JPS61138222A - Illuminating device of camera having t.t.l. focus detector - Google Patents

Illuminating device of camera having t.t.l. focus detector

Info

Publication number
JPS61138222A
JPS61138222A JP59261194A JP26119484A JPS61138222A JP S61138222 A JPS61138222 A JP S61138222A JP 59261194 A JP59261194 A JP 59261194A JP 26119484 A JP26119484 A JP 26119484A JP S61138222 A JPS61138222 A JP S61138222A
Authority
JP
Japan
Prior art keywords
projection
focus detection
light
distance
projected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59261194A
Other languages
Japanese (ja)
Other versions
JP2527159B2 (en
Inventor
Toru Matsui
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP59261194A priority Critical patent/JP2527159B2/en
Publication of JPS61138222A publication Critical patent/JPS61138222A/en
Priority to US06/940,190 priority patent/US4690538A/en
Priority to US07/085,088 priority patent/US4803508A/en
Priority to US07/085,124 priority patent/US4827301A/en
Priority to US07/300,237 priority patent/US4926206A/en
Priority to US07/370,167 priority patent/US4969004A/en
Application granted granted Critical
Publication of JP2527159B2 publication Critical patent/JP2527159B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • G02B7/346Systems for automatic generation of focusing signals using different areas in a pupil plane using horizontal and vertical areas in the pupil plane, i.e. wide area autofocusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • G03B15/05Combinations of cameras with electronic flash apparatus; Electronic flash units
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2215/00Special procedures for taking photographs; Apparatus therefor
    • G03B2215/05Combinations of cameras with electronic flash units
    • G03B2215/0514Separate unit
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2215/00Special procedures for taking photographs; Apparatus therefor
    • G03B2215/05Combinations of cameras with electronic flash units
    • G03B2215/0514Separate unit
    • G03B2215/0517Housing
    • G03B2215/0553Housing with second integrated flash

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)

Abstract

PURPOSE:To illuminate efficiently a subject from a near to remote distance by illuminating the subject with two projecting luminous fluxes if the subject exists at the remote distance and illuminating the subject with a part of the projecting luminous flux if the subject exists at the near distance. CONSTITUTION:The 1st and 2nd projecting optical systems 7, 7a, 11, 9, 8, 8a, 12, 10 are disposed apart at a prescribed base line length from the optical axis of a photographing lens in the 1st prescribed direction in a camera having a TTL focus detector set with a focus detecting area on the optical axis of the photographing lens. The spreading angle of the 2nd projecting luminous flux from the 2nd projecting optical system is made larger than the spreading angle of the 1st projecting luminous flux from the 1st projecting optical system with respect to at least the 1st prescribed direction. The 1st and 2nd projecting luminous fluxes are superposed on each other at the 1st prescribed distance or further with respect to the 2nd prescribed direction intersecting orthogonally with the 1st prescribed direction. The 2nd projecting luminous flux is projected to enclose the focus detecting area at the 2nd prescribed remote distance or further and the 1st projecting luminous flux is projected to enclose said area at the 3rd prescribed remote distance or further.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、撮影レンズ通過光を用いて撮影しンズの焦
点調節状態を検出するT、T、L焦点検出装置を備えた
レンズ交換式カメラに、焦点検出を助ける補助光を投光
するために用いられる照明装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an interchangeable lens camera equipped with a T, T, L focus detection device that detects the focus adjustment state of a photographic lens using light passing through the photographic lens. The present invention relates to an illumination device used to project auxiliary light to assist focus detection.

従来の技術 撮影レンズ通過光を用いて撮影レンズの焦点調節状態を
検出するカメラのT、T、 L焦点検出装置は、すでに
種々のものが知られており、代表的なものとしては、例
えば特開昭52−95221号公報や特開昭54−15
9259号公報に示された如き位相差検出方式、特開昭
55−155308号公報に示された如きコントラスト
検出方式等がある。一般にT、T、L方式の焦点検出装
置を用いた場合、被写体が暗いときや被写体のコントラ
ストが低いとき等に焦点検出が困難乃至は不能となる欠
点があり、このため照明装置から補助光を投射して被写
体を照明し、焦点検出を助けることが行われるが、例え
ば米国特許第4,150,888号明細書や特開昭57
−73709号公報にその例が示されている。
2. Description of the Related Art Various types of T, T, and L focus detection devices for cameras that detect the focus adjustment state of a photographic lens using light passing through the photographic lens are already known. Publication No. 52-95221 and Japanese Patent Application Laid-open No. 54-15
There are a phase difference detection method as shown in Japanese Patent Laid-open No. 9259, a contrast detection method as shown in Japanese Patent Laid-Open No. 155308/1980, and the like. Generally, when using a T, T, or L type focus detection device, there is a drawback that focus detection is difficult or impossible when the subject is dark or the contrast of the subject is low. Projection is used to illuminate the subject and assist focus detection, for example, as disclosed in U.S. Pat.
An example is shown in Japanese Patent No.-73709.

発明が解決しようとする問題点 上記の如き照明装置からの補助光を用いた焦点検出シス
テムを実用化するに際しては、検討すべき課題が種々存
在し、その1つは、いかにして近距離から遠距離までの
被写体を効率良く照明するかという問題である。特に一
般の一眼レフレックスカメラのようにレンズ交換を行う
レンズ交換式カメラの場合、高い焦点検出精度が要求さ
れると共に、超広角から超望遠までの種々の交換レンズ
が用いられ、近距離から遠距離までの広い距離範囲に対
し焦点検出が可能であることが要求される。
Problems to be Solved by the Invention When putting into practical use a focus detection system that uses auxiliary light from an illumination device as described above, there are various problems that need to be considered. The problem is how to efficiently illuminate objects at long distances. In particular, in the case of interchangeable lens cameras such as general single-lens reflex cameras, high focus detection accuracy is required, and a variety of interchangeable lenses are used, from ultra-wide-angle to super-telephoto. It is required that focus detection be possible over a wide distance range.

このため、レンズ交換式カメラに用いられる照明装置も
、カメラに装着される交換レンズの画角に依存した広が
ptもつ焦点検出エリアを包含しつつ近距離から遠距離
までの広い距離範囲を照明可能であることが要求される
。今、照明可能な被写体距離を長くしようとすれば、投
射光学系の集光能力を上げ、照明光の広がりを小さくす
れば良いが、そうすると照明可能な被写体領域が狭くな
って、照明光を撮影レンズを通してその光軸に沿ってカ
メラ内から投射しない限り、近距離から遠距離までの被
写体を共に照明することができなくなる。これとは逆に
、投射光学系の集光能力を落とし、照明光の広がりを大
きくすれば、照明可能な被写体領域は広がるが、照明可
能な被写体距離が短くなる。又、投射光学系の光源パワ
ーを大きくすれば、照明可能な被写体領域を拡張し、か
つ遠距離まで照明することができるが、大容量の光源が
必要になると共に電力消費も大きくなり、カメラに用い
る照明装置としては好ましくない。
For this reason, lighting devices used in interchangeable lens cameras illuminate a wide range of distances from near to far while encompassing a focus detection area with a spread pt that depends on the angle of view of the interchangeable lens attached to the camera. It is required that it is possible. Currently, if you want to lengthen the distance of the subject that can be illuminated, you can increase the light-gathering ability of the projection optical system and reduce the spread of the illumination light. Unless the light is projected from inside the camera along its optical axis through a lens, it will not be possible to illuminate objects from both near and far distances. On the contrary, if the light-gathering ability of the projection optical system is reduced and the spread of illumination light is increased, the illuminated object area will be expanded, but the illuminated object distance will be shortened. In addition, by increasing the light source power of the projection optical system, it is possible to expand the illuminated subject area and illuminate a long distance, but this requires a large-capacity light source and increases power consumption, making it difficult for the camera to This is not preferable as a lighting device.

上記米国特許第4,150,888号明細書に開示され
た照明装置は、焦点調節のだめの撮影レンズの繰出しに
連動して、投射光軸が撮影レンズ光軸に対してなす角度
が変化するように投射光学系を回転揺動させる構成を備
えている。この構成では撮影レンズの繰出しに応じて近
距離から遠距離までの被写体を照明可能であり、投射光
学系の集光能力を上げることによって照明可能な被写体
距離を伸ばすこともできる。しかし、そうすると照明可
能な被写体領域が狭くなり、合焦すべき被写体に対して
撮影レンズの繰出し位置が大きく外れていると、照明光
がその被写体に当たらず、焦点検出ができなくなる欠点
がある。又、投射光学系を上記の如く回転揺動させるた
めに撮影レンズの繰出しにそれを連動させる機械的な連
動機構が不可欠であって、構成が複雑化するばかりか、
レンズ交換式カメラに適用しようとしてもそのような連
動機構を設けることが困難で、実現性に乏しい。
The illumination device disclosed in the above-mentioned US Pat. No. 4,150,888 changes the angle that the projection optical axis makes with respect to the optical axis of the photographic lens in conjunction with the extension of the photographic lens for focus adjustment. The projection optical system is configured to rotate and oscillate. With this configuration, it is possible to illuminate objects from short distances to long distances according to the extension of the photographic lens, and by increasing the light-gathering ability of the projection optical system, it is also possible to extend the distance of objects that can be illuminated. However, in this case, the area of the subject that can be illuminated becomes narrower, and if the position of the photographic lens is far off from the subject to be focused, the illumination light will not hit the subject and focus detection will not be possible. Furthermore, in order to rotate and oscillate the projection optical system as described above, a mechanical interlocking mechanism that interlocks the extension of the photographing lens is essential, which not only complicates the structure, but also
Even if an attempt was made to apply this to an interchangeable lens camera, it would be difficult to provide such an interlocking mechanism, and it would be impractical.

一方、上記特開昭57−73709号公報に開示された
照明装置では、投射光学系が交換レンズ鏡胴内に配置さ
れており、この投射光学系が焦点調節のための撮影レン
ズの繰出しに連動して回転揺動する。この照明装置の場
合、米国特許第4,150゜888号明細書に開示され
た照明装置の上述の欠点のうち、レンズ交換式カメラへ
の適用が困難であるとの欠点はなくなるが、その他の欠
点はすべて未解決のままであり、しかも交換レンズ毎に
投射光学系を設けなければならず、交換レンズが高価に
なるという新たな欠点が生じる。
On the other hand, in the illumination device disclosed in JP-A No. 57-73709, the projection optical system is disposed within the interchangeable lens barrel, and this projection optical system is linked to the extension of the photographic lens for focus adjustment. Rotate and oscillate. This illumination device eliminates the above-mentioned drawbacks of the illumination device disclosed in U.S. Pat. All of the drawbacks remain unresolved, and a new drawback arises in that a projection optical system must be provided for each interchangeable lens, making the interchangeable lenses expensive.

この発明は、上述の従来技術の欠点を解決し、かつ焦点
検出を助けるため、近距離から遠距離までの被写体に対
して効率良く照明を行うことができる照明装置を提供す
ること金目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an illumination device capable of efficiently illuminating objects from short distances to long distances in order to solve the above-mentioned drawbacks of the prior art and to assist in focus detection. .

問題点を解決するだめの手段及び作用 この発明の照明装置は、撮影レンズ光軸から第1の所定
方向に所定の基線長屋れた位置に第1、第2の投射光学
系を備えている。少なくともその第1の所定方向に関し
ては、第2の投射光学系からの第1の投射光束の広がり
角度は第1の投射光学系からの第1の投射光束の広がり
角度よりも大きく設定されておシ、第2の投射光束内に
第1の投射光束が包含される。一方、第1の所定方向と
直交する第2の所定方向に関しては、第1、第2の投射
光束が第1の所定距離以遠で互に重ね合わされる。さら
に、その第1の所定距離よりも遠い第2の所定距離以遠
では、第2の投射光束が焦点検出エリアの広がりを包含
し、かつ第2の所定距離よりも遠い第3の所定距離以遠
では、第1の投射光束も焦点検出エリアの広がりを包含
する。したがって、第3の所定距離以遠にある被写体上
の焦点検出エリアは第1、第2の投射光束の両方で照明
されるのに対し、第2の所定距離と第3の所定距離の間
にある被写体上の焦点検出エリアは第2の投射光束のみ
、あるいは第1の投射光束の一部と第2の投射光束によ
り照明される。
Means and Function for Solving the Problems The illumination device of the present invention is provided with first and second projection optical systems at positions separated by a predetermined base line in a first predetermined direction from the optical axis of the photographing lens. At least with respect to the first predetermined direction, the spread angle of the first projection light beam from the second projection optical system is set to be larger than the spread angle of the first projection light beam from the first projection optical system. The first projection light beam is included within the second projection light beam. On the other hand, regarding a second predetermined direction orthogonal to the first predetermined direction, the first and second projection light beams are superimposed on each other at a distance beyond the first predetermined distance. Furthermore, beyond a second predetermined distance that is farther than the first predetermined distance, the second projected light beam includes the spread of the focus detection area, and beyond a third predetermined distance that is farther than the second predetermined distance. , the first projection light beam also includes the spread of the focus detection area. Therefore, the focus detection area on the subject that is beyond the third predetermined distance is illuminated by both the first and second projected light beams, whereas the focus detection area is between the second predetermined distance and the third predetermined distance. The focus detection area on the subject is illuminated by only the second projection light beam, or by a portion of the first projection light beam and the second projection light beam.

実施例 以下にこの発明の実施例を図面を参照して説明する。第
1図乃至第6図はこの発明の照明装置を7ラツシユ撮影
用の電子閃光装置に適用した第1実施例を示す。第19
7!施例の照明装置を用いた焦点検出システム全体の概
略を示す第1図において、(C) ハ主ミラー(Mi)
をもつ−眼レフレックスカメラとして構成されたレンズ
交換式カメラ、(EL)。
Embodiments Below, embodiments of the present invention will be described with reference to the drawings. 1 to 6 show a first embodiment in which the illumination device of the present invention is applied to an electronic flash device for 7-shot photography. 19th
7! In FIG. 1, which shows an outline of the entire focus detection system using the illumination device of the example, (C) C main mirror (Mi)
- An interchangeable lens camera configured as an ocular reflex camera, (EL).

(S)はそれぞれこのカメラに装着された交換レンズと
照明装置を示している。照明装置(S)はカメラ(C)
の上面に設けられたアクセサリ−シュー(2)に脚部(
4)で装着され、公知の閃光発光用フラックユチューブ
(6)と共に、後述する発光装置(7) (8)、一対
の投射レンズ(9)(IQ) 、一対の投光パターンフ
ィルム(11) (12)等から成る第1、第2の投射
光学系を備えている。又、照明装置(S)内には、公知
の昇圧回路、主コンデンサ−、トリガー回路等のフラッ
シュチューブ(6) 1&:発光させるだめの回路が設
けられ、さらにこれに加えて発光装置(7)、(8)を
点灯させるための回路が設けられている。この発光装置
(7)、(8)を点灯させるだめの回路は、カメラの焦
点検出動作時に発光装置(7)、(8)を露出動作に先
立って必要に応じて点灯させることができればよく、そ
の詳細についてはこの発明の要旨に関係しないため説明
を省略する。カメラ(C)は主ミラー(Mりと共に副ミ
ラー(Mz) tl−有し、交換レンズ(E L)の撮
影レンズ(14)を通過した被写体光は主ミラー(Ml
)の透光部を通過して副ミラー(Mz)で下方へ反射さ
れ、焦点検出装置(D)に入射する。
(S) indicates an interchangeable lens and a lighting device attached to this camera, respectively. The lighting device (S) is a camera (C)
The accessory shoe (2) provided on the top of the
4), together with a known flash light emitting flash tube (6), a light emitting device (7) (8), a pair of projection lenses (9) (IQ), a pair of projection pattern films (11) ( 12) and the like. In addition, the illumination device (S) is provided with circuits for emitting light such as a well-known booster circuit, a main capacitor, a trigger circuit, etc., and in addition to this, a light emitting device (7). , (8) is provided. The circuit for lighting up the light emitting devices (7) and (8) may be any circuit that can light up the light emitting devices (7) and (8) as necessary prior to the exposure operation during the focus detection operation of the camera. The details thereof are not related to the gist of the present invention, so the explanation will be omitted. The camera (C) has a main mirror (M) and a secondary mirror (Mz), and the subject light that has passed through the photographing lens (14) of the interchangeable lens (EL) is reflected from the main mirror (Ml).
), is reflected downward by the sub mirror (Mz), and enters the focus detection device (D).

第2図及び第3図は第1図におけるカメラ(C)の光学
系及び焦点検出装置(D)内の焦点検出用光学系の一例
を示す。第2図において、(16)は装置本体に形成さ
れた焦点検出エリアを規制するだめノ視野マスク、(1
8)ハコンデンサーレンズ、 (20)は光路屈曲用ミ
ラー、 (21)(22)は一対の再結像レンズ、 (
24)は例えばCCD等の電荷蓄積型(積分型)未 受光尋子から成る自己走査受光素子である。これらの光
学部材から成る焦点検出用光学系の展開図である第3図
は、この光学系による位相差検出方式の焦点検出の原理
を示しており、(26)はフイルム画(28)と等価な
撮影レンズ(14)の予定結像面で、(30) ハコン
デンサーレンズ(18)及び一対の再結像レンズ(21
) (22)から成る再結像光学系に関して予定結像面
(26)と共役な面である。撮影レンズ(14)により
形成された前ピン像(A)、合焦像(B)、後ビン像(
C)ハコンデンサーレンズ(18) 、一対の再結像レ
ンズ(22)によって夫々第1、第2の411 (AI
’)(A2’)、 (Bl′)(B’)、 (C1′X
Cz’)として再結像されるが、ここで第1、第2の像
の間隔は撮影レンズの焦点調節状態によって変化する。
2 and 3 show an example of the optical system of the camera (C) and the focus detection optical system in the focus detection device (D) in FIG. 1. In Fig. 2, (16) is a field mask (16) that regulates the focus detection area formed in the main body of the device;
8) C condenser lens, (20) is a mirror for optical path bending, (21) and (22) are a pair of re-imaging lenses, (
Reference numeral 24) is a self-scanning light-receiving element composed of a charge accumulation type (integration type) non-light receiving element such as a CCD. Figure 3, which is a developed view of the focus detection optical system composed of these optical members, shows the principle of focus detection using the phase difference detection method using this optical system, and (26) is equivalent to the film image (28). (30) A condenser lens (18) and a pair of re-imaging lenses (21)
) (22) is a surface that is conjugate with the intended imaging surface (26) with respect to the reimaging optical system. Front focus image (A), in-focus image (B), and rear focus image (
C) The first and second 411 (AI
') (A2'), (Bl') (B'), (C1'X
Cz'), where the distance between the first and second images changes depending on the focusing state of the photographic lens.

その結果、面(30)上乃至はその近傍に受光素子(2
4) t−配設し、その出力にもとづいて第1、第2の
像が最も良く一致するときの両像の間隔を求めることに
より、撮影レンズの焦点調節状態を検出することができ
る。なお、第3図において、(32)は撮影レンズ(1
4)の光軸、(34)は一対の絞シ開口を再結像レンズ
(21X22)の直前に形成する絞りマスクである。
As a result, the light receiving element (2) is placed on or near the surface (30).
4) The focus adjustment state of the photographic lens can be detected by arranging the lens t- and determining the distance between the first and second images when they best match based on the output thereof. In addition, in Fig. 3, (32) is the photographing lens (1
4), the optical axis (34) is an aperture mask that forms a pair of aperture apertures just in front of the re-imaging lens (21×22).

第4図は第1図の投射光学系を具体的に示した平面図で
、投射レンズ(9) (10)は互に中心間隔でDだけ
離して配設されている。発光装置(7) (8)はそれ
ぞれ内部に発光ダイオードを備え、投射レンズ(9) 
(10)の焦点位置よシも少し後方(図で左側)に、投
射レンズ(9) (10)の光軸からdだけ外側に中心
がずれるように配設されており、各々の先端にはそれぞ
れ半径R1p R2(Rt < R2)で幅φA、φB
の球状集光部(7a) (8a)が形成されている。又
、投影パターンフィルム(11) (12)は球状集光
部(7a)(8a)の直前の投射レンズ(9) (10
)の略焦点位置K、後述するパターンが互にずれないよ
うに正確に位置決めされて配置されている。発光装置(
7) (8)の球状集光部(7,a) (8a)は投射
レンズ(9) (10)の有効径内に内部の発光ダイオ
ードから射出される光束を集光させるためのコンデンサ
ーであるが、R1<R2であるため、投射レンズ(10
)からは投射レンズ(9)から投射される光束よりも広
い角度で広がる光束が投射される。すなわち、発光装置
(7)、投射レンズ(9)から成る第1の投射光学系と
発光装置(8)、投射レンズ(10)から成る第2の投
射光学系とを比べると、第1の投射光学系の方が第2の
投射光学系よりも集光能力が高く設定されている。
FIG. 4 is a plan view specifically showing the projection optical system of FIG. 1, in which the projection lenses (9) and (10) are arranged with a distance D between their centers. The light emitting devices (7) and (8) each have a light emitting diode inside and a projection lens (9).
The focal position of (10) is also located a little behind (on the left side in the figure) so that the center is shifted outward by d from the optical axis of projection lenses (9) and (10), and at the tip of each Widths φA and φB with radii R1p and R2 (Rt < R2), respectively.
Spherical light condensing parts (7a) (8a) are formed. In addition, the projection pattern films (11) (12) are connected to the projection lenses (9) (10) immediately in front of the spherical condensing parts (7a) (8a).
), and the patterns to be described later are accurately positioned and arranged so that they do not deviate from each other. Light emitting device (
7) The spherical condensing part (7, a) (8a) in (8) is a condenser for condensing the luminous flux emitted from the internal light emitting diode within the effective diameter of the projection lens (9) (10). Since R1<R2, the projection lens (10
) projects a light beam that spreads at a wider angle than the light beam projected from the projection lens (9). That is, when comparing a first projection optical system consisting of a light emitting device (7) and a projection lens (9) with a second projection optical system consisting of a light emitting device (8) and a projection lens (10), the first projection optical system consists of a light emitting device (8) and a projection lens (10). The optical system is set to have a higher light gathering ability than the second projection optical system.

第1、第2の投射光学系から投射される光束の広がりを
示す第5図、第6図において、実線は第1の投射光学系
から投射される光束、破線が第2の投射光学系から投射
される光束であり、斜線で示した領域は視野マスク(1
6)によって規制された焦点検出装置(D)の焦点検出
エリアの広がシである。第1、第2の投射光学系の投射
光軸(36) (38)は、第4図及び第5図に示した
ように、垂直方向に見て所定距離L=3mで撮影レンズ
光軸(32)と重なり合っており、又水平方向に見ると
第6図に示したようにそれぞれ3m、x、8mで撮影レ
ンズ光軸(32)と重なり合っている。すなわち、2つ
の投射光軸(36) (38)は互にねじれ合うよ4う
に伸びているが、この投射光軸のねじれは、発光装置(
7)(8)の光軸から投射レンズ(9) (10)の光
軸までの垂直方向の距離あるいはそれらを含む第1、第
2投射光学系全体の垂直方向における傾きを互に異なら
せることによって与えられる。なお、第6図に示したよ
うに、第1、第2の投射光学系からの光束の広がりは、
上端側では両光束がほぼ互に重なり合い、下端側では両
光束がかなシ大きくずれるように設定されている。例え
ば、図示の例では、垂直方向に関して、第1の投射光学
系からの光束は撮影レンズ光軸(32)と約1.4mで
重なシ始め、約1.8m以上では焦点検出エリアを包含
するのに対し、第2の投射光学系からの光束は撮影レン
ズ光軸(32)と約o、smで重なり始め、約0.97
ff以上では焦点検出エリアを包含する。一方、水平方
向に関して言えば、第5図に示したように、第1の投射
光学系からの光束は約0.5 mで撮影レンズ光軸(3
2)と重なり始め、約1.8mでは焦点検出エリアを包
含するのに対し、第2の投射光学系からの光束は約0.
3 mで撮影レンズ光軸(32)と重なり始め、約01
8mでは焦点検出エリアを包含する。以上から、図示の
例の場合、約1.8m以上では第1、第2の投射光学系
からの2つの光束が互に完全に重なり合って焦点検出エ
リアを照明することになり、約0.9mから約1.87
7Jの範囲では第2投射光学系からの光束のみが、ある
いは第2投射光学系からの光束と第1投射光学系からの
光束の一部とが焦点検出エリアを照明することになる。
In Figures 5 and 6, which show the spread of the light flux projected from the first and second projection optical systems, the solid line is the light flux projected from the first projection optical system, and the broken line is the light flux projected from the second projection optical system. The shaded area is the field mask (1
6) is the spread of the focus detection area of the focus detection device (D) regulated by. As shown in FIGS. 4 and 5, the projection optical axes (36) (38) of the first and second projection optical systems are located at a predetermined distance L=3 m when viewed in the vertical direction, and the photographing lens optical axis ( 32), and when viewed in the horizontal direction, as shown in FIG. 6, they overlap with the photographing lens optical axis (32) at distances of 3 m, x, and 8 m, respectively. In other words, the two projection optical axes (36) and (38) extend in a manner that twists each other.
7) Making the vertical distance from the optical axis of (8) to the optical axis of projection lenses (9) and (10) or the inclination in the vertical direction of the entire first and second projection optical systems including them different from each other. given by. In addition, as shown in FIG. 6, the spread of the luminous flux from the first and second projection optical systems is as follows:
At the upper end, the two light beams almost overlap each other, and at the lower end, the two light beams are set to have a large deviation. For example, in the illustrated example, in the vertical direction, the light beam from the first projection optical system begins to overlap the photographing lens optical axis (32) at about 1.4 m, and includes the focus detection area at about 1.8 m or more. On the other hand, the luminous flux from the second projection optical system starts to overlap the optical axis (32) of the photographic lens at approximately o, sm, and is approximately 0.97
ff or more includes the focus detection area. On the other hand, in the horizontal direction, as shown in Fig. 5, the luminous flux from the first projection optical system is about 0.5 m, and the optical axis of the photographing lens (3
2) and covers the focus detection area at about 1.8 m, whereas the light flux from the second projection optical system is about 0.8 m.
At 3 m, it starts to overlap with the optical axis of the photographing lens (32), and at about 0.01 m.
8 m includes the focus detection area. From the above, in the case of the illustrated example, the two light beams from the first and second projection optical systems will completely overlap each other and illuminate the focus detection area at a distance of approximately 1.8 m or more, and approximately 0.9 m From about 1.87
In the range of 7J, only the light beam from the second projection optical system, or the light beam from the second projection optical system and part of the light beam from the first projection optical system illuminates the focus detection area.

なお、上述の距離りは、後述するように投影パターンフ
ィルム(11) (12)の投影パターンの投影像が最
も鮮  □鋭に結像する距離であり、この距離の位置で
2つの投影像を完全に重なり合わせる。
The above-mentioned distance is the distance at which the projected image of the projection pattern of the projection pattern film (11) (12) forms the sharpest image, as described later, and the two projected images are formed at this distance. overlap completely.

ところで、投射レンズの光軸が撮影レンズ光軸から真上
におる距離m(以下これを基線長と云う)を隔てて配設
されている場合、その投射レンズによυ投射される光束
により照明可能な撮影レンズ光軸上での距離範囲(以下
これを照明可能距離範囲と云う)は、基線長m、投射レ
ンズから投射される光束の広がり度合、投射レンズを含
む投射光学系全体の投射光軸と撮影レンズ光軸とが交叉
する角度θ、投射レンズの焦点位置までの距離り等によ
って決まり、投射レンズから構成される装置の広がりは
光源の径をφ、投射レンズの焦点距離ifとするときf
/φで表わすことができる。第7図は、’/φ= 7.
2 、  L = 5 mとした場合に、θノ値の変化
によって照明可能距離範囲がどのように変化するかをm
=80Hのときとm=1QQjl11のときとについて
示したグラフで、実線がm=80ffの場合を、破線が
11=lQQl’1gの場合を表わしている。このグラ
フに示したように、θが大きくなれば照明可能距離範囲
は全体に近距離側へ移動し、又mが小さくなっても照明
可能距離範囲は全体に近距離側へ移動する。なお、焦点
検出が可能な焦点検出可能距離範囲は、投射光学系から
の投射光束に焦点検出エリアが包含される範囲であって
、上記照明可能距離範囲とは一致しない。しかし、焦点
検出可能距離範囲は照明可能距離範囲が近距離側へ移動
すればそれにつれて近距離側へ移動し、遠距離側へ移動
すればやはり遠距離側に移動する。
By the way, when the optical axis of the projection lens is placed at a distance m (hereinafter referred to as the base line length) directly above the optical axis of the photographing lens, the illumination is caused by the light flux projected by the projection lens. The possible distance range on the optical axis of the photographing lens (hereinafter referred to as the possible illumination distance range) is determined by the base line length m, the degree of spread of the luminous flux projected from the projection lens, and the projected light of the entire projection optical system including the projection lens. It is determined by the angle θ at which the axis intersects with the optical axis of the photographing lens, the distance to the focal point of the projection lens, etc., and the extent of the device consisting of the projection lens is determined by the diameter of the light source as φ and the focal length of the projection lens as if. When f
/φ. FIG. 7 shows '/φ=7.
2. When L = 5 m, how the illumination distance range changes depending on the value of θ is expressed as m
In the graphs shown when =80H and when m=1QQjl11, the solid line represents the case when m=80ff, and the broken line represents the case when 11=lQQl'1g. As shown in this graph, as θ increases, the entire illumination possible distance range moves toward the shorter distance side, and even when m decreases, the entire illumination possible distance range moves toward the shorter distance side. Note that the focus detectable distance range in which focus detection is possible is a range in which the focus detection area is included in the projection light beam from the projection optical system, and does not coincide with the illumination possible distance range. However, when the illumination possible distance range moves to the short distance side, the focus detectable distance range moves to the short distance side, and when it moves to the long distance side, it also moves to the long distance side.

したがって、第7図のグラフに示した照明可能距離範囲
の変化の傾向は焦点検出可能距離範囲についても当ては
する。但し、焦点検出が可能であるためには、投射光束
により照明された被写体が一層レベル以上の明るさをも
つことが必要であるから、光源の輝度が有限である以上
、実際上焦点検出可能距離範囲の最長距離は光源の輝度
により制限される。
Therefore, the tendency of change in the illumination possible distance range shown in the graph of FIG. 7 also applies to the focus detectable distance range. However, in order for focus detection to be possible, the subject illuminated by the projected light beam must have a brightness level higher than that level, so as long as the brightness of the light source is finite, the actual focus detection distance is The maximum distance of range is limited by the brightness of the light source.

一方、上述の実施例の如く、脚部(4)とアクセサリー
シ二一(2)との機械的な結合により、第1、第2の投
射光学系をもつ照明装置(S)をカメラ(C)に取付け
る場合、機械的な結合ガタの発生を避けることはむずか
しく、これによって第1、第2の投射光学系の投射光軸
(36) (38)の方向が変化する。
On the other hand, as in the above-described embodiment, the illumination device (S) having the first and second projection optical systems can be connected to the camera (C ), it is difficult to avoid mechanical coupling play, which changes the direction of the projection optical axes (36) (38) of the first and second projection optical systems.

この投射光軸の変化は例えば垂直方向において第6図に
角度〃で示す投射光束のふれとなって表われ(二点鎖線
が結合ガタによりふれた投射光学系からの投射光束、三
点鎖線が結合ガタによりふれた第2投射光学系からの投
射光束を示す)、この投射光束のふれは当然焦点検出可
能距離範囲に影響を及ぼすが、その影響の度合は一般に
近距離側よりも遠距離側で大きい。しかし、上述の実施
例のように、第1、第2の投射光学系からの投射光束の
上限が互にほぼ重な)合うように設定し、かつそれぞれ
より遠くで焦点検出エリアと交叉するように設定してお
けば(第6図参照)、焦点検出可能範囲が遠距離側では
光源の輝度によって制限されているため、投射光束のふ
れによる影響は実際上比較的小さくて済む。
This change in the projection optical axis appears, for example, in the vertical direction as a deflection of the projected light beam as shown by the angle 〃 in Figure 6 (the two-dot chain line indicates the projection light flux from the projection optical system that is deflected due to the coupling play, and the three-dot chain line indicates the deviation of the projection light beam from the projection optical system). (This shows the projected light flux from the second projection optical system that fluctuates due to coupling play).This fluctuation of the projected light flux naturally affects the focus detectable distance range, but the degree of influence is generally greater on the far side than on the near side. So big. However, as in the above embodiment, the upper limits of the projected light beams from the first and second projection optical systems are set so that they almost overlap each other, and the upper limits of the projected light fluxes from the first and second projection optical systems are set so that they intersect with the focus detection area at a farther distance. (see FIG. 6), the focus detectable range is limited by the brightness of the light source on the long distance side, so the influence of fluctuations in the projected light beam can actually be relatively small.

第8図(A) (B)は上述の実施例の場合における1
、07ffと5.0mの位置での第11第2の投射光学
系からの投射光束の重なりと焦点検出エリアとの関係を
それぞれ示している。図において、(Ll) (L2)
はそれぞれ第1、第2の投射光学系からの投射光束の断
面を示しており、又(E)は焦点検出エリアを示してい
る。但し、この図では光束断面(LL) (L2)と焦
点検出エリア(E)との関係は光束断面の側を基準にし
て描いてあり、照明装置(S)と力、メラ(C)との結
合ガタによって、焦点検出エリア(E)は図に破線で示
した範囲で光束断面(LL) (L2)に対1〜て相対
移動する。
Figures 8(A) and 8(B) show 1 in the case of the above embodiment.
, 07ff and 5.0 m, respectively, show the relationship between the overlap of the projection light beams from the eleventh and second projection optical systems and the focus detection area. In the figure, (Ll) (L2)
(E) shows the cross section of the projection light beam from the first and second projection optical systems, and (E) shows the focus detection area. However, in this figure, the relationship between the beam cross section (LL) (L2) and the focus detection area (E) is drawn based on the beam cross section side, and the relationship between the illumination device (S), force, and camera (C) is Due to the coupling play, the focus detection area (E) moves relative to the beam cross section (LL) (L2) within the range shown by the broken line in the figure.

以上、第1実施例について述べたが、第1実施例では、
第8図(A) (B)に示したように、近距離を照明す
るための第2投射光学系からの投射光束は、照明装置(
S)とカメラ(C)の結合ガタを考慮した場合でも、左
右方向においては必要以上に広がってお9、焦点検出エ
リア(E)から左右に外れた光束部分は焦点検出エリア
の照明のために何ら寄与していないことになる。第9図
゛は、そのような無駄な光束部分を少なくして、照明効
率を一層向上させることができるこの発明の第2実施例
の投射光学系を示している。
The first embodiment has been described above, but in the first embodiment,
As shown in FIGS. 8(A) and 8(B), the projection light flux from the second projection optical system for illuminating a short distance is transmitted to the illumination device (
Even when considering the coupling play between S) and camera (C), the beam spreads out more than necessary in the horizontal direction9, and the portion of the light beam that deviates from the focus detection area (E) to the left and right is used to illuminate the focus detection area. It means you are not contributing anything. FIG. 9 shows a projection optical system according to a second embodiment of the present invention, which can further improve illumination efficiency by reducing such a wasted portion of light flux.

第9図において、(107) (108)は内部に発光
ダイオードを有する発光装置であるが、これらの発光装
置の伝光部(107a) (108a)は互に等しい半
径の球面に形成されている。又、第1、第2の投射レン
ズ(109) (110)も互に等しい焦点距離をもち
、それらの焦点位置には、投影パターンフィルム(11
1)(112)が配設されている。(140)は投射レ
ンズ(109)(110)の前方に配置された透明パネ
ルであって、その裏面側には、投射レンズ(110)か
ら投射される投射光束が透過する領域内にプリズム(1
42)が形成されている。プリズム(J 42 )の幅
は、上下方向には投射光束の幅に対して比較的狭いが、
左右方向には投射光束の幅とほぼ等しい。又、プリズム
(142)の断面形状は図から明らかなように三角形で
、下部程厚くなっている。図に断面を斜線で示した部分
がプリズム(142) を通過する投射光束の部分でお
り、この部分は第2の投射光学系から投射される全体の
光束の約10%である。
In Fig. 9, (107) and (108) are light emitting devices that have light emitting diodes inside, and the light transmitting parts (107a) and (108a) of these light emitting devices are formed into spherical surfaces with the same radius. . The first and second projection lenses (109) and (110) also have the same focal length, and a projection pattern film (11) is located at their focal position.
1) (112) is provided. (140) is a transparent panel placed in front of the projection lenses (109) and (110), and a prism (1
42) is formed. The width of the prism (J 42 ) is relatively narrow in the vertical direction compared to the width of the projected light beam, but
The width in the left and right direction is approximately equal to the width of the projected light beam. Further, the cross-sectional shape of the prism (142) is triangular, as is clear from the figure, and the prism (142) is thicker toward the bottom. The hatched section in the figure is the portion of the projected light beam that passes through the prism (142), and this portion accounts for approximately 10% of the entire light beam projected from the second projection optical system.

第2投射光学系のみ示した第10図において、(144
) (146)はそれぞれ投射レンズ(110)の最も
外側(垂直方向の)を通る光線であって、その投射レン
ズ通過後バネ7v(140)の平担部を通過する。
In FIG. 10, which shows only the second projection optical system, (144
) (146) are the light rays that pass through the outermost (vertical direction) of the projection lens (110), and after passing through the projection lens, they pass through the flat part of the spring 7v (140).

バネiv (140)はこれらの光線が通過する位置で
は平行板でめるから、バネ/v(140)の前後でのこ
れらの光線の前後方向に対する角度は不変である。
Since the spring iv (140) is held by a parallel plate at the position through which these light rays pass, the angles of these light rays with respect to the longitudinal direction before and after the spring /v (140) remain unchanged.

一方、(148) (150)はプリズム(142)の
上端と下端を通る光線であり、これらはプリズム(14
2) ?通過後プリズムの頂角ψの約1/2の角度だけ
下方へ折曲げら詐る。
On the other hand, (148) and (150) are the rays that pass through the upper and lower ends of the prism (142), and these are the rays that pass through the upper and lower ends of the prism (142).
2)? After passing, it is bent downward by an angle of about 1/2 of the apex angle ψ of the prism.

第11図は第2実施例における第1、第2の投射光学系
からの投射光束の垂直方向から見た光路を示しており、
第1、第2の投射光学系の投射光軸(136) (13
8)は共に3mの位置で撮影レンズ光軸(132)と交
叉させている。
FIG. 11 shows the optical path of the projection light beams from the first and second projection optical systems in the second embodiment, as seen from the vertical direction,
Projection optical axes of the first and second projection optical systems (136) (13
8) are both crossed with the photographing lens optical axis (132) at a position of 3 m.

第12図は、第2実施例において、第1、第2の投射レ
ンズ(109) (110)の焦点距離fを22罰、集
光部(107a) (108a)の幅φを2.4ta+
、  基線長mを1Q33+1.角度ψを7°とし、か
つ第1、第2の投射光学系の投射光軸(136) (1
38)が水平方向から見て3.2mの距離で撮影レンズ
光軸(132)と交叉するように設定した場合の光路を
示すが、光線(144)(146)の間の領域がプリズ
ム(142) ’r通過しなかった投射光束の広がり範
囲であって、約1.2m以上で焦点検出エリア(E) 
’e包含している。これに対し、光線(148) (1
50)の間の領域がプリズム(142)を通過した投射
光束の広がり範囲であって、約0.8mから約1.25
.771の範囲で焦点検出エリア(E)の広がりを包含
している。第13図は第2実施例における投射光束の約
2mの距離での断面であシ、円(152)内の部分がプ
リズム(142) ’に通過しなかった投射光束(Ll
) (L2) 、円外の(154)で示した部分がプリ
ズム(142)を通過した投射光束(L2’)である。
FIG. 12 shows that in the second embodiment, the focal length f of the first and second projection lenses (109) (110) is 22mm, and the width φ of the condensing parts (107a) (108a) is 2.4ta+
, the baseline length m is 1Q33+1. The angle ψ is 7°, and the projection optical axes (136) (1
38) is set to intersect with the optical axis of the photographing lens (132) at a distance of 3.2 m when viewed from the horizontal direction. ) 'rThe spread range of the projected light beam that did not pass through, and the focus detection area (E) is approximately 1.2 m or more.
'eIncludes. On the other hand, ray (148) (1
50) is the spread range of the projected light flux that has passed through the prism (142), and is approximately 0.8 m to approximately 1.25 m.
.. The range of 771 includes the extent of the focus detection area (E). FIG. 13 is a cross section of the projected light beam in the second embodiment at a distance of about 2 m, and the portion within the circle (152) is the projected light beam (Ll) that did not pass through the prism (142)'.
) (L2) The portion outside the circle indicated by (154) is the projected light flux (L2') that has passed through the prism (142).

この第2実施例では、第1、第2投射光学系の投射レン
ズ(109) (110) ft通過する光束の広が9
度合を互に等しくする一方、第2投射レンズ(110)
を通過した光束をプリズム(142)を用いて垂直方向
にのみ広げるよりたしたため、第13図と第8図(A)
 (B)とを比較すれば明らかなように、焦点検出エリ
ア(E)の照明に寄与しない光束部分を第19j!施例
に比べて少なくすることができる。
In this second embodiment, the projection lenses (109) (110) ft of the first and second projection optical systems are spread 9
the second projection lens (110) while making the degrees equal to each other;
13 and 8 (A).
As is clear from the comparison with (B), the portion of the light flux that does not contribute to the illumination of the focus detection area (E) is the 19j! The amount can be reduced compared to the example.

なお、第2実施例ではプリズム(142)の投射レンズ
(110)の光軸(138)に対する垂直方向のずれ量
e(第10図参照)の値に応じて、プリズム(142)
を通過する光束の強度に差が生じる。これは発光装置(
108)に内蔵されている発光ダイオードから出る光に
投射レンズ光軸(138)方向に強い指向性があるため
で、集光部(108a)で集光されて投射レンズ(11
0)’に向う光束も投射レンズ光軸(138)に近い程
強度が強い。したがって、ずれ量1”f小さくすればす
る程プリズム(142) ?通過する光束の強度は強く
なり、ずれ量Eの選択によりこの光束の強度を適当に設
定することができる。
In addition, in the second embodiment, the prism (142)
There is a difference in the intensity of the light beam passing through. This is a light emitting device (
This is because the light emitted from the light emitting diode built into the projection lens (108) has strong directivity in the direction of the projection lens optical axis (138), and is condensed by the light condensing section (108a) and directed toward the projection lens (11).
The intensity of the light beam directed toward 0)' increases as it approaches the projection lens optical axis (138). Therefore, the smaller the deviation amount 1''f is, the stronger the intensity of the light beam passing through the prism (142) becomes, and by selecting the deviation amount E, the intensity of this light beam can be appropriately set.

第14図は第2実施例の第1の変形例における第2投射
光学系の主要部のみ示したもので、この変形例において
は、プリズム(142’)は透明バネp(140’)に
おける傾斜面として形成されており、バネ/L/(14
0’)はその傾斜面をはさんで二段の厚さtl。
FIG. 14 shows only the main parts of the second projection optical system in the first modification of the second embodiment. In this modification, the prism (142') is tilted at the transparent spring p (140'). It is formed as a surface, and the spring /L/(14
0') is the thickness tl of the two steps across the slope.

tzeもつ。但し、このバネ/L/(140’)の第1
投射レンズからの光束が通過する部分は、厚さtr(又
はt2でもよい)の平行平板になっている。又、図に示
した範囲では投射レンズ(110)によって投射される
光束は収束するように描かれているが、この光束はバネ
/L’(140’)の近く(図外)で一旦収束した後再
び広がって焦点検出エリアを広い距離範囲で包含する。
Tze Motsu. However, the first of this spring /L/(140')
The portion through which the light beam from the projection lens passes is a parallel flat plate with a thickness tr (or may be t2). Also, in the range shown in the figure, the beam projected by the projection lens (110) is drawn to converge, but this beam once converges near the spring /L'(140') (not shown). After that, it expands again to cover the focus detection area over a wide distance range.

第15図は第2実施例の第2の変形例における第2投射
光学系を示したもので、投射光軸(138)に対してバ
ネ/l/(140“)が図の如く傾斜して設けられてp
D、しかもバネ/L/(140”)に形成されたプリズ
ム(142” ”)は半径Rのンリンドリカルに凹んだ
曲面をもっている。このプリズム(142”)は曲面が
シリンドリカルに凹んでいるために、これを通過する投
射光束は図の如く発散するが、その光束の強度は図で上
側根強く、下側程弱い。したがって、この投射光束が焦
点検出エリアを包含する距離範囲では、近距離程弱い照
明が与えられ、遠距離根強い照明が与えられるから、照
明効率が向上する。
FIG. 15 shows the second projection optical system in the second modification of the second embodiment, in which the spring /l/(140'') is inclined as shown in the figure with respect to the projection optical axis (138). provided p
D, and the prism (142'') formed on the spring /L/(140'') has a cylindrical concave curved surface with a radius R. Since this prism (142'') has a cylindrical concave curved surface, The projected light flux passing through this diverges as shown in the figure, but the intensity of the light flux is strong in the upper part of the figure and weaker in the lower part. Therefore, in the distance range in which the projected light flux includes the focus detection area, weaker illumination is provided at closer distances, and stronger illumination is provided at longer distances, so that illumination efficiency is improved.

ここで、照明効率をさらに向上させるには、シリンドリ
カμで断面が非球面形状に凹んだプリズムをプリズム(
142”)の代わりに形成すればよい。なお、このよう
なプリズム(142“)は後述する縦縞のストライプか
ら成る投射パターンの投影に対しては何ら障害とならな
い。
Here, in order to further improve the illumination efficiency, a prism (
142''). Note that such a prism (142'') does not interfere with the projection of a projection pattern consisting of vertical stripes, which will be described later.

第16図はこの発明の第3実施例を示す。この実施例の
場合、第1、第2、第3の投射光学系が設けられている
が、これらの投射光学系の光源である発光装置(207
)は共用され1つである。又、投影フィルムパターン(
212)も第1.第2、第3の投射光学系に共用されて
いるため、第1、第2実施例のように、2つの投影フィ
ルムパターンの位置合わせの必要がない。図において、
(209) (210)(211)はそれぞれ第1、第
2、第3の投射光学系に属する投射レンズで互に垂直方
向に重ねて配置されている。(242) (243)は
それぞれ第1、第3の投射光学系に属するプリズムであ
る。これらのプリズムは第15図に示したと同様のシリ
ンドリカルに凹んだ断面が球状乃至は非球面状の曲面を
もつようにしても良い。仁の実施例では、投射レンズ(
209) (210) (211)によって発光装置(
207)の球状集光部(207a)からの光束が第1、
第2、第3の投射光束に分割されて投射され、このうち
第1、第3の投射光束は次にプリズム(242) (2
43) Kよって投射レンズ(210)の投射光軸と平
行に近づく方向に屈折させられる。これにより、第1、
第2、第3の投射光束は、第17図に示したように、そ
れぞれ遠距離域、中距離域、近距離域を照明する。ここ
で、第1、第2、第3の投射光束の広がり角度をそれぞ
れα1.α2.α3とした場合、投射レンズ(209)
 (210) (211)の焦点距離を互に異ならせる
ことによって、αlくα2くα3とすれば、照明効率が
向上する。
FIG. 16 shows a third embodiment of the invention. In the case of this embodiment, first, second, and third projection optical systems are provided, but the light emitting device (207
) is shared and is one. In addition, the projection film pattern (
212) is also the first. Since it is shared by the second and third projection optical systems, there is no need to align the two projection film patterns as in the first and second embodiments. In the figure,
(209), (210), and (211) are projection lenses belonging to the first, second, and third projection optical systems, respectively, and are arranged to overlap each other in the vertical direction. (242) and (243) are prisms belonging to the first and third projection optical systems, respectively. These prisms may have a cylindrical concave cross section having a spherical or aspherical curved surface similar to that shown in FIG. In Jin's example, the projection lens (
209) (210) (211) makes the light emitting device (
The luminous flux from the spherical condensing part (207a) of 207) is the first,
It is divided into second and third projection light beams and projected, and among these, the first and third projection light beams are then passed through the prism (242) (2
43) K causes the beam to be refracted in a direction that approaches parallel to the projection optical axis of the projection lens (210). As a result, the first
As shown in FIG. 17, the second and third projection light beams illuminate a long distance area, a middle distance area, and a short distance area, respectively. Here, the spread angles of the first, second, and third projected light beams are set to α1. α2. When α3 is used, projection lens (209)
By making the focal lengths of (210) and (211) different from each other, i.e., α1, α2, and α3, the illumination efficiency can be improved.

以上で図示したこの発明の実施例について一通シ説明し
たが、以上の説明では被写体を照明する投射光学系の光
源と投影パターンフィルムについては詳述しなかった。
Although the illustrated embodiments of the present invention have been explained in detail above, the light source of the projection optical system that illuminates the object and the projection pattern film have not been described in detail.

そこで、以下にこれらについて詳述する。Therefore, these will be explained in detail below.

先に、照明装置からの補助照明光を用いた焦点検出シス
テムの実用化に際しては検討すべき課題が種々存在し、
その1つが近距離から遠距離までの被写体に対する照明
効率の向上であることを述べたが、この他検討すべき課
題としては、さらに補助照明光源と補助照明光の波長の
選択の問題及び投影パターンの選択の問題がある。補助
照明光源及び補助照明光の波長の問題から述べると、光
源としては電力消費が少ないものが望ましく、現在では
発光ダイオードが最適であるが、発光ダイオードを焦点
検出用の補助照明光源とする場合、電気エネルギーを光
エネルギーに変換する効率、人間の目に対する照明の刺
激の度合、撮影レンズの色収差に対する影響の大きさを
考慮する必要がある。ここで、電気エネルギーを光エネ
ルギーに変換する効率は発光ダイオードの場合それが発
する光の波長に依存し、波長が長い程高くなるのが普通
である。一方、人間の目に対する刺激の度合が大きけれ
ば人間が被写体である場合に照明光をその顔に投射する
と眩しくて目っぷりを起こし、目を閉じた状態で撮影さ
れてしまうという欠点が生じるが、例えば第18図(縦
軸は対数値)K例を示したように、この刺激の度合も波
長に依存し、可視光域の中心付近から赤外域にかけては
波長が長くなる程小さくなる傾向があり、例えば700
参では55Q 41m−に対し約V1oの刺激となる。
First, there are various issues that need to be considered when implementing a focus detection system that uses auxiliary illumination light from a lighting device.
One of these is the improvement of illumination efficiency for subjects from near to far distances, but other issues that should be considered include the selection of the auxiliary illumination light source and the wavelength of the auxiliary illumination light, and the projection pattern. There is a problem of selection. Considering the issue of the auxiliary illumination light source and the wavelength of the auxiliary illumination light, it is desirable to have a light source with low power consumption, and currently a light emitting diode is optimal, but when using a light emitting diode as an auxiliary illumination light source for focus detection, It is necessary to consider the efficiency of converting electrical energy into optical energy, the degree of stimulation of the illumination to the human eye, and the magnitude of the influence of the photographic lens on chromatic aberration. Here, in the case of a light-emitting diode, the efficiency of converting electrical energy into light energy depends on the wavelength of the light emitted by the light-emitting diode, and generally increases as the wavelength becomes longer. On the other hand, if the degree of stimulation to the human eye is large, if the human subject is the subject and the illumination light is projected onto his or her face, it will be dazzling and cause the eyes to bulge, resulting in the disadvantage that the photograph will be taken with the eyes closed. For example, as shown in the example K in Figure 18 (vertical axis is logarithmic value), the degree of stimulation also depends on the wavelength, and tends to decrease as the wavelength increases from near the center of the visible light region to the infrared region. , for example 700
For example, the stimulation is about V1o for 55Q 41m-.

このように見れば、いわゆる赤外光を焦点検出用の補助
光照明として用いることが望ましいことになるが、赤外
光の場合、今度は撮影レンズの色収差に対する影響が大
きくなり過ぎ、撮影レンズの焦点距離やレンズ繰出し位
置の変化によっても大きく変化するため、可視光との間
の色収差量の違いについて補正を正確に行うことがむづ
かしくなる。このため、焦点検出用の補助照明光源とし
ては、約LPL#! 7QQ#程度の略単波長の光を発する発光ダイオ−・ド
を用いるのが総合的に最も適していると言える。
Viewed in this way, it is desirable to use so-called infrared light as auxiliary illumination for focus detection, but in the case of infrared light, the effect on the chromatic aberration of the photographic lens is too large, and the Since it changes greatly depending on changes in focal length and lens extension position, it is difficult to accurately correct the difference in the amount of chromatic aberration between visible light and visible light. Therefore, as an auxiliary illumination light source for focus detection, approximately LPL#! Overall, it can be said that it is most suitable to use a light emitting diode that emits light with a substantially single wavelength of approximately 7QQ#.

ところが、光源を発光ダイオードとする場合、もう1つ
の問題がある。それは、受光素子の感度は約3B64B
から780−の範囲に広がっているのに対し、発光ダイ
オードが発する光は単色光に近く普通59#程度の広が
りしかもたず、被写体が自然光や蛍光灯で照明されてい
る場合と発光ダイオードからの光で照明されている場合
とでは受光素子で見た場合の被写体のコントラストに差
が生じることが多い。すなわち、はとんどの物体ではそ
れを照明する光の波長が長くなる程反射率が大きくなる
傾向があり、一般には7QQe付近の光に対しては色の
着根にはコントラストの差がなくなってしまうため、受
光素子で見て、自然光照明下ではコントラストが高くな
る物体であっても発光ダイオードによる照明下ではコン
トラストが低くなることが少なくない。第19図は、緑
、グルーグレー、白の物体の分光反射率を一例として示
したもので、7QQs+p付近の光に対しては可視光域
の中心である500〜600轡の光に対するよりも緑の
物体とブルーグレーの物体の反射率差が小さくなってい
る。補助光照明によって被写体のコントラストがこのよ
うに低くなると、T、T、 L焦点検出装置では一般に
焦点検出精度が悪化し、極端には焦点検出不能となるこ
ともあって、補助光照明を用いる意味がなくなってしま
う。すなわち、被写体にコントラストがない場合、上述
の位相差方式のjT、T、 L焦点検出装置の場合も再
結像した2つの像の一致点の検出が困難となることから
、この問題を放置すると致命的欠点となる。
However, when using a light emitting diode as a light source, there is another problem. The sensitivity of the light receiving element is approximately 3B64B.
On the other hand, the light emitted by a light-emitting diode is close to monochromatic light and usually only has a spread of about 59mm. There is often a difference in the contrast of an object when viewed through a light-receiving element compared to when it is illuminated with light. In other words, for most objects, the reflectance tends to increase as the wavelength of the light illuminating it increases, and in general, for light around 7QQe, there is no difference in contrast in coloration. Therefore, even if an object has a high contrast under natural light illumination when viewed through a light receiving element, the contrast often decreases under light emitting diode illumination. Figure 19 shows the spectral reflectance of green, glue gray, and white objects as an example, and shows that for light around 7QQs+p, it is greener than for light in the 500 to 600 range, which is the center of the visible light range. The difference in reflectance between the object and the blue-gray object is small. When the contrast of the subject is reduced by fill-in illumination, the focus detection accuracy of T, T, and L focus detection devices generally deteriorates, and in extreme cases, it may become impossible to detect focus, so there is no point in using fill-in illumination. will be gone. In other words, if there is no contrast in the subject, it will be difficult to detect a matching point between the two re-formed images even with the above-mentioned phase difference type jT, T, L focus detection device, so if this problem is left unaddressed, This is a fatal flaw.

上述した各実施例では、以上の問題を解決するために、
発光装置(7) (8) (107) (108) (
207)には700鶴程度の略単波長の光を発する発光
ダイオードを内蔵させると共に(そのような発光ダイオ
ードとしては、最近光ファイバー通信用琳光源として開
発されたGaAIHAsタイグの発光ダイオードが現在
では最適である)、投射レンズ(9) (10) (1
09)(110) (209)の焦点位置には投影パタ
ーンフィルム(11) (12) (111) (11
2) (211)を配設した。
In each of the embodiments described above, in order to solve the above problems,
Light emitting device (7) (8) (107) (108) (
207) has a built-in light emitting diode that emits light of approximately a single wavelength of about 700 Tsuru (currently, the most suitable such light emitting diode is the GaAIHAs Taigu light emitting diode, which was recently developed as a light source for optical fiber communication. ), projection lens (9) (10) (1
At the focal position of 09) (110) (209) there is a projection pattern film (11) (12) (111) (11
2) (211) was installed.

第21図は上記実施例に用い−られる投影パターンフィ
A/ ム(11) (12)の−例を示す。このフィル
ムは縦縞のストライプから成る投影パターンを備えてお
)、図で斜線の部分が不透明部、残りの部分が透明部で
ある。不透明部の幅をp、透明部の幅をqとすると、p
及びqはそれぞれの不透明部及び透明部で互に異なって
お9、繰返し周期(p+q )も全く不規則である。こ
のフィルムは、例えハ第4図に示したように投射レンズ
(9) (10)の一方の焦点位置の近くにそれぞれ投
影パターンフィルム(11) (12)として配設され
ており、投射レンズ(9)(10,)はそれの投影パタ
ーンの像を被写体上に投影し、上述のように略単波長の
発光ダイオードからの光での照明により被写体上のコン
トラストが小さくなっても、その被写体上に投影パター
ン像によるコントラストを作り出す。このようにして作
り出されたコントラストによってT、 T、 L焦点検
出装置において焦点検出が困難乃至は不能となる問題が
解決され、焦点検出が可能となる。なお、フィルム(1
1) (12)は投射レンズ(9) (10)の一方の
焦点位置の近くにあるため、投影パターンの像は第4図
のLの距離の位置で最も鮮鋭になって、互に完全に重な
り合う。
FIG. 21 shows examples of projection pattern films (11) (12) used in the above embodiments. This film has a projection pattern consisting of vertical stripes), with the hatched area being the opaque area and the remaining area being transparent. If the width of the opaque part is p and the width of the transparent part is q, then p
and q are different from each other in each opaque part and transparent part9, and the repetition period (p+q) is also completely irregular. These films, as shown in FIG. 9) (10,) projects the image of its projection pattern onto the subject, and as mentioned above, even if the contrast on the subject becomes small due to the illumination with light from the light emitting diode of approximately single wavelength, the image of the projection pattern on the subject is Create contrast using the projected pattern image. The contrast created in this manner solves the problem in which focus detection is difficult or impossible in T, T, and L focus detection devices, and makes focus detection possible. In addition, film (1
1) Since (12) is close to the focal point of one of the projection lenses (9) and (10), the images of the projection pattern become sharpest at the distance L in Figure 4 and completely overlap each other. overlap.

ところで、上述のフィルムの投影パターンの不透明部の
幅は、焦点検出装置における焦点検出用受光素子、例え
ばCCDの一画素分の幅を考慮し次のようにして決める
Incidentally, the width of the opaque portion of the projection pattern of the film mentioned above is determined as follows, taking into consideration the width of one pixel of a focus detection light receiving element, for example, a CCD, in a focus detection device.

第22図は、無地の被写体に投影された一本の不透明部
から成る投影パターンの像を焦点検出面から視野枠と共
に見た場合の図を示したもので、第3図の光学系で言え
ば、面(30)上に配設される受光素子面に再結像され
る2つの投影パターン像のうちの一方を視野枠(26)
の像である焦点検出エリア(E)と共に示した図である
。図において、Xは焦点検出用受光素子、例えばCCD
のlセル部分の幅であり、hは受光素子上に再結像され
た投影パターン像の幅である。今、x ) hであれば
、投影パターン像が形成されたセルの信号出力が弱くな
るのみならず、その投影像が1セル内で移動しても、受
光素子出力全体としては変化せず、したがって投影パタ
ーン像の受光素子上での位置を正しく検出できない。こ
れに対し、X≦hであればこのような問題は起こらない
が、”余りにhがXに対して大きいと、焦点検出エリア
全体が投影パターン像で占められる恐れも生じ、好まし
くない。実際問題としては、さらに撮影レンズの収差や
焦点調節状態に応じた受光素子面上での投影パターン像
のぼけ等が投影パターン像の幅h″f、広げ、受光素子
における隣接するセル間の出力差を小さくして2つの投
影パターン像の一致検出をむづかしくするために、合焦
状態でhを3h≧X≧h/2程度の範囲に収め、常に焦
点検出エリア内に複数の投影パターン像が形成されるよ
うにすると比較的好ましい結果が得られる。但し、焦点
検出面上での投影パターン像の幅りは、撮影レンズの画
角、例えばカメラCC’)に装着される交換レンズ(E
)の種類によって異な9、標準レンズの場合と比べ広角
レンズの場合は狭くなるのに対し望遠レンズの場合は広
くなるが、使用を予定する交換レンズの画角のすべてに
対し、上述の条件を満足するように配慮するのが好まし
い。一方、投影パターンに同一幅の不透明部を複数個設
けると、第3図に示した位相差方式の焦点検出装置の場
合、再結像レンズ(21)(22)により形成される2
つの投影パターン像の一致が複数組検出されるようにな
り、焦点検出を誤まることになる。又、広角レンズでは
焦点検出エリアが相対的に広くなり、投影パターンに同
じパターンの繰返しが存在するとそれらが焦点検出エリ
ア内に共に収まり、上記と同様焦点検出を誤まる原因と
なる。したがって、上述の投影パターンフィルムの投影
パターンでは、不透明部の幅pだけでなく、不透明部と
透明部の繰返し周期(p+q )も完全に不規則に配列
している。このようにして、上述の投影パターンフィル
ムにおける不透明部の幅及び配列が決められるが、照明
装置(S)がカメラ(C)に上述実施例の如く機械的結
合手段により結合される場合、不透明部の本数は、その
結合のガタによるふれ角aの余裕をみて、照明装置(S
)をカメラ(C)に固設するときのように結合ガタを考
慮しなくても良い場合よシも多くするのが適当である。
Figure 22 shows an image of a projection pattern consisting of a single opaque area projected onto a plain object, viewed from the focus detection plane together with the field frame. For example, one of the two projected pattern images re-imaged on the light-receiving element surface disposed on the surface (30) is displayed in the field frame (26).
It is a diagram shown together with the focus detection area (E) which is an image of the image. In the figure, X is a focus detection light receiving element, such as a CCD.
h is the width of the l cell portion of , and h is the width of the projected pattern image re-imaged on the light receiving element. Now, if x ) h, not only will the signal output of the cell where the projected pattern image is formed become weak, but even if the projected image moves within one cell, the overall output of the light receiving element will not change. Therefore, the position of the projected pattern image on the light receiving element cannot be detected correctly. On the other hand, if X≦h, such a problem will not occur, but if h is too large relative to X, there is a risk that the entire focus detection area will be occupied by the projected pattern image, which is undesirable. In addition, aberrations of the photographing lens and blurring of the projected pattern image on the light receiving element surface according to the focus adjustment state expand the width of the projected pattern image by h''f, and increase the output difference between adjacent cells in the light receiving element. In order to make it smaller and make it difficult to detect coincidence between two projection pattern images, h is kept in the range of 3h≧X≧h/2 in the focused state, and multiple projection pattern images are always within the focus detection area. Relatively favorable results can be obtained by allowing the formation of However, the width of the projected pattern image on the focus detection plane depends on the angle of view of the photographing lens, for example, the interchangeable lens (E
9. Compared to standard lenses, wide-angle lenses are narrower while telephoto lenses are wider, but the above conditions must be met for all angles of view of the interchangeable lenses you plan to use. It is preferable to take care to ensure that they are satisfied. On the other hand, if a plurality of opaque parts with the same width are provided in the projection pattern, in the case of the phase difference type focus detection device shown in FIG.
A plurality of sets of matching projection pattern images are detected, leading to incorrect focus detection. Further, in a wide-angle lens, the focus detection area is relatively large, and if the same pattern is repeated in the projection pattern, they will fit together within the focus detection area, causing focus detection errors as described above. Therefore, in the projection pattern of the projection pattern film described above, not only the width p of the opaque part but also the repetition period (p+q) of the opaque part and the transparent part are arranged completely irregularly. In this way, the width and arrangement of the opaque parts in the projection pattern film described above are determined. However, when the illumination device (S) is coupled to the camera (C) by mechanical coupling means as in the above embodiment, the opaque parts The number of lights in the lighting device (S
) in the camera (C), where there is no need to consider connection play, it is appropriate to increase the number of holes.

なお、第20図の投影パターンフィルムにおける投影パ
ターンの場合、幅の狭い不透明部は比較的狭い間隔で配
列し、幅の広い不透明部は比較的広い間隔で配列しであ
る。これにより、再結像レンズ(21) (22)によ
り形成される2像の一致検出が、望遠レンズのように焦
点検出エリアが相対的に狭くなる場合は幅の狭い不透明
部の投影像にもとづいて行われ、広角レンズのように焦
点検出エリアが相対的に広くなる場合は主として幅の広
い不透明部の投影像にもとづいて行われるようにするこ
とができ、撮影レンズの画角の相違の焦点検出性能に対
する影lPt−極力少なくすることができる。
In the case of the projection pattern in the projection pattern film of FIG. 20, the narrow opaque parts are arranged at relatively narrow intervals, and the wide opaque parts are arranged at relatively wide intervals. As a result, coincidence detection of the two images formed by the re-imaging lenses (21) and (22) is performed based on the projected image of the narrow opaque area when the focus detection area is relatively narrow, such as with a telephoto lens. When the focus detection area is relatively wide as in the case of a wide-angle lens, the detection can be performed mainly based on the projected image of a wide opaque area, and the focal point due to the difference in the angle of view of the photographic lens can be used. The influence on detection performance lPt can be minimized.

第22図は第20図の投影パターンフィルムの変形実施
例を示す。この変形実施例でも投影パターンの各不透明
部、透明部の幅p1qはそれぞれ互いに異なると共に、
周期(p+q)も不規則である。
FIG. 22 shows a modified embodiment of the projection pattern film of FIG. 20. Also in this modified embodiment, the width p1q of each opaque part and transparent part of the projection pattern is different from each other, and
The period (p+q) is also irregular.

なお、上述の2つの投影パターンフィルムにおいて、両
端の不透明部には張出し部(at) (alll) (
aa)が形成されているが、張出し部(al)は上下方
向に張出し部(a2) (aa)の中間の位置にあり、
これらの張出し部の投影像上用いることにより第11第
2の投射光学系中における投影パターンフィルムの位置
決めを行うことができる。
In addition, in the above-mentioned two projection pattern films, the opaque parts at both ends have overhanging parts (at) (all) (
aa) is formed, but the overhanging part (al) is located at a vertically intermediate position between the overhanging parts (a2) and (aa),
By using these projecting portions on the projected image, the projection pattern film can be positioned in the eleventh and second projection optical systems.

第23図は第1、第2の投射光学系中に投影パターンフ
ィルムを第4図の如く配置した場合におけるその投影パ
ターン像の重なり範囲を示す平面図である。説明を簡単
化するため、各々の投影パターンは、第24図に示すよ
うに、幅pの不透明部を水平方向に各々の投射レンズの
光軸中心からaだけ外側に離れた位置に一本だけ備えて
いるとする。
FIG. 23 is a plan view showing the overlapping range of projection pattern images when projection pattern films are arranged in the first and second projection optical systems as shown in FIG. To simplify the explanation, each projection pattern consists of a single opaque part with a width p at a position a distance outward from the optical axis center of each projection lens in the horizontal direction, as shown in FIG. Suppose you are prepared.

又、各投射レンズの焦点距離及び口径をそれぞれf及び
す、2つの投射レンズの光軸間の距離をD、2つのパタ
ーンの投影像が完全に合致する距離をLとする。今、距
離りの位置の前後での2つのパターンの投影像の重なり
度合を判断するために、両者の重なり領域が夫々の投影
像において1/2となる距離LMIN、 LMAX を
求めてみる。投射レンズ位置から投射レンズの光軸方向
と平行に前方に向けて座標xiとり、水平面上でX座標
に直方する方向に一方の投射レンズ光軸からy座標をと
ると、・・・・・・・・・(3) ・・・・・・・・・(4) 但し、b<Lであり、Ymaxe yminはそれぞれ
一方の投射レンズによる投影パターン光束の最も端の光
Me表わす。一方、投影パターン光束の中心の光線は、 y=−−x   ・・・・・・−・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・(5)で表わされる。ここで、2つの投影パターン
光束が互に半分以上型なる条件は、 X≧Lでは、 y+ymt。≧D・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・(6)xくLでは、  y+yア
、≧D ・・・・・・・・・・曲・・・・・・・・曲・
曲・曲・・・・・四(7)であるとすることができるか
ら、(2) (s> (6)式より、が得られる。
Further, let f be the focal length and aperture of each projection lens, D be the distance between the optical axes of the two projection lenses, and L be the distance at which the projected images of the two patterns perfectly match. Now, in order to determine the degree of overlap between the projected images of the two patterns before and after the position of the distance, the distances LMIN and LMAX at which the overlapping area of both patterns is 1/2 in each projected image are determined. Taking the coordinate xi from the projection lens position forward in parallel to the optical axis direction of the projection lens, and taking the y coordinate from the optical axis of one projection lens in the direction perpendicular to the X coordinate on the horizontal plane,... (3) (4) However, b<L, and Ymax and ymin each represent the endmost light Me of the projected pattern light flux by one of the projection lenses. On the other hand, the light ray at the center of the projected pattern light beam is y=−−x ・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
... is expressed as (5). Here, the condition that the two projection pattern light beams are more than half the size of each other is as follows: When X≧L, y+ymt. ≧D・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・(6) In xkuL, y+ya, ≧D ・・・・・・・・・Song・・・・・・・Song・
Since it can be assumed that music, music, etc. is 4 (7), (2) (s> (6) can be obtained from equation (6).

例えば、[、== 3m、  f == 181ff、
  l := Q、lfl、  b” 81jnll、
  D = 29sorとすると、(8) (9)式よ
F) LMA!= 5.1 Wl 、 LMIN = 
1.7 mとなり、DのみD=15jllfに変更すれ
ば、LMAX = 6.4 m 、 LMIN = 1
.4 Wlとなる。
For example, [, == 3m, f == 181ff,
l := Q, lfl, b” 81jnll,
If D = 29sor, then (8) and (9), F) LMA! = 5.1 Wl, LMIN =
1.7 m, and if only D is changed to D=15jllf, LMAX = 6.4 m, LMIN = 1
.. 4 Wl.

又、pのみ0.12mに変更すれば、LMAX = 6
.0 m 。
Also, if only p is changed to 0.12m, LMAX = 6
.. 0 m.

LMIN = 1.6 mとなる。これから、2つの投
射レンズ間の間隔Dt−小さくするか、投影パターン幅
δを大きくすれば、より広い範囲で2つの投影パターン
像の重なり度合全1フ2以上に保つことができることが
判る。
LMIN = 1.6 m. From this, it can be seen that by decreasing the distance Dt between the two projection lenses or increasing the projection pattern width δ, the degree of overlap between the two projection pattern images can be maintained at 1f2 or more over a wider range.

なお、2つの投影パターンの重なり度合が低くなると、
それだけ被写体上での投影パターン像のコントラストが
低くなり、焦点検出用受光素子面に再結像レンズにより
形成される2つの像の一致検出が困難となる。その一致
検出が実用上問題なく行える一つの目安が2つの投影パ
ターンの重なり度合が1/2以上であることであって、
この条件は遠距離側よりも近距離側で厳しい(距離りの
点を基準とした距離幅が遠距離側よシも近距離側で狭く
なる)。しかし、近距離側では、投射光束の強度が強く
、結果的には2つの投影パターン像の重なり度合が1/
2よりも小さい場合でも、被写体上での投影パターン像
のコントラストが比較的高く保たれる傾向にあるため、
実際には(9)式で与えられるLMINよりも近距離で
も焦点検出は可能である。
Note that when the degree of overlap between the two projection patterns decreases,
The contrast of the projected pattern image on the subject becomes correspondingly lower, and it becomes difficult to detect coincidence between the two images formed by the re-imaging lens on the surface of the focus detection light receiving element. One guideline for detecting the coincidence without any problems in practice is that the degree of overlap between the two projection patterns is 1/2 or more, and
This condition is stricter on the short distance side than on the long distance side (the range of distance based on the distance point is narrower on the short distance side than on the long distance side). However, on the short distance side, the intensity of the projected light beam is strong, and as a result, the degree of overlap between the two projected pattern images is 1/1.
Even if it is smaller than 2, the contrast of the projected pattern image on the subject tends to remain relatively high.
In fact, focus detection is possible even at a distance shorter than LMIN given by equation (9).

第25図(A) (B)は2つの投射レンズ間の距離り
を小さくすることでより遠距離まで2つの投影パターン
像の重なり度合を所定値以上に保つことができることに
鑑み、その距離Di小さくとることができるようにした
複合型の投射レンズの構成を示す。すなわち、この構成
では、1枚の合成樹脂製、 の透明板(300)上に2
つの投射レンズ(309) (310)が一体成形され
ているが、2つの投射レンズ(309)(310)は境
界(312)で互に接しており、その半径をrとすると
き、両者の間隔りはDく2rとなっている。
Figures 25(A) and 25(B) show that the distance Di This figure shows the structure of a compound projection lens that can be made small. That is, in this configuration, two sheets are placed on one transparent plate (300) made of synthetic resin.
Two projection lenses (309) (310) are integrally molded, but the two projection lenses (309) (310) touch each other at the boundary (312), and when the radius is r, the distance between them is ri is Dku2r.

以上、図示した実施例について説明したが、この発明は
上述の実施例に限られるものではない。
Although the illustrated embodiments have been described above, the present invention is not limited to the above-described embodiments.

例えば、上述の実施例の場合、照明装置(S)は閃光撮
影用の電子閃光装置として設けたが、電子閃光装置とは
別に照明装置(S) ?単独で設けても良い。又、照明
装置(S)はカメラのアクセサリ−シューだけでなく、
カメラに適尚な取付部を設けてそこに取付けるようにし
ても良く、さらにはカメラに固設しても良い。その場合
、カメラの撮影レンズに対する照明装置の位置は、焦点
検出エリアの伸長方向が一般には横方向と上下方向であ
ることから、撮影レンズの真上、真下又は真横であるこ
とが望ましいが、必ずしもこれに限る必要はない。
For example, in the case of the above embodiment, the illumination device (S) was provided as an electronic flash device for flash photography, but is the illumination device (S) separate from the electronic flash device? It may be provided alone. In addition, the lighting device (S) is not only an accessory shoe for the camera, but also a
The camera may be provided with a suitable mounting part and the mounting part may be mounted there, or it may be fixedly mounted on the camera. In that case, the position of the illumination device relative to the camera's photographic lens is preferably directly above, directly below, or to the side of the photographic lens, since the focus detection area generally extends in the horizontal and vertical directions. There is no need to limit it to this.

効  果 以上説明した通り、この発明の照明装置は、被写体が遠
距離にある場合はそれの上での焦点検出エリアを第1、
第2の投射光学系からの第1、第2の投射光束で共に照
明し、被写体が近距離にある場合は、それの上での焦点
検出エリアを第2投射光束だけ、あるいは第2投射光束
と第1投射光束の一部で照明するため、近距離から遠距
離までの被写体に対して焦点検出のための照明を効率良
く与えることができる。又、第1、第2の投射光学系は
照明装置に固設すれば良いから、上述の従来技術の欠点
もなく、T、T、L焦点検出装置を有するレンズ交換式
カメラの焦点検出用補助照明装置として最適である。
Effects As explained above, in the lighting device of the present invention, when the subject is far away, the focus detection area on the subject is set as the first focus detection area.
If the object is illuminated with both the first and second projection light beams from the second projection optical system, and the subject is at a short distance, the focus detection area on it is illuminated with only the second projection light beam or the second projection light beam. Since the illumination is performed using a part of the first projection light beam, it is possible to efficiently provide illumination for focus detection to objects from short distances to long distances. Furthermore, since the first and second projection optical systems need only be fixedly installed in the illumination device, there is no drawback of the prior art described above, and the focus detection aid for a lens-interchangeable camera having T, T, and L focus detection devices is eliminated. Ideal as a lighting device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1実施例の照明装置を用いた焦点
検出ンヌテム全体の概略図、第2図は第】図の焦点検出
システムにおける焦点検出光学系を示す図、第3図は第
2図の焦点検出光学系による焦点検出原理を示す光学系
展開図、第4図は第1実施例の照明装置における第1、
第2投射光学系の平面図、第5図及び第6図は第4図の
第1、第2の投射光学系からの投射光束と焦点検出エリ
アとの関係上水す平面図及び側面図、第7図は投射光軸
が撮影レンズ光軸に対してなす角度と照明可能距離範囲
との関係を表わすグラフ、第8図(A) (B)はそれ
ぞれ1m、5mの距離での第1、第2の投射光学系から
の投射光束の重なり状態及びそれらと焦点検出エリアと
の関係を示す図、第9図はこの発明の第2実施例におけ
る照明装置の第1、第2の投射光学系の斜視図、第10
図は第9図の第2投射光学系の側面図、第11図及び第
12図は第9図の第1、第2の投射光学系からの投射光
束と焦点検出エリアとの関係を示す平面図と側面図、第
13図は第2実施例において2mの位置での第1、第2
の投射光学系からの投射光束の重なり状態及びそれらと
焦点検出エリアとの関係を示す図、第14図、第15図
はそれぞれ第2実施例の第1、第2の変形例における第
2投射光学系の側面図、第16第18図は相対照度(目
に対する刺激)と波長の関係を示す図、第19図は緑、
グルーグレー、白の物体の分光反射率を示す図、第20
図は投影パターンフィルムの一例を示す平面図、第21
図は無地の婆。 写体に投影された一本の不透明部から成る投影パターン
像を焦点検出面から視野枠と共に見た場合の図、第22
図は投影パターンフィルムの他の例を示す平面図、第2
3図は第1、第2の投射光学系中に投影パターンフィル
ムを第4図の如く配置した場合における2つの投影パタ
ーン像の重なり範囲を示す図、第24図は第23図での
投射レンズ光軸に対する投影パターンの位置関係を示す
図、第25図(A) (B)は複合型投射レンズとして
一体形成した第1、第2の投射レンズの平面図と側面図
である。 の投射光学系、(8) (8a) (10) (12)
 i (108) (108a)(110) (112
) i (108) (108a) (110) (1
12) (142) 1(108) (108a) (
110) (112) (142’) ; (108)
 (108a)(110) (112) (142”)
 i (207) (210) (212)・・・第2
の投射光学系、(2) (4)・・・機械的結合手段、
(E)・・・焦点検出エリア、(S)・・・照明装置、
(C)・・・カメラ、(F)・・・焦点検出装置。 第3図 第4図 第5図 第6図 第3図 (パノ (B) 第9図 第10図 第11図 114t2図 第24図 r 第t5図 り よυ
FIG. 1 is a schematic diagram of the entire focus detection system using the illumination device according to the first embodiment of the present invention, FIG. 2 is a diagram showing the focus detection optical system in the focus detection system of FIG. FIG. 2 is a developed view of the optical system showing the principle of focus detection by the focus detection optical system, and FIG.
A plan view of the second projection optical system, FIGS. 5 and 6 are a horizontal plan view and a side view based on the relationship between the projection light flux from the first and second projection optical systems and the focus detection area in FIG. 4, Figure 7 is a graph showing the relationship between the angle that the projection optical axis makes with respect to the optical axis of the photographing lens and the possible illumination distance range, and Figures 8 (A) and (B) are the first, A diagram showing the overlapping state of the projection light beams from the second projection optical system and the relationship between them and the focus detection area, FIG. 9 is a diagram showing the first and second projection optical systems of the illumination device in the second embodiment of the present invention. Perspective view of No. 10
The figure is a side view of the second projection optical system in FIG. 9, and FIGS. 11 and 12 are planes showing the relationship between the projection light fluxes from the first and second projection optical systems in FIG. 9 and the focus detection area. The figure and the side view, Fig. 13, show the first and second
14 and 15 are diagrams showing the overlapping state of the projected light beams from the projection optical system and the relationship between them and the focus detection area, respectively. Side view of the optical system, Figures 16 and 18 are diagrams showing the relationship between relative illuminance (stimulation to the eyes) and wavelength, Figure 19 is green,
Glue gray, diagram showing the spectral reflectance of a white object, No. 20
The figure is a plan view showing an example of a projection pattern film.
The illustration is of a plain old woman. FIG. 22 is a diagram showing a projected pattern image consisting of a single opaque portion projected onto an object, viewed from the focus detection plane together with the field frame.
The figure is a plan view showing another example of the projection pattern film.
Fig. 3 is a diagram showing the overlapping range of two projection pattern images when the projection pattern films are arranged in the first and second projection optical systems as shown in Fig. 4, and Fig. 24 shows the projection lens in Fig. 23. FIGS. 25(A) and 25(B), which show the positional relationship of the projection pattern with respect to the optical axis, are a plan view and a side view of the first and second projection lenses integrally formed as a composite projection lens. projection optical system, (8) (8a) (10) (12)
i (108) (108a) (110) (112
) i (108) (108a) (110) (1
12) (142) 1(108) (108a) (
110) (112) (142'); (108)
(108a) (110) (112) (142”)
i (207) (210) (212)...Second
projection optical system, (2) (4)... mechanical coupling means,
(E)... Focus detection area, (S)... Illumination device,
(C)...Camera, (F)...Focus detection device. Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 3 (Pano (B) Fig. 9 Fig. 10 Fig. 11 Fig. 114t2 Fig. 24 r Fig. t5

Claims (1)

【特許請求の範囲】 1、撮影レンズ光軸上に焦点検出エリアが設定されたT
.T.L焦点検出装置を有するカメラの照明装置におい
て、第1、第2の投射光学系を撮影レンズ光軸から第1
の所定方向に所定の基線長を隔てて配置し、少なくとも
この第1の所定方向に関しては、第2の投射光学系から
の第2の投射光束の広がり角度を第1の投射光学系から
の第1の投射光束の広がり角度よりも大きく設定して第
2の投射光束内に第1の投射光束を包含させ、かつ、第
1の所定方向と直交する第2の所定方向に関しては第1
、第2の投射光束を第1の所定距離以遠で互に重ならせ
ると共に、第1の所定距離よりも遠い第2の所定距離以
遠では第2の投射光束が上記焦点検出エリアの広がりを
包含し、かつ第2の所定距離よりも遠い第3の所定距離
以遠では第1の投射光束も上記焦点検出エリアの広がり
を包含するように構成したことを特徴とする照明装置。 2、第1、第2の投射光学系を配設した照明装置の本体
を上記カメラに対し機械的結合手段により着脱自在とし
たことを特徴とする特許請求の範囲第1項記載の照明装
置。 3、照明装置本体を機械的結合手段によりカメラに結合
したとき、上記第1、第2の投射光学系が撮影レンズ光
軸の上方に位置するように構成すると共に、上記第1、
第2の所定方向をそれぞれ垂直方向、水平方向としたこ
とを特徴とする特許請求の範囲第2項記載の照明装置。 4、上記第2の所定方向に関しても、上記第2の投射光
束の広がり角度を上記第1の投射光束の広がり角度より
も大きく設定したことを特徴とする特許請求の範囲第1
項乃至第3項のいずれかに記載の照明装置。
[Claims] 1. T with a focus detection area set on the optical axis of the photographing lens
.. T. In an illumination device for a camera having an L focus detection device, the first and second projection optical systems are arranged in the first direction from the optical axis of the photographing lens.
are arranged at a predetermined baseline length in a predetermined direction, and at least in this first predetermined direction, the spread angle of the second projection light beam from the second projection optical system is set to The spread angle of the first projected light flux is set to be larger than the spread angle of the first projected light flux so that the first projected light flux is included in the second projected light flux, and the second predetermined direction orthogonal to the first predetermined direction is
, the second projected light beams are overlapped with each other at a distance beyond the first predetermined distance, and at a distance beyond the second predetermined distance which is farther than the first predetermined distance, the second projection light beam covers the spread of the focus detection area. An illumination device characterized in that, furthermore, the first projected light beam is configured to include the spread of the focus detection area beyond a third predetermined distance that is farther than the second predetermined distance. 2. The illumination device according to claim 1, wherein the main body of the illumination device in which the first and second projection optical systems are arranged is detachable from the camera by mechanical coupling means. 3. When the illumination device main body is coupled to the camera by the mechanical coupling means, the first and second projection optical systems are configured to be located above the optical axis of the photographic lens, and
3. The lighting device according to claim 2, wherein the second predetermined directions are a vertical direction and a horizontal direction, respectively. 4. Also with respect to the second predetermined direction, the spread angle of the second projected light beam is set to be larger than the spread angle of the first projected light beam.
The illumination device according to any one of items 1 to 3.
JP59261194A 1984-12-11 1984-12-11 Focus detection device Expired - Lifetime JP2527159B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59261194A JP2527159B2 (en) 1984-12-11 1984-12-11 Focus detection device
US06/940,190 US4690538A (en) 1984-12-11 1986-12-09 Focus detection system and lighting device therefor
US07/085,088 US4803508A (en) 1984-12-11 1987-08-13 Focus detection system and lighting device therefor
US07/085,124 US4827301A (en) 1984-12-11 1987-08-13 Focus detection system and lighting device therefor
US07/300,237 US4926206A (en) 1984-12-11 1989-01-23 Focus detection system and lighting device therefor
US07/370,167 US4969004A (en) 1984-12-11 1989-06-21 Focus detection system and lighting device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59261194A JP2527159B2 (en) 1984-12-11 1984-12-11 Focus detection device

Publications (2)

Publication Number Publication Date
JPS61138222A true JPS61138222A (en) 1986-06-25
JP2527159B2 JP2527159B2 (en) 1996-08-21

Family

ID=17358447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59261194A Expired - Lifetime JP2527159B2 (en) 1984-12-11 1984-12-11 Focus detection device

Country Status (1)

Country Link
JP (1) JP2527159B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247312A (en) * 1986-04-21 1987-10-28 Canon Inc Floodlighting system for automatic focus detection
JPS6332508A (en) * 1986-07-25 1988-02-12 Canon Inc Projecting system for automatic focus detection
JPS63291041A (en) * 1987-05-23 1988-11-28 Minolta Camera Co Ltd Illumination device for detecting focus
US5771412A (en) * 1995-02-15 1998-06-23 Nikon Corporation Focus detection device and method using a projection pattern material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6329037B2 (en) 2014-09-11 2018-05-23 三星電子株式会社Samsung Electronics Co.,Ltd. Auxiliary light projector, imaging device, and focus adjustment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555805U (en) * 1978-10-12 1980-04-15
JPS5596406A (en) * 1979-01-19 1980-07-22 Hitachi Ltd Device for determining roughness of surface
JPS57118106A (en) * 1981-01-14 1982-07-22 Hitachi Ltd Measuring device for film thickness of thick film hybrid ic or the like
JPS58160908A (en) * 1982-03-19 1983-09-24 Canon Inc Optical device for focus detection
JPS6156312A (en) * 1984-08-28 1986-03-22 Canon Inc Automatic focusing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555805U (en) * 1978-10-12 1980-04-15
JPS5596406A (en) * 1979-01-19 1980-07-22 Hitachi Ltd Device for determining roughness of surface
JPS57118106A (en) * 1981-01-14 1982-07-22 Hitachi Ltd Measuring device for film thickness of thick film hybrid ic or the like
JPS58160908A (en) * 1982-03-19 1983-09-24 Canon Inc Optical device for focus detection
JPS6156312A (en) * 1984-08-28 1986-03-22 Canon Inc Automatic focusing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247312A (en) * 1986-04-21 1987-10-28 Canon Inc Floodlighting system for automatic focus detection
JPS6332508A (en) * 1986-07-25 1988-02-12 Canon Inc Projecting system for automatic focus detection
JPS63291041A (en) * 1987-05-23 1988-11-28 Minolta Camera Co Ltd Illumination device for detecting focus
JP2625722B2 (en) * 1987-05-23 1997-07-02 ミノルタ株式会社 Illumination device for focus detection
US5771412A (en) * 1995-02-15 1998-06-23 Nikon Corporation Focus detection device and method using a projection pattern material

Also Published As

Publication number Publication date
JP2527159B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
US4774539A (en) Camera having a focus detecting apparatus
US4803508A (en) Focus detection system and lighting device therefor
US5473403A (en) Camera having a multi-point focus detecting device
US20050265706A1 (en) Optical apparatus
JPH0498236A (en) Camera
US5608489A (en) Eye direction detecting device
JPS61138222A (en) Illuminating device of camera having t.t.l. focus detector
JP3091243B2 (en) Multi-point distance measuring device
US4549802A (en) Focus detection apparatus
US5850578A (en) Light-projecting system for automatic focus detection
US6718134B2 (en) AF auxiliary light projector for AF camera
US7692708B2 (en) Photometric apparatus
JP3586365B2 (en) Photometric device
JP3241868B2 (en) Illumination device for focus detection
US4827301A (en) Focus detection system and lighting device therefor
JP3228574B2 (en) camera
JPS63291042A (en) Projection pattern for detecting focus
JPH03107909A (en) Optical device provided with line of sight detector
JP2610236B2 (en) Auxiliary light device in focus detection device
JPS61295523A (en) Focus detector
JPS63229439A (en) Automatic focusing device
JPS61295520A (en) Focus detecting device
JPH0736060B2 (en) Auto-focusing light device
JPS58156910A (en) Detector for focusing state
JPH01232314A (en) Automatic focus detecting device for camera

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term