate the exhaust pipe 18 and the intake pipe 12.
EGR pulp 28 that controls the amount of EGR flowing into the passage 26
is installed. This E G RtZ n・pu28
is controlled by actuator 30.

排気管18KVi、管壁を貫通して排気管内に突出する
ように、第2図と同様のり一7センサ32が取付けられ
ている。このリーノセンサ32の近傍には、排圧を検出
する排圧セ/すが取付けられている。また、このディー
ゼル機関には、排気管18に設けられたターピ/と吸気
管12に設けられたブロアとで構成された過給機36が
取付けられている。
A glue 7 sensor 32 similar to that shown in FIG. 2 is attached to the exhaust pipe 18KVi so as to penetrate through the pipe wall and protrude into the exhaust pipe. An exhaust pressure sensor for detecting exhaust pressure is attached near the reno sensor 32. Further, a supercharger 36 is attached to this diesel engine, which is composed of a turret provided in the exhaust pipe 18 and a blower provided in the intake pipe 12.

また、38t:f分配型燃料噴射ポンプ22のアクセル
レバ−に連結されたボテノショメータ等で構成されてア
クセルレバ−開度を検出するアクセルレバ−開度センサ
、40は分配型燃料噴射ポンプ22のドライブシャフト
に同軸秋に固定されたシグナルロータとシグナルロータ
の歯に対向するように配置されたピックアップとで構成
された機関回転数セ/すである。
Further, 38t:f is an accelerator lever opening sensor which is composed of a potentiometer connected to the accelerator lever of the distribution type fuel injection pump 22 and detects the opening degree of the accelerator lever, and 40 is a drive of the distribution type fuel injection pump 22. This is an engine speed control system consisting of a signal rotor coaxially fixed to a shaft and a pickup arranged to face the teeth of the signal rotor.

上記の冷却水温センサ24、リーンセ/す34、排圧セ
/す32、アクセルレバ−開度セ/す38および機関回
転数センサ40ijマイクロコ/ピユータ42の入力ポ
ートに接続されている。マイクロコンピュータ42#″
i、周知のように、う/ダムアクセスメモリ(RAM)
、リードオンリメモリ(ROM)、中央処理装wt(C
PU)および入出力ポート等で#威され、マイクロコン
ピュータ42の出カポ−)H駆動回路を介してアクチュ
エータ30および燃料噴射ポンプ22のスピルリングの
位置を制御するりニアソレノイドに接続されている。
The cooling water temperature sensor 24, the lean sensor 34, the exhaust pressure sensor 32, the accelerator lever opening sensor 38, and the engine speed sensor 40ij are connected to the input ports of the microcontroller 42. Microcomputer 42#''
i. As is well known, U/dumb access memory (RAM)
, read-only memory (ROM), central processing unit wt (C
It is connected to the near solenoid and controls the position of the actuator 30 and the spill ring of the fuel injection pump 22 via the output port (PU) and input/output port of the microcomputer 42.

次に上記のディーセル機関に本発明を適用した第1実施
例について説明する。本実施例においては、第6図に示
すように排圧セッサ出力r従って排圧が高くなるに従っ
て大きくなる補正値K、第7図に示すように機関回転数
に応じて定められた全負荷時のスモーク限界を示す比較
電流”ROs第8図に示すように機関回転数と燃料噴射
とに応じて定められた全負荷以外での比較電流IRoの
マツプや以下で説明する制御ルーチンが予め記憶されて
いる。上記の比較電流IRd、リーンセ/すの出力電流
即ち空燃比に対応するものであり、第7図の比較電流は
スそ−り限界に対応する空燃比を示し、第8図は目標空
燃比を示すものである。この目標空燃比にエミツショ/
等を良好にするために実験により定められる。
Next, a first embodiment in which the present invention is applied to the above diesel engine will be described. In this embodiment, as shown in FIG. 6, the exhaust pressure sensor output r and therefore the correction value K increases as the exhaust pressure increases, and as shown in FIG. As shown in Figure 8, a map of the comparison current IRo at times other than full load, which is determined according to the engine speed and fuel injection, and the control routine described below are stored in advance. The comparison current IRd mentioned above corresponds to the output current of the lean sensor, that is, the air-fuel ratio. This indicates the air-fuel ratio.The target air-fuel ratio is
It is determined by experiment to improve the quality of the product.

第9図に、本実施例のメインルーチンを示すもので、ス
テップ100でアクセルレバ−開度セッサ出力上ディジ
タル変換して求めたアクセル開度ACC1機関回転数セ
/す出力より計算によって求められた機関回転数NEを
RAMに書込む。ステップ102では、上記のアクセル
開1i1[Accおよび機関回転数NEとに基づいて、
アクセル開度と機関回転数とで定められた基本燃料噴射
量のマツプから基本燃料噴射量τ0を計算する。そして
、ステップ104てスピルリングの位置を制御して基本
燃料噴射量τ0に基づいた量の燃料τを噴射し、EGR
制御装置の制御条件が成立していればステップ106で
アクチュエータをデユーティ比制御して所定量のEGR
を供給する。
FIG. 9 shows the main routine of this embodiment, in which the accelerator opening degree ACC1 is calculated from the engine revolution speed output obtained by digital conversion of the accelerator lever opening sensor output in step 100. Write engine speed NE to RAM. In step 102, based on the above accelerator opening 1i1 [Acc and engine speed NE,
The basic fuel injection amount τ0 is calculated from the basic fuel injection amount map determined by the accelerator opening degree and the engine speed. Then, in step 104, the position of the spill ring is controlled to inject an amount of fuel τ based on the basic fuel injection amount τ0, and the EGR
If the control conditions of the control device are satisfied, the duty ratio of the actuator is controlled in step 106 to generate a predetermined amount of EGR.
supply.

第1図は、上記の燃料噴射量τ、ディーティ比りを計算
する割込みルーチ/を示すものである。
FIG. 1 shows an interrupt routine for calculating the fuel injection amount τ and the duty ratio.

この割込みルーチンは所定時間(例えば、50m5ec
 )毎に実行される。まず、ステップ110でリー/セ
/すの出力電流11排圧センサ出力PE、アクセルレバ
開度出力ACCをディジタル変換してRAMに書込み、
ステップ112で第6図のマツプから現在の排圧セ/す
出力PEに対応する補正値Kを計算する。ステップ11
4てけ、全負荷のときは第7図のマツプから比較電流工
費oを計算し、全負荷以外のときけ第8図のマツプから
比較電流工費0を計算し、この比較電流I、。に補正値
にを乗算して補正比較電流I、を求める。この結果補正
比較電流I、は排圧が高くなるに従って大きくされ、排
圧の上昇によるリーンセンサ出力と同様の割合で大きく
される。
This interrupt routine is executed for a predetermined period of time (for example, 50m5ec).
) is executed every time. First, in step 110, the output current 11 of the Lee/Se/S exhaust pressure sensor output PE and the accelerator lever opening output ACC are digitally converted and written to the RAM.
In step 112, a correction value K corresponding to the current exhaust pressure output PE is calculated from the map shown in FIG. Step 11
4. When the load is full, calculate the comparative current cost o from the map shown in FIG. 7, and when the load is not full, calculate the comparative current cost 0 from the map shown in FIG. 8, and calculate this comparative current I. A correction comparison current I is obtained by multiplying the correction value by . As a result, the correction comparison current I is increased as the exhaust pressure increases, and is increased at the same rate as the lean sensor output due to the increase in exhaust pressure.

を判断し、全負荷のときはステップ118でリーンセン
サの出力電流工と補正比較電流I、とを比較して現在の
検出された空燃比が補正されたスモーク限界を越えてい
るか否かを判断する。そして、リーンセンサの出力電流
工が補正比較電流I、以上ならばステップ122で空燃
比フィードバック補正係数FAFを所定量ΔF大きくし
、出力電流工が補正比較電流IR未満であればステップ
120で空燃比フィードバック補正係数FAFを所定量
ΔF小さくシ、ステップ124で基本燃料噴射量76に
空燃比フィードバック補正係数FAFを乗算して燃料噴
射量τを求める。なお、フィードバック補正係数FAF
を増減するにあたってに、比例積分動作させるように行
う。このときのセンサ出力とフィードバック補正係数F
AFの変化を第10図に示す。
When the load is full, the output current of the lean sensor is compared with the corrected comparison current I in step 118 to judge whether the currently detected air-fuel ratio exceeds the corrected smoke limit. do. If the output current of the lean sensor is equal to or greater than the corrected comparison current I, the air-fuel ratio feedback correction coefficient FAF is increased by a predetermined amount ΔF in step 122, and if the output current is less than the corrected comparison current IR, the air-fuel ratio The feedback correction coefficient FAF is reduced by a predetermined amount ΔF, and in step 124, the basic fuel injection amount 76 is multiplied by the air-fuel ratio feedback correction coefficient FAF to obtain the fuel injection amount τ. In addition, the feedback correction coefficient FAF
When increasing or decreasing , a proportional-integral operation is performed. Sensor output and feedback correction coefficient F at this time
Figure 10 shows changes in AF.

以上の結果、全負荷のときけ排圧が変化しても排気空燃
比より推定されるスモーク限界を越えないように燃料噴
射量がリーノセ/す出力に基づいてフィードバック制御
される。
As a result of the above, the fuel injection amount is feedback-controlled based on the fuel injection output so as not to exceed the smoke limit estimated from the exhaust air-fuel ratio even if the exhaust pressure changes under full load.

一方、全負荷以外のときは、ステップ126でリーンセ
ンサの出力電流工と補正比較電流I、とを比較し、リー
/セ/すの出力電流工が補正比較電流I、以上ならステ
ップ130でデユーティ比補正係数FEを所定量ΔE大
きくし、リーンセ/すの出力電流■が補正比較電流I、
未満ならステップ128で補正係数FEを所定量ΔF小
さくする。そして、ステップ132において、第8図の
目標空燃比に対応するデユーティ比Doに補正係数FE
を乗算して補正デユーティ比りを求める。
On the other hand, when the load is other than full load, the output current of the lean sensor and the corrected comparison current I are compared in step 126, and if the output current of the lean sensor is equal to or higher than the corrected comparison current I, the duty is adjusted in step 130. The ratio correction coefficient FE is increased by a predetermined amount ΔE, and the output current of the lean sensor/su becomes the correction comparison current I,
If it is less than that, the correction coefficient FE is decreased by a predetermined amount ΔF in step 128. Then, in step 132, a correction coefficient FE is applied to the duty ratio Do corresponding to the target air-fuel ratio in FIG.
Find the corrected duty ratio by multiplying by

以上の結果、全負荷以外のときは排圧が変化しても空燃
比が目標空燃比になるようにリー/セ/す出力に基づい
てEGR量がフィードバック制御される。
As a result of the above, when the load is not full, the EGR amount is feedback-controlled based on the output so that the air-fuel ratio becomes the target air-fuel ratio even if the exhaust pressure changes.

次に本発明の@2実施例について説明する。本実施例に
排気温か上昇すると排圧が高くなり、ま、  た機関回
転数が高くなると排圧が高くなる現象を利用し、排気温
と機関回転数とに応じて排圧を推定し、第1実施例と同
様圧制御するものである。
Next, the @2 embodiment of the present invention will be described. In this embodiment, the exhaust pressure is estimated according to the exhaust temperature and the engine speed by utilizing the phenomenon that the exhaust pressure increases as the exhaust temperature increases, and the exhaust pressure increases as the engine speed increases. The pressure is controlled similarly to the first embodiment.

このため、第11図に示すように、第5図の排圧センサ
32に代えて排気管18に排気温セ/す44を取付けて
いる。また、マイクロコノピュータ42のR01/iに
は、第12図に示すように、エノジノ回転数NFと排気
温セ/す出力T0とに基づいて定められた補正比較電流
のマツプが予め記憶されている。なお、このマツプは全
負荷用の補正比較電流のマツプと全負荷以外用の補正比
較電流のマツプとが必要であるが、第12図には全負荷
以外用のマツプのみ示した。
For this reason, as shown in FIG. 11, an exhaust temperature sensor 44 is attached to the exhaust pipe 18 in place of the exhaust pressure sensor 32 shown in FIG. Furthermore, as shown in FIG. 12, R01/i of the microcomputer 42 stores in advance a map of the correction comparison current determined based on the engine speed NF and the exhaust temperature output T0. There is. Although this map requires a map of the corrected comparison current for full load and a map of corrected comparison current for other than full load, FIG. 12 shows only the map for other than full load.

次に第13図に基づいて本実施例の割込みルーチンにつ
いて説明する。このルーチ/Vi、第1図のルーチンの
ステップ112とステップ114に代えてステップ13
6を設けたものである。従って、同一部分Kfl同一符
号を付して説明を省略する。ステップ136では、第1
2図に示すマツプ゛等に基づいて全負荷用、の補正比較
電流、全負荷以外用の補正比較電流を計算し、ステップ
116〜ステツプ132において第1実施例と同様に燃
料噴射量τ、補正デユーティ比りを計算する。
Next, the interrupt routine of this embodiment will be explained based on FIG. This routine/Vi, step 13 replaces steps 112 and 114 in the routine of FIG.
6. Therefore, the same parts Kfl will be given the same reference numerals and the explanation will be omitted. In step 136, the first
Based on the map etc. shown in Fig. 2, the corrected comparison current for full load and the corrected comparison current for other than full load are calculated, and in steps 116 to 132, the fuel injection amount τ and correction are calculated in the same manner as in the first embodiment. Calculate the duty ratio.

次に本発明の第3実施例を説明する。本実施例は、第1
4図に示す工/ジ/回転数と要求燃料噴射量とに基づい
て定められた補正比較電流のマツプがROMに予め記憶
されている。このマツプに、過給時の圧力補正をした比
較電流値であり、排圧変化を補償した目標空燃比に対応
させたもので第1実施例と同様に制御するものである。
Next, a third embodiment of the present invention will be described. In this example, the first
A map of correction comparison currents determined based on the engine/engine/rotational speed and the required fuel injection amount shown in FIG. 4 is stored in the ROM in advance. This map is a comparison current value with pressure correction during supercharging, which is made to correspond to a target air-fuel ratio that compensates for exhaust pressure changes, and is controlled in the same way as in the first embodiment.

第15図は本実施例の割込みルーチ/を示すもので、ス
テップ150においてリー/セ/すの出力電流工のディ
ジタル値をRAMに書込む。次のステップ152てに、
第14図のマツプから補間法によりリーンセンサ出力電
流111tを計算する。
FIG. 15 shows the interrupt routine of this embodiment. In step 150, the digital value of the output current of the relay/controller is written into the RAM. In the next step 152,
The lean sensor output current 111t is calculated from the map shown in FIG. 14 by interpolation.

そして、ステップ118,126においてソー/セッサ
出力電流工とリーンセンサ出力電流工Rtとを比較して
、全負荷では燃料噴射量を全負荷以外てViEGR3を
制御する。
Then, in steps 118 and 126, the saw/cessor output current value and the lean sensor output current value Rt are compared, and at full load, the fuel injection amount is controlled to control ViEGR3 except for full load.

以上の結果、過給圧が上昇して排圧が上昇しても目標空
燃比になるように制御される。
As a result of the above, even if the boost pressure increases and the exhaust pressure increases, the air-fuel ratio is controlled to reach the target air-fuel ratio.

なお、上記では排圧センサを用いた例について説明した
が吸気管圧力が高くなると排圧が高くなるので、排圧セ
/すに代えて吸気管圧カセ/すを取付け、吸気管圧力に
よって排圧を推定するようにしてもよい。また、全負荷
でフィードバック制御すると、燃料噴射量の変動により
高回転域でトルク変動が生ずる虞れがあるため、機関高
回転域(例えば、4000rT)m以上)ではフィード
バック制御を中立するのがよい。
In addition, although an example using an exhaust pressure sensor was explained above, as the intake pipe pressure increases, the exhaust pressure also increases. Therefore, an intake pipe pressure cassette is installed in place of the exhaust pressure sensor, and the exhaust pressure is controlled by the intake pipe pressure. The pressure may also be estimated. In addition, if feedback control is performed at full load, there is a risk that torque fluctuations will occur in the high rotation range due to fluctuations in the fuel injection amount, so it is better to neutralize the feedback control in the engine high rotation range (for example, 4000 rT) or higher. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に本発明の第1実施例の割込みルーチンを示す流
れ図、第2図は従来のリーンセッサを示す断面図、第3
図バリー/七/すの出力電流を示す線図、第4図は排圧
に対するリー/セ/す出力の変化を示す線図、第5図は
第1実施例が適用されるディーゼル機関の概略図、第6
図は第1実施例の補正値の変化を示す線図、第7図は全
負荷の比較電流の#図、第8図は全負荷以外の比較電流
のマツプを示す線図、第9図は実施例のメインルーチン
を示す流れ図、第10図はり一/セッサ出力とFAFと
の変化を示す線図、第11図に第2実施例のり一/セ/
す近傍を示す概略図、第12図に第2実施例の比較電流
のマツプを示す線図、第13図に第2実施例の割込みル
ーチンを示す流れ図、第14図Fi第3実施例のエンジ
ン回転数と要求燃料噴射量とに基づいて定められた補正
比較電流のマツプを示す図、第15図は第3軛施例の割
込みルーチンを示す流れ図である。 22・・・燃料噴射ポツプ、28・・・EGRバルブ、
32・・・リーンセ/す、34・・・排圧セ/す。
FIG. 1 is a flowchart showing the interrupt routine of the first embodiment of the present invention, FIG. 2 is a sectional view showing a conventional lean processor, and FIG.
Figure 4 is a diagram showing the output current of the battery, Figure 4 is a diagram showing the change in output of the battery with respect to exhaust pressure, and Figure 5 is a schematic diagram of the diesel engine to which the first embodiment is applied. Figure, 6th
The figure is a diagram showing the change in the correction value of the first embodiment, Figure 7 is a # diagram of the comparison current of full load, Figure 8 is a diagram showing the map of comparison current other than full load, and Figure 9 is a diagram showing the comparison current map of other than full load. A flowchart showing the main routine of the embodiment, Fig. 10 a diagram showing changes in beam/processor output and FAF, and Fig. 11 a flow chart showing the beam/processor output of the second embodiment.
Fig. 12 is a diagram showing a comparison current map of the second embodiment, Fig. 13 is a flowchart showing the interrupt routine of the second embodiment, and Fig. 14 shows the engine of the third embodiment. FIG. 15 is a flowchart showing the interrupt routine of the third embodiment. 22...Fuel injection pop, 28...EGR valve,
32...Leanse/su, 34...Exhaust pressure se/su.

Claims (1)

【特許請求の範囲】[Claims] (1)排ガス中の残留酸素濃度が理論空燃比に対応する
濃度以上の領域で排ガス空燃比を検出するリーンセンサ
を用い、全負荷域では排ガス空燃比に基づいてスモーク
限界を推定してスモーク限界に対応する排ガス空燃比を
越えないように燃料噴射量を制御することによつて空燃
比を制御し、全負荷以外の領域では排ガス空燃比に基づ
いて吸気系に再循環させる排ガス量を制御することによ
つて目標空燃比になるように空燃比を制御するディーゼ
ル機関の空燃比制御方法において、排圧が高くなるに従
つてリーンセンサーの比較電流値が大きくなるように補
正し、かつ排圧が低くなるに従つて比較電流値が小さく
なるように補正したことを特徴とするディーゼル機関の
空燃比制御方法。
(1) Using a lean sensor that detects the exhaust gas air-fuel ratio in a region where the residual oxygen concentration in the exhaust gas is higher than the concentration corresponding to the stoichiometric air-fuel ratio, the smoke limit is estimated based on the exhaust gas air-fuel ratio in the full load range, and the smoke limit is The air-fuel ratio is controlled by controlling the fuel injection amount so as not to exceed the exhaust gas air-fuel ratio corresponding to the exhaust gas air-fuel ratio, and in areas other than full load, the amount of exhaust gas recirculated to the intake system is controlled based on the exhaust gas air-fuel ratio. In an air-fuel ratio control method for a diesel engine, which controls the air-fuel ratio so that it reaches a target air-fuel ratio, the comparison current value of the lean sensor increases as the exhaust pressure increases, and the exhaust pressure 1. An air-fuel ratio control method for a diesel engine, characterized in that the comparison current value is corrected to become smaller as the current becomes lower.
JP59261607A 1984-12-11 1984-12-11 Air-fuel ratio controlling method in diesel engine Granted JPS61138844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59261607A JPS61138844A (en) 1984-12-11 1984-12-11 Air-fuel ratio controlling method in diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59261607A JPS61138844A (en) 1984-12-11 1984-12-11 Air-fuel ratio controlling method in diesel engine

Publications (2)

Publication Number Publication Date
JPS61138844A true JPS61138844A (en) 1986-06-26
JPH0541821B2 JPH0541821B2 (en) 1993-06-24

Family

ID=17364252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59261607A Granted JPS61138844A (en) 1984-12-11 1984-12-11 Air-fuel ratio controlling method in diesel engine

Country Status (1)

Country Link
JP (1) JPS61138844A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213043A (en) * 1991-12-16 1994-08-02 Oskar Schatz Control method of fuel-air ratio of piston cylinder type internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213043A (en) * 1991-12-16 1994-08-02 Oskar Schatz Control method of fuel-air ratio of piston cylinder type internal combustion engine

Also Published As

Publication number Publication date
JPH0541821B2 (en) 1993-06-24

Similar Documents

Publication Publication Date Title
US7584642B2 (en) Procedure to calibrate a signal supplied by a lambda sensor and device to implement the procedure
JPH0217705B2 (en)
JPH01147138A (en) Heater controller for air-fuel ratio sensor
JP3850620B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JPH0343459B2 (en)
JPS61138844A (en) Air-fuel ratio controlling method in diesel engine
JPS58143108A (en) Air-fuel ratio control method for internal-combustion engine
US6453896B2 (en) Air-fuel ratio feedback control apparatus and method of internal combustion engine
US4548179A (en) Air-fuel ratio control system
US6453895B2 (en) Feedback control device and feedback control method of air-fuel ratio in internal combustion engine
JPS61241434A (en) Air-fuel ratio controller
JP2717442B2 (en) Engine exhaust gas recirculation control device
JP3562137B2 (en) Control device for internal combustion engine
JPS6388241A (en) Air-fuel ratio control device for internal combustion engine
JPS6224036Y2 (en)
JPS5872665A (en) Air-fuel ratio control device for diesel engine
JPH06280650A (en) Air-fuel ratio feed-back control device for internal combustion engine
JP2505399B2 (en) Air-fuel ratio control device
JP3350978B2 (en) Closed loop control device for internal combustion engine
JP2752629B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0452853B2 (en)
JPH06323200A (en) Exhaust gas recirculation control device for diesel engine
JPH0437251Y2 (en)
JPS5838372A (en) Method of controlling ignition timing of electronically controlled engine
JPH0151735B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees