JPS61138711A - Production of acrylic yarn having improved durability - Google Patents

Production of acrylic yarn having improved durability

Info

Publication number
JPS61138711A
JPS61138711A JP25747184A JP25747184A JPS61138711A JP S61138711 A JPS61138711 A JP S61138711A JP 25747184 A JP25747184 A JP 25747184A JP 25747184 A JP25747184 A JP 25747184A JP S61138711 A JPS61138711 A JP S61138711A
Authority
JP
Japan
Prior art keywords
fibers
bath
coagulation bath
solvent
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25747184A
Other languages
Japanese (ja)
Inventor
Shuji Kajita
修司 梶田
Kenji Kamiide
上出 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP25747184A priority Critical patent/JPS61138711A/en
Publication of JPS61138711A publication Critical patent/JPS61138711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the titled yarn useful as crapets, curatins, blankets, etc., by dissolving an acrylonitrile polymer in an aqueous solution of a rhodanide to form a dope, spinning and drawing it by the use of a specific coagulating bath and drawing bath. CONSTITUTION:An acrylonitrile polymer containing >=50wt% acrylonitrile is dissolved in 40-60wt% aqueous solution of a rhodanide to give a dope. Then, the dope is spun into a coagulating bath consisting of a solvent such as a rhodanide, dimethylformamide, etc. and a coagulating agent such as water, methanol, etc., set in a concentration range unable to form a skin layer, coagulated at >=5 spinning draft within <=60 seconds retention time of the coagulating bath, and the yarn is pulled up. Then, the yarn is drawn at >=5 times by a drawing bath consisting of a solvent and coagulating agent, set in a concentration range unable to form a skin layer, to give the aimed acrylic yarn.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、アクリロニトリル夏合体又はアクリロニトリ
ル共重合体から構成されてなる耐久性に優れたアクリル
繊維の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing acrylic fibers having excellent durability and comprising an acrylonitrile summer polymer or an acrylonitrile copolymer.

〈従来の技術〉 アクリル4維の!値は、製造法が極めて多極多様なこと
である。これは原料になる重合体が、単一成分のみなら
ず、アクリルアミド、アクリル酸、アクリル酸ソーダ、
スチレン、スルホン酸ノーダ、アクリル酸メチル、酢酸
ビニル、塩化ビニル、塩化ピ= IJデン等の共重合成
分を含むことや、ホリマーを溶解する溶剤が、ロダン塩
水溶液、塩化亜鉛水浴液、硝鍍等の無機溶剤、ツメチル
ホルムアミド、ツメチルアセドアばド、ツメチルスルホ
平シト等の有機溶剤のように多種存在すること、さらに
、湿式紡糸法においては、凝固剤の種類が水系、非水系
の両者に亘り多種存在するためである。
<Conventional technology> Acrylic 4 fibers! The value is that the manufacturing methods are extremely diverse. The raw material polymer is not only a single component, but also acrylamide, acrylic acid, sodium acrylate,
Contains copolymerized components such as styrene, sulfonate, methyl acrylate, vinyl acetate, vinyl chloride, pyridine chloride, etc., and the solvent for dissolving the polymer is rhodan salt aqueous solution, zinc chloride bath solution, nitrate, etc. In addition, in the wet spinning method, there are many types of coagulants, both aqueous and non-aqueous. This is to do so.

通常の湿式紡糸法においては、工業的な理由、たとえば
、可紡性や生産性を考慮して、凝固浴中で、紡糸用ドー
プが速やかに凝固して繊維化する条件になるように凝固
浴の組成が設定されているのが一般的でbる。しかしな
がら、このような組成の凝固浴を使用して繊維を得た場
合、凝固力が強く、繊維の表面に0.1〜数μm程度の
厚さの緻密で堅いスキン層と、内部Iイドが形成される
。このようなスキン層は、染色時の染料の拡散障害にな
るばかりでなく、繊維の柔軟性等の物性の低下の原因に
なると考えられる。ま九、♂イドの存在も、失透現象、
発色性の低下、柔軟性の欠如等の物性上の欠点になるこ
とが多い。このスキン層やボイドも延伸、熱処理等の後
処理によりて見掛は上消失する。
In the normal wet spinning method, for industrial reasons, such as spinnability and productivity, the coagulation bath is heated so that the conditions are such that the spinning dope quickly coagulates into fibers. It is common for the composition to be set as follows. However, when fibers are obtained using a coagulation bath with such a composition, the coagulation force is strong, and a dense and hard skin layer with a thickness of about 0.1 to several μm is formed on the surface of the fiber, and an internal Iid is formed on the surface of the fiber. It is formed. It is thought that such a skin layer not only hinders the diffusion of dye during dyeing, but also causes a decrease in physical properties such as flexibility of the fiber. Nine, the existence of male ids also causes devitrification,
This often results in disadvantages in physical properties such as decreased color development and lack of flexibility. The appearance of this skin layer and voids also disappears by post-processing such as stretching and heat treatment.

一方、アクリル系繊維は、カチオン染料によって染色さ
れ、優れた耐久性や鮮やかな発色性を生かし、カーテン
、カー(、トなどのインテリア分野、毛布などの寝装分
野、ニット、シャーシイーなどの衣料分野で広く用いら
れている。
On the other hand, acrylic fibers are dyed with cationic dyes and have excellent durability and vivid coloring properties, and are used in the interior fields such as curtains, cars, bedding fields such as blankets, and clothing fields such as knits and chassis. Widely used in the field.

〈発明が解決しようとする問題点〉 最近の消費者ニーズの多様化にともない、アクリル系繊
維において、よシ耐久性のある繊維が要求されるに至っ
ている。
<Problems to be Solved by the Invention> With the recent diversification of consumer needs, highly durable acrylic fibers have come to be required.

不発明者らは、このような現状に謹み、鋭意検討を重ね
た結果、凝固過程で発生するスキン層fIイドを本質的
に消失させ、連続性のあるフィブリルを形成させること
によって、夕れた耐久性を有するアクリル繊維を得るこ
とに成功した。
The inventors of the present inventors have been respectful of the current situation, and as a result of intensive study, they have essentially eliminated the skin layer fI which occurs during the coagulation process and formed continuous fibrils, thereby improving the ability of the skin. We succeeded in obtaining durable acrylic fibers.

く問題点を解決するための手段〉 即ち、本発明はアクリロニトリルを少なくとも50重重
量板上含有するアクリロニトリル系重合体を湿式紡糸す
るに際して、前記重合体をロダン塩水溶液に溶解して得
られるドーグを、スキン層形成不能員度範囲に設定され
た溶剤と凝固剤から成る凝固浴に紡出し、紡糸ドラフト
5以上でかつ凝固浴滞留時間が60秒以内に凝固した繊
維を引き上げ、ついでスキン層形成不能濃度範囲に設定
された溶剤と凝固剤から成る延伸浴で5倍以上延伸する
ことを特徴とする、耐久性に優れ九アクリル繊維の製造
方法を提供するものである。
Means for Solving the Problems> That is, the present invention provides a method for wet spinning an acrylonitrile polymer containing at least 50% acrylonitrile by weight, by dissolving the polymer in an aqueous solution of Rodan salt. , the fibers are spun into a coagulation bath consisting of a solvent and a coagulant set in a range in which skin layer formation is impossible, and the coagulated fibers are pulled up at a spinning draft of 5 or more and within 60 seconds of residence time in the coagulation bath, and then skin layer formation is impossible. The present invention provides a method for producing nine-acrylic fibers with excellent durability, which is characterized by stretching 5 times or more in a stretching bath consisting of a solvent and a coagulant whose concentrations are set within a range.

本発明の方法においては、アクリロニトリルを少なくと
も50重量−以上含有するアクリロニトリル系重合体を
40〜60g量−のロダン塩水浴液に溶解する。溶解は
室温でもよいが、通常−5℃〜10℃の温度範囲が使用
される。好適な紡糸用ドープは、紡糸に必要な曳糸性を
得るために、10〜40重量%のアクリロニトリル重合
体を含有する。
In the method of the present invention, an acrylonitrile polymer containing at least 50% by weight of acrylonitrile is dissolved in 40 to 60 g of a rhodan salt bath solution. Although the dissolution may be carried out at room temperature, a temperature range of -5°C to 10°C is usually used. A suitable spinning dope contains 10 to 40% by weight of acrylonitrile polymer to obtain the necessary spinnability for spinning.

次に、このドープを湿式紡糸法によって繊維化する。ド
ーグは、ス午ン層形成不!d度範囲に設定され九アクリ
ロニトリル重合体を溶解する溶剤と凝固剤から取る凝固
浴に紡出される。ここで利用される溶剤としては、従来
、無機系溶剤として、ロダン塩、臭化リチウム、塩化亜
錯、過塩素酸アルミニウム等の無機塩類の濃厚水浴液、
硝酸、硫酸、過塩素酸等の無機酸濃厚水溶液、有機溶剤
として、ジメチルホルムアミド、ジメチルアセトアミド
等のアミド系化合物、ニトリル系化合物、ジメチルスル
ホキシド等のスルホン及びスルホキシド系化合物、チオ
シアネート系化合物、ニトロ系化合物、アミノ系化合物
、リン化合物、カー−ネート系化合物やこれらの混合物
が使用されている。
Next, this dope is made into fibers by a wet spinning method. Dawg does not form a sun layer! The acrylonitrile polymer is spun into a coagulation bath set in the d degree range and taken from a coagulant and a solvent that dissolves the acrylonitrile polymer. The solvents used here have conventionally been inorganic solvents such as concentrated water bath solutions of inorganic salts such as rhodan salt, lithium bromide, subcomplex chloride, and aluminum perchlorate;
Concentrated aqueous solutions of inorganic acids such as nitric acid, sulfuric acid, and perchloric acid, organic solvents such as amide compounds such as dimethylformamide and dimethylacetamide, nitrile compounds, sulfone and sulfoxide compounds such as dimethyl sulfoxide, thiocyanate compounds, and nitro compounds. , amino compounds, phosphorus compounds, carnate compounds, and mixtures thereof.

また、凝固剤としては、水、メタノール、エタノール、
プロA1ノール、ブタノール、アセトン、酢酸、エチレ
ングリコール、グリセリン、四塩化炭素、キシレン、ベ
ンゼン、クロロホルム、四塩化炭素、酢酸エチル等が知
られている。工業的に利用される凝固浴の組成としては
上述の溶剤と水の組合せが一般的であり、回収等の生産
性面から、凝固浴中の溶剤とドーグ中の溶剤とは通常同
一のものが使用される。
In addition, coagulants include water, methanol, ethanol,
Known examples include proAl-nol, butanol, acetone, acetic acid, ethylene glycol, glycerin, carbon tetrachloride, xylene, benzene, chloroform, carbon tetrachloride, and ethyl acetate. The composition of coagulation baths used industrially is generally a combination of the above-mentioned solvent and water, and from the viewpoint of productivity such as recovery, the solvent in the coagulation bath and the solvent in Dogue are usually the same. used.

従来においては、これらの凝固浴中に占める溶剤の濃度
は、スキン層が形成されるような濃度範囲にあるのが通
常である。これは、工業的な生産性を考慮した場合に、
紡糸の安定性や操業性に優れた条件が選択されるからで
ある。また、スキン層形成不能濃度範囲では、凝固浴内
で凝固した繊維が蛇行し、得られる繊維が白濁し、透明
感を消失したシ、凝固に長時間を要する等の欠点があっ
たからである。
Conventionally, the concentration of the solvent in these coagulation baths is usually in a concentration range such that a skin layer is formed. This means that when considering industrial productivity,
This is because conditions are selected that provide excellent spinning stability and operability. In addition, within the concentration range in which the skin layer cannot be formed, the coagulated fibers meander in the coagulation bath, resulting in the resulting fibers becoming cloudy, losing their transparency, and requiring a long time for coagulation.

ここで、スキン層形成不能濃度範囲は、走査型電子顕微
鏡によって決定することができる。繊維形成に使用され
るドープを、スライドグラス上に数μ〜1■程度の厚さ
に塗布し、これを繊維化に使用する溶剤と凝固剤から調
製された凝固浴に浸漬する。凝固浴の温度は、繊維形成
に使用される温度に設定する。凝固浴は、溶剤の凝固浴
中に占める重量分率が、1%間隔になるように濃度を変
化させたものを必要な数用意する。凝固完了後、水洗し
、メタノールで洗浄後風乾して、フィルム状物を得る。
Here, the concentration range in which the skin layer cannot be formed can be determined by a scanning electron microscope. The dope used for fiber formation is applied to a thickness of several μ to 1 μm on a slide glass, and the slide glass is immersed in a coagulation bath prepared from a solvent and a coagulant used for fiber formation. The temperature of the coagulation bath is set to the temperature used for fiber formation. A necessary number of coagulation baths are prepared in which the concentration is varied so that the weight fraction of the solvent in the coagulation bath is at intervals of 1%. After completion of coagulation, the product is washed with water, methanol, and air-dried to obtain a film-like product.

このフィルム状物の表面(スライドグラス面に接してい
ない面)を走査型電子顕微鏡たとえば、日本電子(株)
製走査電子顕微鏡を使用し、加速電圧5〜15kV、倍
率10000倍で観察する。観察に際しては、50〜5
00Xの厚さのAuを表面にコーティングする。この観
察によって、スキン層が形成されている場合は、100
00倍の倍率において、フィルム状物の表面は平滑で、
多少の起伏、付着物が観察されるのみである。スキン層
形成不能濃度範囲に入ると表面に、0.05μm〜数1
0端の孔ヤ、0.05〜0.5μtIL程度の粒子状物
が観察されるようになる。この方法によって、スキン層
形成不能嬢度範囲の下限濃度を決定することができる。
The surface of this film-like material (the surface not in contact with the slide glass surface) was examined using a scanning electron microscope, for example, JEOL Ltd.
Observation is performed using a scanning electron microscope manufactured by Amadeus Co., Ltd. at an acceleration voltage of 5 to 15 kV and a magnification of 10,000 times. When observing, 50-5
Coat the surface with 00X thick Au. Based on this observation, if a skin layer is formed, 100
At 00x magnification, the surface of the film-like object is smooth;
Only some undulations and deposits are observed. When the concentration falls within the range where skin layer formation is impossible, the surface becomes 0.05 μm to several 1 μm.
At the zero end, particulate matter of about 0.05 to 0.5 μtIL is observed. By this method, it is possible to determine the lower limit concentration of the range in which it is impossible to form a skin layer.

下限濃度はドー!の凝固不能#&度として決定すること
ができる。
The lower limit concentration is do! The inability to coagulate can be determined as #&degree.

本発明の方法において使用される凝固浴は、溶剤として
ロダン塩水溶液が、凝固剤として水が最も好適に利用さ
れる。凝固浴中に占めるロダン塩水溶液の重量分率はス
キン層形成不能濃度範囲内に設定され、通常25〜40
重量%が使用され、好適には25〜35重量−の濃度範
囲が使用式れる。凝固浴の温度は、通常−5℃〜80℃
の温度範囲に設定され、好適には一5℃〜30℃の温度
範囲が使用される。
The coagulation bath used in the method of the present invention most preferably uses an aqueous Rodan salt solution as a solvent and water as a coagulant. The weight fraction of the Rodan salt aqueous solution in the coagulation bath is set within the concentration range that does not allow skin layer formation, and is usually 25 to 40%.
Weight percentages are used, preferably a concentration range of 25 to 35 weight percent. The temperature of the coagulation bath is usually -5℃ to 80℃
The temperature range is preferably set at a temperature range of -5°C to 30°C.

本発明の方法においては、ドープは前述の凝固浴中に紡
出した後、紡糸ドラフトが5以上となるような速度で引
き上げる。通常は紡糸ドラフトが5〜100の間に設定
される。こOで紡糸ドラフトは次式で示される。
In the method of the present invention, the dope is spun into the above-mentioned coagulation bath and then pulled up at a speed such that the spinning draft is 5 or more. Usually, the spinning draft is set between 5 and 100. The spinning draft at O is expressed by the following formula.

紡糸ドラフト= (引き上げローラー速度)/(ノズル孔よυの紡糸トー
カ比出線速度)紡糸ドラフトが5未満の場合、凝固浴内
で繊維のたるみや切断が起こシ、繊維が回転部へ巻き付
いたシして操業性が低下するとともに、得られた繊維が
白濁し透明感を消失する。
Spinning draft = (pulling roller speed) / (spinning talker specific wire speed at nozzle hole υ) If the spinning draft is less than 5, the fibers may sag or break in the coagulation bath, and the fibers may wrap around the rotating part. The resulting fibers become cloudy and lose their transparency.

さらに、本発明の方法においては、凝固浴中に紡出され
たドープの凝固浴内での滞留時間も重要な因子となる。
Furthermore, in the method of the present invention, the residence time of the dope spun into the coagulation bath in the coagulation bath is also an important factor.

滞留時間が短かすぎると凝固が不完全で繊維の切断や接
着が発生する。また長すぎる場合、凝固したグルで構成
される繊維の流動性が欠如し、後述するミクロフィブリ
ルやフィブリルの配列が不足し、優れた耐久性を得るこ
とができない。
If the residence time is too short, coagulation will be incomplete and fiber breakage or adhesion will occur. If the length is too long, the fibers composed of coagulated glue will lack fluidity, and the arrangement of microfibrils and fibrils described below will be insufficient, making it impossible to obtain excellent durability.

好適な凝固浴滞留時間は、凝固浴濃度、ドープ濃度、得
られる繊維のデニールによって設定すべきであるが、通
常は60秒以下、好適には0.5〜30秒間の滞留時間
が使用される。
A suitable coagulation bath residence time should be set depending on the coagulation bath concentration, dope concentration, and denier of the resulting fibers, but usually a residence time of 60 seconds or less, preferably 0.5 to 30 seconds is used. .

次いで、凝固浴から引き上げられた流動性のあるグルで
構成された繊維は、水洗工程を経ることなく、スキン層
形成不能濃度範囲に設定された溶剤と凝固剤から成る延
伸浴で5倍以上延伸される。
Next, the fibers made of fluid glue pulled up from the coagulation bath are stretched by at least 5 times in a drawing bath consisting of a solvent and a coagulant whose concentration is set to a concentration range that does not allow the formation of a skin layer, without going through a water washing process. be done.

通常のアクリル繊維の湿式紡糸においては、凝固浴から
引き上げられた繊維は、水洗工程を経た後、延伸される
。しかしながら、本発明の方法においては、得られる繊
維に優れた耐久性を付与するために水洗工程を通さずに
、繊維が流動性のあるグルの状態で延伸することが必要
不可欠の条件である。水洗工程を通過すると、前述した
凝固浴滞留時間が長すぎた場合と同様、又はそれ以上に
グル構造をもつ繊維の流動性が欠如し、本発明の方法に
よって得られるアクリル繊維の特長である優れた耐久性
を得ることができなくなる。好適な耐久性をもつ繊維は
7〜30倍の範囲に延伸される。
In conventional wet spinning of acrylic fibers, the fibers are pulled up from the coagulation bath, subjected to a water washing process, and then drawn. However, in the method of the present invention, in order to impart excellent durability to the obtained fibers, it is essential that the fibers be drawn in a fluid state without passing through a water washing step. After passing through the water washing process, the fluidity of the fibers with a glue structure is lacking, similar to or even more so than when the residence time in the coagulation bath is too long, which is the characteristic of the acrylic fibers obtained by the method of the present invention. It becomes impossible to obtain the desired durability. Fibers with suitable durability are drawn in the range of 7 to 30 times.

延伸浴に使用される溶剤と凝固浴の組合せは、前述した
アクリロニトリル重合体の溶剤と凝固剤の組合せであれ
ば、特に限定されるものではないが、工業的な生産性及
びグルの流動性を安定に保つことを考慮した場合、ドー
プに使用した溶剤と水の組合せを選ぶことが好適である
。また延伸浴の温度は、5〜85℃の範囲が利用される
。温度が低くなると延伸性が低下し、高すぎると繊維の
接着や劣化が発生しやすくなる。さらに延伸を効率よく
行なうために、延伸浴を2個以上設置したり、多段延伸
を行なってもよい。
The combination of the solvent and coagulation bath used in the drawing bath is not particularly limited as long as it is a combination of the above-mentioned acrylonitrile polymer solvent and coagulant, but it is suitable for industrial productivity and glue fluidity. When considering stability, it is preferable to select a combination of the solvent used for the dope and water. Further, the temperature of the stretching bath is in the range of 5 to 85°C. If the temperature is too low, the drawability will be reduced, and if the temperature is too high, fiber adhesion and deterioration will easily occur. Furthermore, in order to perform stretching efficiently, two or more stretching baths may be installed or multistage stretching may be performed.

延伸浴での延伸倍率が高い程、耐久性の高い優れたアク
リル繊維を得ることができる。
The higher the stretching ratio in the stretching bath, the more durable and excellent acrylic fibers can be obtained.

本発明の範囲内で製造した繊維に対しては、通常の水洗
処理を行ない溶剤を0.1%未満に除去する。かかる水
洗の方式としては、通常用いられる浸漬交流水洗、ネッ
ト水洗、バイブロ水洗などいずれの方式でもかまわない
。溶剤を除去した繊維は、さらに好適な物性を付与する
ために、熱水中または水蒸気中で再延伸されてもよい。
Fibers produced within the scope of the present invention are subjected to conventional water washing treatments to remove solvent to less than 0.1%. The washing method may be any of the commonly used methods such as immersion AC washing, net washing, and vibro washing. The fibers from which the solvent has been removed may be redrawn in hot water or steam to impart more suitable physical properties.

次いで、乾燥を行ない繊維内に含まれる水分を除去する
Next, drying is performed to remove moisture contained in the fibers.

乾燥は、通常用いられるドラム乾燥機、シリンダー乾燥
機、ネット乾燥機など公知のものを用すて行ってもよい
Drying may be performed using a commonly used drum dryer, cylinder dryer, net dryer, or other known device.

水分を除去した繊維は、次いで熱弛緩処理に付される。The fibers from which water has been removed are then subjected to a heat relaxation treatment.

熱弛緩は、加圧水蒸気中、熱風中、熱水中、熱板間など
の加熱雰囲気下で実施することができる。
Thermal relaxation can be carried out in a heated atmosphere such as in pressurized steam, hot air, hot water, or between hot plates.

このような水洗、再延伸、乾燥、熱処理によって本発明
の方法によって得られる繊維の特性でちる優れた耐久性
が低下することはない。
Such water washing, re-stretching, drying and heat treatment do not reduce the excellent durability properties of the fibers obtained by the method of the present invention.

本発明の方法によって得られる繊維の表面構造を、市販
の走査型電子顕微鏡、例えば日本電子■製JSM−35
CF走査型電子顕微鏡によって、加速電圧5kV、倍率
3000倍で観察したところ、繊維軸方向に平行に配列
した幅0.1〜10μm、長さ50μm以上のフィブリ
ル状構造物が観察された。
The surface structure of the fibers obtained by the method of the present invention was observed using a commercially available scanning electron microscope, such as JSM-35 manufactured by JEOL Ltd.
When observed using a CF scanning electron microscope at an accelerating voltage of 5 kV and a magnification of 3000 times, fibrillar structures with a width of 0.1 to 10 μm and a length of 50 μm or more were observed, arranged in parallel to the fiber axis direction.

さらに10000倍の倍率で観察したところ、幅0.0
5〜0.3μm、長さ0.5〜10μmのミクロフィブ
リル状構造物の存在が確認された。フィブリル状構造物
はこのミクロフィブリル状構造物が集合することによ)
構成されていることが明らかとなったO 従来のアクリル繊維においては、同様の観察を行なって
も、このようなフィブリル状構造物やミクロフィブリル
状構造物の存在は確認できず、製造工程で形成されたと
思われる体積収縮による皺あるいは溶媒の蒸発によって
できた筋が観察されるのみである。本発明の方法によっ
て得られる繊維は、このミクロフィブリル状構造物が集
合してできたフィブリル状構造物の存在によって優れた
耐久性を発現する。また、ミクロフィブリル状構造物の
存在は、繊維をカチオン染料で染色して肉眼判定を行な
った結果、深みのある発色性を発現するのに効果がある
ことも判明した。
When further observed at 10,000x magnification, the width was 0.0
The presence of microfibrillar structures of 5 to 0.3 μm and 0.5 to 10 μm in length was confirmed. Fibrillar structures are formed by the aggregation of these microfibrillar structures)
In conventional acrylic fibers, the presence of such fibrillar structures and microfibrillar structures could not be confirmed even when similar observations were made, and they were formed during the manufacturing process. Only wrinkles due to volume contraction or streaks caused by evaporation of the solvent are observed. The fibers obtained by the method of the present invention exhibit excellent durability due to the presence of fibrillar structures formed by aggregation of microfibrillar structures. Furthermore, the presence of microfibrillar structures was found to be effective in developing deep color development, as a result of dyeing fibers with cationic dyes and performing visual judgment.

〈発明の効果〉 以上の如く、本発明の方法によって得られる繊維は優れ
た耐久性を持ち、カーペット、カーテンなどのインテリ
ア分野、毛布などの寝装分野、ニット、ジャーノイ〜な
どの衣料分野の用途拡大に有効である。カーペットに使
用した場合、耐久性に優れており、圧縮回復率が良好で
、従来品の1.5〜2倍になる。
<Effects of the Invention> As described above, the fibers obtained by the method of the present invention have excellent durability and can be used in interior fields such as carpets and curtains, bedding fields such as blankets, and clothing fields such as knits and jerseys. Effective for expansion. When used for carpets, it has excellent durability and good compression recovery rate, which is 1.5 to 2 times that of conventional products.

本発明の繊維の耐久性は、JIS、L1069に示され
ている繊維の引張試験方法の引掛強伸度を測定すること
によって、破断時の強伸度の積<LS(g/d)XI、
E(%)によって示すことができる。
The durability of the fibers of the present invention can be determined by measuring the hook strength and elongation according to the fiber tensile test method shown in JIS L1069.
It can be expressed as E (%).

本発明の繊維は、従来品の1.5〜3倍の引掛強伸度積
をもつ。
The fiber of the present invention has a hook strength and elongation product that is 1.5 to 3 times that of conventional products.

〈実施例〉 以下、実施例によって、本発明の方法を更に詳細に説明
する。
<Example> Hereinafter, the method of the present invention will be explained in more detail with reference to Examples.

実施例1 アクリロニトリル91,5%、アクリル酸メチル8チ、
メタリルスルホン酸ンーダ0.5%から成る共重合体を
50℃で、50重量%チオシアン酸ソーダ水溶液に溶解
し、12重量−の紡糸原液を調製した。
Example 1 91.5% acrylonitrile, 8% methyl acrylate,
A copolymer consisting of 0.5% methallylsulfonate was dissolved in a 50% by weight aqueous sodium thiocyanate solution at 50°C to prepare a 12% by weight spinning stock solution.

ついで、この原液を5℃で孔径0.2 mm 、孔数1
00のノズルを使用して、1m/mlnの吐出線速度で
凝固浴中へ押し出し、l Om/m S nの巻取速度
で凝固浴から取シ出した。この時、凝固した繊維の凝固
浴滞留時間は22秒であった。また凝固浴は32チチオ
シアン酸ソーダ水溶液から構成され、温度は10℃であ
った。引き続き、34チチオシアン酸ソーダ水浴液から
構成された浴温75℃の延伸浴で8倍に延伸した。延伸
を完了した繊維を、水洗後130℃の熱風中で十分乾燥
し、120℃の水蒸気中で熱弛緩処理を行なりた。この
繊維の引掛強伸度積(LSXLE )は251であった
Next, this stock solution was heated at 5°C with a pore diameter of 0.2 mm and a pore number of 1.
It was extruded into the coagulation bath using a No. 00 nozzle at a discharge linear velocity of 1 m/mln, and taken out from the coagulation bath at a winding speed of 1 Om/m S n. At this time, the residence time of the coagulated fibers in the coagulation bath was 22 seconds. The coagulation bath was composed of an aqueous solution of sodium thiothiocyanate, and the temperature was 10°C. Subsequently, the film was stretched 8 times in a stretching bath containing 34 sodium thiocyanate aqueous solution at a bath temperature of 75°C. The stretched fibers were washed with water, thoroughly dried in hot air at 130°C, and then subjected to a heat relaxation treatment in steam at 120°C. The hook strength elongation product (LSXLE) of this fiber was 251.

得られた繊維を走査型電子顕微鏡で観察した結果、繊維
の表面に幅0.1 ” 0.2 μm、長さO15〜3
μmのミクロフィブリル状構造物が繊維軸方向に配列し
ているのが観察された。また、このミクロフィブリル状
構造物が集合して、幅0.5〜5μm、繊維軸方向の長
さが50μm〜400μmのフ4プリル状構造物が観察
された。
As a result of observing the obtained fibers with a scanning electron microscope, it was found that the surface of the fibers had a width of 0.1" 0.2 μm and a length of O15-3.
It was observed that microfibrillar structures of μm size were arranged in the fiber axis direction. In addition, the microfibril-like structures were aggregated to form a fibril-like structure having a width of 0.5 to 5 μm and a length of 50 μm to 400 μm in the fiber axis direction.

実施例2 アクリロニトリル91.5%、アクリル酸メチル8チ、
メタリルスルホン酸ンーグ0.5%から成る共重合体を
50℃で、50重量%チオシアン酸ソーダ水溶液に溶解
し、12重量%の紡糸原液を調製した。
Example 2 91.5% acrylonitrile, 8% methyl acrylate,
A copolymer containing 0.5% of methallylsulfonic acid was dissolved in a 50% by weight aqueous solution of sodium thiocyanate at 50° C. to prepare a 12% by weight spinning stock solution.

ついで、この原液を孔径0.4 nun 、孔数50の
ノズルを使用して、l rrl/rni nの吐出線速
度で凝固浴中へ押し出し10 m/in I nの巻取
速度で凝固浴から取り出した。この時、凝固した繊維の
凝固浴滞留時間は11秒であった。また凝固浴は、32
重量%チオシアン酸ソーダ水溶液から構成され、温度は
25℃であった。引き続き、35重量%チオシアン酸ソ
ーダ水溶液から構成された浴温80℃の延伸浴で10倍
に延伸した。延伸を完了した繊維は、水洗後130℃の
熱風中で十分乾燥し、120℃の水蒸気中で熱弛緩処理
を行なった。この繊維の引掛強伸度積(LSXLE)は
281であった。
Next, this stock solution was extruded into a coagulation bath using a nozzle with a hole diameter of 0.4 nun and a number of holes of 50 at a discharge linear velocity of l rrl/rni n, and was removed from the coagulation bath at a winding speed of 10 m/in l n. I took it out. At this time, the residence time of the coagulated fibers in the coagulation bath was 11 seconds. In addition, the coagulation bath is 32
It was composed of a wt % sodium thiocyanate aqueous solution, and the temperature was 25°C. Subsequently, the film was stretched 10 times in a stretching bath containing a 35% by weight aqueous sodium thiocyanate solution at a bath temperature of 80°C. After the stretched fibers were washed with water, they were thoroughly dried in hot air at 130°C and subjected to a thermal relaxation treatment in steam at 120°C. The hook strength elongation product (LSXLE) of this fiber was 281.

比較例1 アクリロニトリル91.5%、アクリル酸メチル8チ、
メタリルスルホン酸ンーダ0.5%から成る共重合体を
50℃で、50重量%チオシアン酸ソーダ水溶液に溶解
し、10重i:チの紡糸原液を調製した。
Comparative Example 1 91.5% acrylonitrile, 8% methyl acrylate,
A copolymer consisting of 0.5% methallylsulfonate was dissolved in a 50% by weight aqueous sodium thiocyanate solution at 50° C. to prepare a 10 weight i:h spinning stock solution.

ついで、この原液を孔径0.2 mm 、孔数100の
ノズルを使用して、l rrv/ml nの吐出線速度
で凝固浴中へ押し出し、10rv/minの巻取り速度
で取り出そうとしたが、繊維の切断が多発し取り出すこ
とができなかった。巻取り速度を21V″mi n (
C落して取り出した。この時の凝固浴滞留時間は80秒
であった。また、凝固浴は20ii量チチオシアン酸ソ
ーダ水溶液から構成され、温度は5℃であった。取り出
した繊維を水洗後、90℃の熱水中で10倍に延伸した
。延伸を完了した繊維は、130℃の熱風中で十分乾燥
し、120″Cの水蒸気中で熱弛緩処理を行なった。こ
の繊維の引掛強伸度積(LSXLE)は121であった
Next, using a nozzle with a hole diameter of 0.2 mm and a number of holes of 100, this stock solution was extruded into a coagulation bath at a discharge linear velocity of l rrv/ml n, and an attempt was made to take it out at a winding speed of 10 rv/min. The fibers were frequently cut and could not be taken out. The winding speed was set to 21V″min (
I dropped it and took it out. The coagulation bath residence time at this time was 80 seconds. The coagulation bath was composed of a 20 liter aqueous solution of sodium thithiocyanate, and the temperature was 5°C. The taken out fibers were washed with water and then stretched 10 times in hot water at 90°C. The stretched fibers were sufficiently dried in hot air at 130° C. and subjected to thermal relaxation treatment in steam at 120″C.

比較例2 アクリロニトリル91.5%、、アクリル酸メチル8チ
、メタリルスルホン酸ンーダ0.5チから成る共重合体
を500で、50重量%チオシアン酸ソーダ水溶液に溶
解し、12重量%の紡糸原液を調製した。
Comparative Example 2 A copolymer consisting of 91.5% of acrylonitrile, 8% of methyl acrylate, and 0.5% of methyl sulfonate was dissolved in a 50% by weight aqueous sodium thiocyanate solution at 500°C, and spun at 12% by weight. A stock solution was prepared.

ついで、この原液を孔径0.4 mm 、孔数50のノ
ズルを使用して、1 m/rn i nの吐出線速度で
凝固浴中へ押し出し、10 m/m l nの巻取速度
で凝固浴から取υ出した。この時、凝固した繊維の凝固
浴滞留時間は11秒であった。また凝固浴は35重量%
チオシアン酸ソーダ水溶液から構成され、温度は5℃で
おった。引き続いて、繊維を十分水洗した後35重量%
チオシアン酸ソーダ水溶液から構成された浴温80℃の
延伸浴で10倍に延伸した。
Next, this stock solution was extruded into a coagulation bath using a nozzle with a hole diameter of 0.4 mm and a number of holes of 50 at a discharge linear velocity of 1 m/rn, and was coagulated at a winding speed of 10 m/ml. I took it out of the bath. At this time, the residence time of the coagulated fibers in the coagulation bath was 11 seconds. In addition, the coagulation bath is 35% by weight.
It was composed of an aqueous solution of sodium thiocyanate, and the temperature was kept at 5°C. Subsequently, after washing the fibers thoroughly with water, 35% by weight
The film was stretched 10 times in a stretching bath containing an aqueous solution of sodium thiocyanate and having a bath temperature of 80°C.

延伸を完了した繊維を、水洗後130℃の熱風中で十分
乾燥し、120℃の水蒸気中で熱弛緩処理を行なった。
The stretched fibers were washed with water, thoroughly dried in hot air at 130°C, and then subjected to a thermal relaxation treatment in steam at 120°C.

得られた繊維は白濁し、製品とじて使用できるものでは
なかった。この繊維の引掛は強伸度積(LSXLE)を
測定したところ106であった。
The obtained fiber was cloudy and could not be used as a product. The strength and elongation product (LSXLE) of this fiber was measured and was found to be 106.

比較例3 比較例1において、凝固浴から取り出した繊維を水洗す
ることなく、35重量%チオシアン酸ソーダ水溶液から
構成された浴温度80℃の延伸浴で10倍に延伸した。
Comparative Example 3 In Comparative Example 1, the fibers taken out from the coagulation bath were stretched 10 times in a stretching bath containing a 35% by weight aqueous sodium thiocyanate solution at a bath temperature of 80°C, without washing with water.

この結果を水洗後130℃の熱風中で十分乾燥し、12
0℃の水蒸気中で熱弛緩処理を行なった。この繊維の引
掛は強伸度積(LSXLE)は118であった。
The results were washed with water and thoroughly dried in hot air at 130°C.
Thermal relaxation treatment was performed in steam at 0°C. This fiber had a hook strength elongation product (LSXLE) of 118.

Claims (1)

【特許請求の範囲】[Claims] アクリロニトリルを少なくとも50重量%以上含有する
アクリロニトリル系重合体を湿式紡糸するに際して、前
記重合体をロダン塩水溶液に溶解して得られるドープを
スキン層形成不能濃度範囲に設定された溶剤と凝固剤か
ら成る凝固浴に紡出し、紡糸ドラフト5以上でかつ凝固
浴滞留時間が60秒以内に凝固した繊維を引き上げ、つ
いでスキン層形成不能濃度範囲に設定された溶剤と凝固
剤から成る延伸浴で5倍以上延伸することを特徴とする
、耐久性に優れたアクリル繊維の製造方法。
When wet-spinning an acrylonitrile-based polymer containing at least 50% by weight of acrylonitrile, the dope obtained by dissolving the polymer in an aqueous Rodan salt solution is made of a solvent and a coagulant whose concentration is set to a range that does not allow the formation of a skin layer. The fibers are spun into a coagulation bath and coagulated at a spinning draft of 5 or higher and within 60 seconds of residence time in the coagulation bath. A method for producing highly durable acrylic fiber, which involves stretching.
JP25747184A 1984-12-07 1984-12-07 Production of acrylic yarn having improved durability Pending JPS61138711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25747184A JPS61138711A (en) 1984-12-07 1984-12-07 Production of acrylic yarn having improved durability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25747184A JPS61138711A (en) 1984-12-07 1984-12-07 Production of acrylic yarn having improved durability

Publications (1)

Publication Number Publication Date
JPS61138711A true JPS61138711A (en) 1986-06-26

Family

ID=17306766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25747184A Pending JPS61138711A (en) 1984-12-07 1984-12-07 Production of acrylic yarn having improved durability

Country Status (1)

Country Link
JP (1) JPS61138711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9540275B2 (en) 2014-01-17 2017-01-10 Namics Corporation Conductive paste and method for producing a semiconductor device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9540275B2 (en) 2014-01-17 2017-01-10 Namics Corporation Conductive paste and method for producing a semiconductor device using the same

Similar Documents

Publication Publication Date Title
JPH0415287B2 (en)
JPH0611927B2 (en) High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same
JPH0565603B2 (en)
JP3737969B2 (en) Acrylonitrile fiber bundle for carbon fiber precursor and method for producing the same
JPS6021905A (en) Acrylic fiber having high strength and elastic modulus and its manufacture
JPS61138711A (en) Production of acrylic yarn having improved durability
JPS61138710A (en) Production of acrylic yarn having improved durability
JP2002302828A (en) Acrylonitrile-based precursor filament bundle for carbon fiber and method for producing the same
JPH06101129A (en) Acrylic spun yarn
JPH0441728A (en) Tow system spun yarn
JPS61138712A (en) Production of acrylic yarn having improved durability
JP3364099B2 (en) Dividable acrylic synthetic fiber and method for producing the same
JPS61138709A (en) Production of acrylic yarn having improved durability
JPS61138713A (en) Production of acrylic yarn having improved durability
US4224271A (en) Process for biconstituent polymer compositions
JPH03104914A (en) Heat transfer printed fabric
JPH0434010A (en) Acrylic fiber
JPH02169711A (en) Flat dry spun acrylic fiber and production thereof
JP2001055620A (en) Acrylic fiber suitable for production of nonwoven fabric
JPS61296114A (en) Acrylic fiber
JPH11200141A (en) Production of pilling-resistant acrylic fiber
JP2003147630A (en) Acrylic modified cross section fiber and method for producing the same
JP5014799B2 (en) Hollow acrylic synthetic fiber
JPH0465523A (en) Production of acrylic synthetic fiber with deep wrinkle
US20030057593A1 (en) Low density acrylic fiber