JPS61138058A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPS61138058A
JPS61138058A JP25921384A JP25921384A JPS61138058A JP S61138058 A JPS61138058 A JP S61138058A JP 25921384 A JP25921384 A JP 25921384A JP 25921384 A JP25921384 A JP 25921384A JP S61138058 A JPS61138058 A JP S61138058A
Authority
JP
Japan
Prior art keywords
refrigerant
heat pump
pump device
pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25921384A
Other languages
Japanese (ja)
Inventor
小山 由夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25921384A priority Critical patent/JPS61138058A/en
Publication of JPS61138058A publication Critical patent/JPS61138058A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は作動媒体として非共沸混合冷媒を用いるヒート
ポンプ装置に関する5 〔発明の技術的背景とその問題点〕 本発明に係ると一トポンプ装置に使用される非共沸混合
冷媒とは沸点の異なる2種類以上の媒体を混合させたも
ので、気相と液相の組成が異なり、一定圧力のもとて蒸
発、凝縮させた場合でも、その相変化過程で温度変化を
生じる冷媒である。従来、非共沸混合冷媒を用いたヒー
トポンプ装置くおいては圧縮機、凝縮器、膨張機構、蒸
発器t−巣純に連結したサイクルにおいて凝縮器と蒸発
器に関し、熱源となる被加熱流体及び被冷却流体と非共
沸混合冷媒とをそれぞれ対向流形式で熱交換させること
により、熱交換過程の不可逆損失を減少させ高効率化を
図ることが検討されている。その実施にあたっては被加
熱流体の温度上昇と非共沸混合冷媒の凝縮過程による温
度降下及び被冷却流体の温度降下と非共沸混合冷媒の蒸
発過程による温度上昇をできるだけ一致させることによ
って大きな効果を生じさせることができる。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a heat pump device using a non-azeotropic mixed refrigerant as a working medium. The non-azeotropic mixed refrigerant used is a mixture of two or more media with different boiling points, and the gas and liquid phases have different compositions, so even when evaporated or condensed under a constant pressure, the It is a refrigerant that causes temperature changes during the phase change process. Conventionally, in a heat pump device using a non-azeotropic mixed refrigerant, in a cycle connected to a compressor, a condenser, an expansion mechanism, and an evaporator, the condenser and evaporator are connected to a fluid to be heated that serves as a heat source; It is being considered to reduce irreversible loss in the heat exchange process and increase efficiency by exchanging heat between the fluid to be cooled and the non-azeotropic mixed refrigerant in a counter-flow format. In implementing this, a large effect can be achieved by matching as much as possible the temperature rise of the heated fluid and the temperature drop due to the condensation process of the non-azeotropic mixed refrigerant, and the temperature drop of the cooled fluid and the temperature rise due to the evaporation process of the non-azeotropic mixed refrigerant. can be caused.

しかしながら、ヒートポンプ装置にこのような非共沸混
合冷媒を使用した場合には装置から外部に冷媒が漏洩し
念時に装置内部の冷媒組成が変化して初期の状態とは異
なったものになり、それによって先に述べた蒸発、凝縮
の熱交換過程における不可逆損失の抑制効果が低下して
しまう恐れがあった。
However, when such a non-azeotropic mixed refrigerant is used in a heat pump device, the refrigerant leaks from the device to the outside, and the refrigerant composition inside the device changes and becomes different from its initial state. This may reduce the effect of suppressing irreversible loss in the heat exchange process of evaporation and condensation as described above.

この冷媒の漏洩による組成変化は装置のどの部分から?
1れたかによっても変わるものであるため、それを定量
的に検知するのがむずかしく、また外部からの補充によ
って漏洩前と同一の冷媒組成に戻そうとしても、混合冷
媒を構成する要素媒体のうちのどの媒体をどれだけ注入
すれば良いのかが全くわからないなど、技術的に極めて
困難な問題があった。
In what part of the equipment does the composition change due to this refrigerant leak occur?
It is difficult to quantitatively detect this because it changes depending on how much water is left in the refrigerant mixture.Also, even if you try to restore the refrigerant composition to the same as before the leak by replenishing it from outside, some of the elemental media that make up the mixed refrigerant There were extremely difficult technical problems, such as not knowing which medium and how much to inject into the patient's throat.

〔発明の目的〕[Purpose of the invention]

この発明は上記の問題点に鑑み創案されたもので、冷媒
が装置から漏洩した場合でも、その漏洩による冷媒の組
成変化を定量的に検出でき、しかも漏洩前と同一の組成
に戻すために外部から冷媒を補充する際に必要な冷媒注
入量の目安を知ることのできるヒートポンプ装置′f:
提供することを目的とする。
This invention was devised in view of the above problems, and even if refrigerant leaks from the device, it is possible to quantitatively detect changes in the composition of the refrigerant due to the leakage, and to restore the composition to the same composition as before the leakage. A heat pump device that allows you to know the approximate amount of refrigerant to be injected when replenishing refrigerant from:
The purpose is to provide.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明は非共沸混合冷媒を
用い、圧縮機、凝縮器、膨張機構、蒸発器を連結してな
るヒートポンプ装置において、装置内の温度と圧力を検
知する几めの温度検出部と圧力検出部を設ける構成とし
たヒートポンプ装置である。
In order to achieve the above object, the present invention provides a method for detecting the temperature and pressure inside the heat pump device using a non-azeotropic mixed refrigerant and connecting a compressor, a condenser, an expansion mechanism, and an evaporator. This is a heat pump device configured to include a temperature detection section and a pressure detection section.

〔発明の効果〕〔Effect of the invention〕

この発明の構成によれば冷媒が装置から外部に漏洩した
場合にもヒートポンプ装置内の冷媒の組成変化を検知す
ることができる。また、その非共沸混合冷媒の気液平衡
線図を用いることによって補充に必要な要素媒体の種類
と大体の注入量を知ることができる。これによって保守
性と信頼性の極めて高いヒートポンプ装置を実現できる
According to the configuration of the present invention, even if the refrigerant leaks from the device to the outside, a change in the composition of the refrigerant within the heat pump device can be detected. Further, by using the vapor-liquid equilibrium diagram of the non-azeotropic mixed refrigerant, it is possible to know the type of elemental medium required for replenishment and the approximate injection amount. This makes it possible to realize a heat pump device with extremely high maintainability and reliability.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例’t−第1図にもとすき説明する
Embodiments of the present invention will be described below with reference to FIG.

第1図は本発明の一実施例であるヒートポンプ装置を示
す図である5図中、1は圧縮機、2は凝縮器、3は膨張
機構、4は蒸発器である。圧縮機1で圧縮され念非共沸
混合冷媒5aは凝縮器2で高温熱源として外部に供給さ
れる被加熱流体6と対向流形式で熱交換され、高圧状態
で凝縮する。
FIG. 1 is a diagram showing a heat pump device according to an embodiment of the present invention. In FIG. 5, 1 is a compressor, 2 is a condenser, 3 is an expansion mechanism, and 4 is an evaporator. The non-azeotropic refrigerant mixture 5a compressed by the compressor 1 exchanges heat with the heated fluid 6 supplied to the outside as a high-temperature heat source in the condenser 2 in a counterflow manner, and is condensed in a high pressure state.

液化された非共沸混合冷媒液5bは膨張機構3で減圧さ
れて蒸発器4に流れ込む、ここで冷媒は工場の温排水な
どの低温熱源流体7と対向流形式で熱交換され、低圧状
態で蒸発し、圧縮機1へ供給される。
The liquefied non-azeotropic mixed refrigerant liquid 5b is depressurized by the expansion mechanism 3 and flows into the evaporator 4.Here, the refrigerant exchanges heat with a low-temperature heat source fluid 7 such as hot wastewater from a factory in a counterflow manner, and is in a low-pressure state. It is evaporated and supplied to the compressor 1.

第1図に示した本発明の一実施例であるヒートポンプ装
置が非共沸混合冷媒を用い念従来のヒートポンプ装置と
異なる点は装置内の温度と圧力を検出するための温度検
出部8と圧力検出部9が設置されている点にある。温度
と圧力の検出には精度のよい温度計と圧力計が使われる
。その2つの検出値から装置内冷媒の組成変化の度合と
補充に必要な要素冷媒の種類と必要注入量の目安を知る
ことができ、これによって保守性と信頼性に富んだヒー
トポンプ装置を実現できる。
The heat pump device, which is an embodiment of the present invention shown in FIG. This is where the detection unit 9 is installed. Accurate thermometers and pressure gauges are used to detect temperature and pressure. From these two detected values, it is possible to know the degree of change in the composition of the refrigerant in the device, the type of elemental refrigerant required for replenishment, and a guideline for the required injection amount, making it possible to realize a heat pump device with high maintainability and reliability. .

冷媒組成の変化の度合を知るためには、まず、装置を停
止させしばらく放置して装置中の冷媒が平衡状態になっ
たのを見はからって装置内の冷媒温度と圧力を測定する
。その検出値を評価する方法の一例としては次の方法が
ある。まず、温度検出値toヲ第2図示すような曳媒の
飽和圧力・温度の関係線図上用いて飽和圧力Psに換算
し、次に圧力検出値P′とその飽和圧力Pst−比較し
て差P’ −Psを求める。その差は冷媒組成の初期状
態からのずれを意味するものであシ、その差の絶対値が
あらかじめ設定した値を越えた場合に冷媒の補充を行な
うようにすればよい。ここで、第2図に示し念飽和圧力
・温度の関係線図はヒートポンプ装置の内容積、混合冷
媒f:、構成する要素冷媒の種類、冷媒の初期混合化、
初期光てん量によって決定されるものである。
In order to determine the degree of change in refrigerant composition, first stop the device, leave it for a while, wait until the refrigerant in the device reaches an equilibrium state, and then measure the refrigerant temperature and pressure inside the device. An example of a method for evaluating the detected value is as follows. First, the detected temperature value to is converted to a saturated pressure Ps using the relationship diagram of the saturated pressure and temperature of the propellant as shown in Figure 2, and then the detected pressure value P' and its saturated pressure Pst are compared. Find the difference P' - Ps. The difference means a deviation from the initial state of the refrigerant composition, and the refrigerant may be replenished when the absolute value of the difference exceeds a preset value. Here, the relationship diagram between saturation pressure and temperature shown in Fig. 2 shows the internal volume of the heat pump device, mixed refrigerant f:, types of component refrigerants, initial mixing of refrigerants,
It is determined by the initial amount of light.

では、次に冷媒を補充する際、補充に必要な要素媒体の
種類と注入量の目安を求める方法について2成分(Aと
B)からなる非共沸混合冷媒を例にとって説明する。第
3図はその混合冷媒の一定温度tmto Kおける気液
平衡関係を示す図である。
Next, when replenishing the refrigerant, a method for determining the type of elemental medium necessary for replenishment and the approximate injection amount will be explained using a non-azeotropic mixed refrigerant consisting of two components (A and B) as an example. FIG. 3 is a diagram showing the vapor-liquid equilibrium relationship of the mixed refrigerant at a constant temperature tmto K.

縦軸のPは圧力、横軸のXAはA成分の重量分率を意味
する。XA=O(B成分だけ)KおけるFB。
P on the vertical axis means pressure, and XA on the horizontal axis means the weight fraction of component A. FB at K where XA=O (B component only).

XA−1(A成分だけ)KおけるFAはそれぞれB成分
とA成分の温度toにおける飽和圧力であフ、図ではA
の方が飽和圧力が高い、つまりは蒸発しやすいようにな
っている5図にはXA =Q ; P=PB。
XA-1 (A component only) FA in K is the saturation pressure at the temperature to of the B component and A component, respectively, and in the figure A
In Figure 5, the saturation pressure is higher, which means it evaporates more easily.XA = Q; P = PB.

XA=1 ; P=FAの2点を通る2本の曲線が描か
れている。上の曲線は液相線とよばれ、下の曲線は気相
線と言う。平衡°状態では液相線よシ上の領域では混合
冷媒は液体のみ、また気相線よシ下の領域では蒸気しか
存在し得ない。両曲線の間の領域は液体・気体の共存領
域である。
Two curves passing through the two points of XA=1; P=FA are drawn. The upper curve is called the liquidus line, and the lower curve is called the vapor line. In an equilibrium state, only liquid can exist in the mixed refrigerant in the region above the liquidus line, and only vapor can exist in the region below the vapor phase line. The region between both curves is the coexistence region of liquid and gas.

さて、この線図を用いて冷媒の補充量の目安を知るには
次の手順に従って行なえばよい。第2図より温度t=t
oにおけるヒートポンプ装置の初期状態における飽和圧
力Psを求め、第3図においてその圧力Psで引いた水
平線が液相線および気相線と交わる点のXAの値を読む
。液相線との交点XA=XAL、気相線との交点XA=
wXAvであシ、その値はそれぞれ最初に冷媒を充てん
した時のヒートポンプ装置内の冷媒の液相および気相に
おける成分Aの重量分率(twtoにおける値)t−示
すものである5次に温度tmtoにおいて測定された圧
力検出値P′で引いた水平線が液相線、および気相線と
交わる点のXAO値を読む、液相線との交点はXA=X
A II ’ 、気相線との交点はXA=XAv ’で
あり、その値はその時点におけるヒートポンプ装置内の
冷媒の液相および気相における成分人の重量分率を示す
ものである。
Now, in order to find out the approximate amount of refrigerant replenishment using this diagram, follow the steps below. From Figure 2, temperature t=t
Find the saturation pressure Ps in the initial state of the heat pump device at point o, and read the value of XA at the point where the horizontal line drawn at that pressure Ps intersects the liquidus line and the gaseous phase line in FIG. Intersection with liquidus line XA=XAL, intersection with gaseous line XA=
wXAv, and its value is the weight fraction (value in twto) of component A in the liquid phase and gas phase of the refrigerant in the heat pump device when the refrigerant is first filled, respectively. Read the XAO value at the point where the horizontal line drawn by the detected pressure value P' measured at tmto intersects the liquidus line and the gas phase line.The intersection with the liquidus line is XA=X
A II ', the intersection with the gas phase line is XA=XAv', the value of which indicates the weight fraction of the component in the liquid phase and gas phase of the refrigerant in the heat pump device at that time.

もし、図のようにP’(PsであればXA IJ’< 
XA L。
If P' (Ps as shown in the figure), then XA IJ'<
XA L.

XAY’<XAvとなり、要素媒体AがBの媒体に比べ
て多量に漏洩したことがわかるOこの場合にはAの媒体
を追加注入して混合冷媒の組成を初期状態に復元しなけ
ればならないO逆に、 P”)PsであればXAL’>
XAL、 XAv’>XAvとなり、前述の場合とは逆
にBの要素媒体を追加注入する必要がある。
XAY'< Conversely, if P")Ps, then XAL'>
XAL, XAv'>XAv, and contrary to the above case, it is necessary to additionally inject the element medium of B.

さて、その追加注入量については冷媒の漏洩量が不明で
ある念め厳密にはわからないが、下記の式で求められる
ΔGA、ΔGBよりは少ない量で十分である。
Now, the amount of additional injection is not strictly known because the amount of refrigerant leakage is unknown, but it is sufficient that the amount is smaller than ΔGA and ΔGB calculated by the following equations.

P’(Psで要素□媒体人を注入する場合ΔGA=GB
 (XAL−XAL’ )+Gv(XAv−Xhv’ 
)P’)Psで要素媒体Bを注入する場合ΔGB=GL
(XAL’ −XAII)+GV (XAV’ −XA
v )ここで、GL、Gvはヒートポンプ装置に最初に
冷媒を、充てんした時の液相および気相の重量(温度t
=toにおける値)であり装置の内容積、冷媒の初期混
合比、初期光てん景から計算によって求められる値であ
る。
P' (When injecting element □ medium person in Ps, ΔGA=GB
(XAL-XAL')+Gv(XAv-Xhv'
)P') When injecting element medium B at Ps, ΔGB=GL
(XAL' -XAII)+GV (XAV' -XA
v) Here, GL and Gv are the weights of the liquid phase and gas phase (temperature t) when the heat pump device is first filled with refrigerant.
= value at to) and is a value calculated from the internal volume of the device, the initial mixing ratio of the refrigerant, and the initial light perspective.

しかしながら、上記のΔGA、ΔGBはあくまでも上限
値であるため実際の注入作業にあたってはΔGム。
However, since the above ΔGA and ΔGB are just upper limit values, the actual injection work requires ΔG.

ΔGBの数分の一程度の冷媒を装置内の圧力と温度を検
出しながら注入していく必要がある。その作業は先に説
明したPsとP′の値が一致し念時点で終了すればよい
It is necessary to inject a fraction of ΔGB of refrigerant while detecting the pressure and temperature inside the device. This work can be completed at the moment when the values of Ps and P' described above match.

以上詳細を述べたように本発明によれば冷媒が漏洩した
場合でも容易にもとの冷媒組成に戻すことができる念め
、信頼性の高いヒートポンプ装置を実現することが可能
となる。なお、本発明はヒートポンプ装置の他に、冷凍
機にも使用することができる。
As described in detail above, according to the present invention, even if the refrigerant leaks, the original refrigerant composition can be easily restored, making it possible to realize a highly reliable heat pump device. Note that the present invention can be used not only for heat pump devices but also for refrigerators.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係るヒートポンプ装置の摺成
図、第2図は本発明のヒートポンプ装置に使用される非
共沸混合冷媒の飽和圧力・温度の関係を示す図、第3図
は非共沸混合冷媒の等温気液平衡を示す線図である。 8・・温度検出部、9・・・圧力検出部。 代理人 弁理士 則近憲佑(ほか1名)第1図 3−叱馴槙 乙−□良木 4−菟免春  7−低逼外源嬶 F −−All劾都 ヲー圧力勧岬 第2図 a 1度を 第3図
Fig. 1 is a schematic diagram of a heat pump device according to an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between saturation pressure and temperature of a non-azeotropic mixed refrigerant used in the heat pump device of the present invention, and Fig. 3 is a diagram showing isothermal vapor-liquid equilibrium of a non-azeotropic mixed refrigerant. 8...Temperature detection section, 9...Pressure detection section. Agent Patent attorney Kensuke Norichika (and 1 other person) Fig. 1 3 - Shoju Maki Otsu - Yoshiki 4 - Umenshun 7 - Low-passage source F -- All Gai To - Pressure Kan Misaki No. 2 Figure a 1 degree Figure 3

Claims (1)

【特許請求の範囲】 非共沸混合冷媒を用い、圧縮機、凝縮器、膨張機構、蒸
発器を連結してなるヒートポンプ装置において、 前記ヒートポンプ装置内の温度と圧力を検出するための
温度検出部と圧力検出部とを設けたことを特徴とするヒ
ートポンプ装置。
[Scope of Claims] A heat pump device using a non-azeotropic mixed refrigerant and connecting a compressor, a condenser, an expansion mechanism, and an evaporator, comprising: a temperature detection unit for detecting temperature and pressure within the heat pump device. A heat pump device comprising: and a pressure detection section.
JP25921384A 1984-12-10 1984-12-10 Heat pump device Pending JPS61138058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25921384A JPS61138058A (en) 1984-12-10 1984-12-10 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25921384A JPS61138058A (en) 1984-12-10 1984-12-10 Heat pump device

Publications (1)

Publication Number Publication Date
JPS61138058A true JPS61138058A (en) 1986-06-25

Family

ID=17330964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25921384A Pending JPS61138058A (en) 1984-12-10 1984-12-10 Heat pump device

Country Status (1)

Country Link
JP (1) JPS61138058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410887A (en) * 1992-10-01 1995-05-02 Hitachi, Ltd. Apparatus for detecting composition of refrigerant and method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410887A (en) * 1992-10-01 1995-05-02 Hitachi, Ltd. Apparatus for detecting composition of refrigerant and method therefor

Similar Documents

Publication Publication Date Title
JP3185722B2 (en) Refrigeration air conditioner and method for determining refrigerant composition of refrigeration air conditioner
Eckels et al. In-tube Heat Transfer and Pressure Drop of HFC-134a and Ester Lubricant Mixtures in a Smooth Tube and a Micro-Fin Tube: Part I Evaporation
US7895846B2 (en) Oil circulation observer for HVAC systems
Targanski et al. Evaporation of R407C/oil mixtures inside corrugated and micro-fin tubes
He et al. Experimental study on the performance of a vapor injection high temperature heat pump
Ebisu et al. Experimental study on evaporation and condensation heat transfer enhancement for R-407C using herringbone heat transfer tube
EP3287719B1 (en) Refrigeration cycle device
Chiang et al. Temperature control scheme using hot-gas bypass for a machine tool oil cooler
CN107729600B (en) Evaporator simulation calculation method
JPS61138058A (en) Heat pump device
JPH0340297B2 (en)
JP2948105B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
Haberschill et al. Performance prediction of a refrigerating machine using R‐407C: the effect of the circulating composition on system performance
Dmitriyev et al. Determination of optimum refrigerant charge for domestic refrigerator units
JP2018185116A (en) Refrigeration cycle device
Zilly et al. Condensation of CO2 at low temperature inside horizontal microfinned tubes
Chen et al. Aim experimental study of the heat transfer performance of a rectangular two-phase natural circulation loop
Nguyen et al. The Effects of Mass Flow Rate on the Performance of a Microchannel Evaporator Using CO 2 Refrigerant
Cavallini et al. Experimental heat transfer coefficient and pressure drop during condensation of R22 and R407C inside a horizontal microfin tube
Peuker et al. Experimental and modeling investigation of two evaporator automotive air conditioning systems
RU1795239C (en) Method of determining reflecting capacity of refrigerating unit
Chen et al. Working Fluid Evaluation Criteria for Loop Gravity-assisted Heat Pipe
SU1241037A1 (en) Method of estimating cooling power of refrigerant compressor and rig for estimating cooling power
Uslu Experimental analysis of a refrigerant air dryer
Aprea et al. An experimental vapor compression plant for testing R502 “ozone-safe” alternative working fluids