JPS61138038A - Desiccant type air conditioning device - Google Patents
Desiccant type air conditioning deviceInfo
- Publication number
- JPS61138038A JPS61138038A JP26054484A JP26054484A JPS61138038A JP S61138038 A JPS61138038 A JP S61138038A JP 26054484 A JP26054484 A JP 26054484A JP 26054484 A JP26054484 A JP 26054484A JP S61138038 A JPS61138038 A JP S61138038A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- latent heat
- air
- moisture absorbent
- regeneration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/1411—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
- F24F3/1423—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1016—Rotary wheel combined with another type of cooling principle, e.g. compression cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1032—Desiccant wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1056—Rotary wheel comprising a reheater
- F24F2203/106—Electrical reheater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1068—Rotary wheel comprising one rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1084—Rotary wheel comprising two flow rotor segments
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Central Air Conditioning (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はビル、工場などの空気調和装置に関し、特に水
の潜熱を利用したデシカント式空気調和装置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to air conditioners for buildings, factories, etc., and more particularly to a desiccant type air conditioner that utilizes the latent heat of water.
従来技術とその問題点
近年、圧縮式あるいは吸収式空気調和装置にかわる新し
い空気調和システムとして、デシカント式空気調和装置
が開発されつつある。この装−り水の蒸発によシ空気中
の熱を奪い冷風を得るものであシ、室内空気はまず潜熱
交換器に送られる。BACKGROUND ART In recent years, desiccant air conditioners have been developed as a new air conditioning system to replace compression or absorption air conditioners. The evaporation of this charged water removes heat from the air to obtain cold air, and the indoor air is first sent to the latent heat exchanger.
潜熱交換器には例えば塩化リチウムなどの吸湿剤を含浸
した不織布をハニカム状あるいは層状に構成したフィル
ターが充填されており、室内空気は除湿され温度上昇す
る。潜熱交換器を出た空気は膠熱交換器によシ予冷され
、次いで加湿器によシ加湿冷却されて室内に循環する。The latent heat exchanger is filled with a filter made of a honeycomb or layered nonwoven fabric impregnated with a moisture absorbent such as lithium chloride, and indoor air is dehumidified and its temperature increases. The air exiting the latent heat exchanger is precooled by a glue heat exchanger, then humidified and cooled by a humidifier, and then circulated into the room.
一方、水分を吸i湿することKよジ飽和した吸湿剤は熱
風(再生用空気)によシ再生される。太陽熱を利用して
この再生用熱風を得ることができるため、デシカント式
空気調和装置社省エネルギー型冷房装置としての特徴を
有する。On the other hand, the hygroscopic agent, which is saturated by absorbing moisture, is regenerated by hot air (regeneration air). Since this hot air for regeneration can be obtained using solar heat, it has the characteristics of an energy-saving cooling device manufactured by Desiccant Air Conditioner.
しかしながら、従来の装置では成績係数(加湿冷却によ
る吸収熱量と吸湿剤の再生エネルギーと:1.。However, with conventional equipment, the coefficient of performance (absorbed heat due to humidification cooling and regenerated energy of the moisture absorbent: 1.
の比)が低い。例えば、塩化リチウムを吸湿剤として用
い九デシカント式空気調和装置の成績係数Fi0.4な
いし0.7と低い。このため太陽熱集熱器の規模が大き
くなプ、適用する地域は亜熱帯地方等の高温地域に限定
されているのが現状である。ratio) is low. For example, the coefficient of performance Fi of a nine-desiccant type air conditioner using lithium chloride as a moisture absorbent is as low as 0.4 to 0.7. For this reason, the current situation is that the scale of solar heat collectors is large, and their application is currently limited to high-temperature regions such as subtropical regions.
この種の装置は太陽熱を利用できるという41隊の他、
構造が単純であること、装置内各部の圧力は大気圧付近
であプ、装置を高圧仕様とする必要がないこと、7レオ
ン等の冷媒を用いないことなど従来の圧縮式冷房装置と
比較して多くの長所を有する。太陽熱集熱器の熱効率の
大幅な向上が望め々い現状においては、成績係数の飛躍
的に高いデシカント式空気調和装置の開発が望まれてい
る。In addition to the 41st unit, this type of device can utilize solar heat.
Compared to conventional compression type air conditioners, the structure is simple, the pressure in each part of the device is near atmospheric pressure, there is no need for the device to have high pressure specifications, and it does not use refrigerants such as 7 Leon. It has many advantages. In the current situation where there is great hope for a significant improvement in the thermal efficiency of solar heat collectors, there is a desire to develop a desiccant type air conditioner with a dramatically high coefficient of performance.
発明の目的
本発明は前記従来技術の欠点を解消するものであって、
成績係数が従来よりも飛躍的に高いデシカント式空気調
和装置を提供することを目的とする。OBJECTS OF THE INVENTION The present invention overcomes the drawbacks of the prior art, comprising:
The purpose of the present invention is to provide a desiccant air conditioner with a significantly higher coefficient of performance than conventional ones.
発明の要点
本発明は潜熱交換器、加湿器および再生用電源から構成
するデシカント式空気調和装置であって:a)室内空気
を潜熱交換器に通し、次いで加湿器を経て室内に供給す
る室内空気流路を配設し;
b)再生用空気を潜熱交換器に送って湿潤空気を排気す
る再生空気流路を配設し;
c)潜熱交換器には、非導電性担体に結晶水をもつこと
のできる吸湿性無機電解賞の吸湿材料を担持した吸湿剤
が充填されておシ;および
d)再生用電源と電気的に接続した電極が潜熱交換器内
に吸湿剤を隔てて配設されている;ことからなるデシカ
ント式空気調和装置である。Summary of the Invention The present invention is a desiccant air conditioner comprising a latent heat exchanger, a humidifier, and a regeneration power source, comprising: a) passing indoor air through the latent heat exchanger, then passing through a humidifier, and supplying the indoor air indoors; b) providing a regeneration air flow path for sending regeneration air to a latent heat exchanger and exhausting humid air; c) providing a latent heat exchanger with water of crystallization on a non-conductive carrier; d) An electrode electrically connected to a power source for regeneration is disposed in the latent heat exchanger with the moisture absorbent disposed therebetween. It is a desiccant type air conditioner consisting of;
本発明の好ましい実施態様 、以下、添付図面を参照しつつ本発明を詳細に述べる。Preferred embodiments of the invention Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
第1図は本発明に係る一部の一態様を示す概略構成図で
ある。室内空気および所望によシ全熱、交換器1によ1
顕熱および潜熱の一部が除去された外気を、潜熱交換a
2に送シ、水分を除去する。潜熱交換器2は後記する吸
湿剤が充填されておル、この吸湿剤轢流入空気中の水蒸
気を吸着する。潜熱交換器2を出た空気を加湿器に通し
て加湿冷却し、得られた供給用空気を室内に循環させる
。一方、水分を吸湿することKよジ飽和した吸湿剤は、
潜熱交換器の再生帯域において再生用電源4で印加され
た電圧により再生され、脱着した水分は再生用空気によ
シ伴送されて排気される。FIG. 1 is a schematic configuration diagram showing one aspect of the present invention. Room air and optionally total heat, by exchanger 1
The outside air from which some of the sensible heat and latent heat has been removed is used for latent heat exchange a
Transfer to Step 2 to remove moisture. The latent heat exchanger 2 is filled with a hygroscopic agent, which will be described later, and adsorbs water vapor in the air flowing into the hygroscopic agent. The air exiting the latent heat exchanger 2 is passed through a humidifier for humidification and cooling, and the resulting supply air is circulated indoors. On the other hand, a hygroscopic agent that is saturated with water,
In the regeneration zone of the latent heat exchanger, the water is regenerated by the voltage applied by the regeneration power source 4, and the desorbed moisture is entrained by the regeneration air and exhausted.
本発明に係る吸湿剤は、非導電性担体に吸湿材料を担持
したものである。担体は導電性であり又はならない。後
記するように本発明の装置において吸湿剤の再生を行う
場合、吸湿材料に通電することによシ結晶水の相転移が
行なわれ水分の脱着が行なわれる。担体が導電性である
と、再生時に担体にも電流が流れることKなルこの分だ
けエネルギー損失となるからである。この担体は多孔性
であることが好ましい。担体を多孔性とすることによシ
担体単位体積当シの表面積を増加することができ、担体
表面に被覆した吸湿材料と外気との接触効率を高めるこ
とができる。担体は無機材料あるいは有機材料であって
もよい。好ましい無機担体は例えばシリカ、アルミナ、
ガiス稙維・酸化鉄、マグネ7ア、ゼ第2イト、セラミ
ックス等である。好ましい有機担体はポリエチレン、ポ
リプロピレン、ポリスチレン、ポリエステル、ポリ塩化
ビニル、ポリウレタン等のプラスチック及び植物性繊維
である。最も好ましい担体はシリカである。従来、シリ
カ(シリカゲルとして)Fi吸湿材料として用いられて
きたが、本発明ではこれを担体として用いる。シリカゲ
ルが有する吸湿機能は本発明では利用しない。シリカは
非導電性であシ、多孔性であ夛また入手容易であること
等の観点から7リカを担体として用いるのである。活性
炭は導電性(電気抵抗2ないし3Ω・on/an2)
”るから、本発明の担体として用いることができない、
しかし、活性炭を他の材料との混合物の状態で担体とし
て用いてもよい。この場合に、担体全体としては非導電
性でなければならない。The hygroscopic agent according to the present invention has a hygroscopic material supported on a non-conductive carrier. The carrier may or may not be electrically conductive. As will be described later, when the moisture absorbent is regenerated in the apparatus of the present invention, electricity is applied to the moisture absorbing material to cause phase transition of crystalline water and desorption of moisture. This is because if the carrier is conductive, current will also flow through the carrier during regeneration, resulting in energy loss. Preferably, the carrier is porous. By making the carrier porous, the surface area per unit volume of the carrier can be increased, and the efficiency of contact between the hygroscopic material coated on the carrier surface and the outside air can be increased. The carrier may be an inorganic or organic material. Preferred inorganic carriers include silica, alumina,
These include gas fibers, iron oxide, magnetite, iron oxide, and ceramics. Preferred organic carriers are plastics such as polyethylene, polypropylene, polystyrene, polyester, polyvinyl chloride, polyurethane, and vegetable fibers. The most preferred carrier is silica. Conventionally, silica (as silica gel) has been used as an Fi hygroscopic material, but in the present invention, it is used as a carrier. The moisture absorbing function of silica gel is not utilized in the present invention. Silica is used as a carrier because it is non-conductive, porous, and easily available. Activated carbon is conductive (electrical resistance 2 to 3Ω・on/an2)
” Therefore, it cannot be used as a carrier in the present invention.
However, activated carbon may also be used as a carrier in a mixture with other materials. In this case, the carrier as a whole must be electrically non-conductive.
次に1本発明において用いる吸湿材料は結晶水をもつこ
とのできる吸湿性無機電解質である。本明細書くおいて
用語「結晶水をもつことのできる」とは、湿り空気と接
触することKよシ吸湿材料が結晶水のない状態から結晶
水が付加された状態に変わシ得ること、あるいは結晶水
の数が増加することを意味する。吸湿材料として例えば
、塩化マグネシウム、塩化カルシウム、塩化リチウム、
硫酸マグネ7クム、硫酸アルミニウム等である。これら
の吸湿材料を単独であるいは混合物として用いることが
できる。好適々吸湿材料は塩化マグネシウムであシ、こ
れは結晶水のない状態から6個の結晶水をもつ形態に転
移する。Next, the hygroscopic material used in the present invention is a hygroscopic inorganic electrolyte that can contain water of crystallization. In this specification, the term "capable of having water of crystallization" refers to the fact that upon contact with humid air, the hygroscopic material can change from a state without crystallized water to a state with added crystallized water, or This means that the number of crystallized water increases. Examples of moisture absorbing materials include magnesium chloride, calcium chloride, lithium chloride,
Magne 7cum sulfate, aluminum sulfate, etc. These moisture-absorbing materials can be used alone or as a mixture. The preferred hygroscopic material is magnesium chloride, which transitions from a state without water of crystallization to a form with 6 waters of crystallization.
担体に吸湿材料を担持させる方法として、浸漬法が好適
である。吸湿材料を溶媒に溶解させあるいは懸濁させた
溶液に担体を浸漬させる。担体にこの溶液が十分浸透し
た後、担体を取シ出して乾燥して溶媒を除く、担体表面
には吸湿材料が担持される。溶媒として水のほか有機溶
媒を用いてもよい。担体と吸湿材料との接着力を強固に
するため、ポリビニルアルコール等の接着剤をあらかじ
め溶液中に溶解させてもよい。溶液中の吸湿材料の濃度
、浸漬時間、浸漬温度等を変えることにより吸湿材料の
担持量を適宜設定できる。A dipping method is suitable as a method for supporting the hygroscopic material on the carrier. The carrier is immersed in a solution in which a hygroscopic material is dissolved or suspended in a solvent. After this solution has sufficiently penetrated into the carrier, the carrier is taken out and dried to remove the solvent, and the hygroscopic material is supported on the carrier surface. In addition to water, an organic solvent may be used as the solvent. In order to strengthen the adhesive force between the carrier and the hygroscopic material, an adhesive such as polyvinyl alcohol may be dissolved in advance in the solution. By changing the concentration of the hygroscopic material in the solution, the immersion time, the immersion temperature, etc., the supported amount of the hygroscopic material can be appropriately set.
以上のようKして調製された吸湿剤を室内空気と接触さ
せると、吸湿剤中の吸湿材料は空気中の水分を吸着する
。水分を吸湿することによル飽和した吸湿剤を通電処理
して再生する。本発明の再生においては、電極間隙に吸
湿剤を配設し、両電極に交流の高電圧を印加する。本明
細書において「高電圧」とは、電気分解法において適用
する電圧よシも高い電圧を意味する。電気分解による再
生においては、水の理論分解電圧L7Vおよび酸素およ
び水素両過電圧を考慮して約2ないし25Vの電圧を適
用する。本発明の再生においては、これよルも高い電圧
を電極に印加する。好ましい高電圧はIOないし600
Vであプ、さらに好ましくは30ないし220vである
。また、電流は交流が好ましい。電気分解法では直流を
適用するが、本発明において直流上用いると効率が低下
する。仁の交流は低周波数であシ、少なくとも60Hz
以下、好ましくは20H2以下である。交流高電圧をパ
ルス状で電極に印加すると再生効率が向上する。通電時
間は吸湿剤の種類、印加電圧等に依存する因子であシ、
概略数分間ないし数十分間である。電流値は本発明の再
生において重要な要素とならない。従来の電気分解法で
は電気量に比例して吸着水分が分解除去されるのである
から゛電流値は必然的に定められる。しかし、本発明K
においては吸着水分を電気分解するのではなく結晶水と
なった吸着水分を遊離の状態に転換するのであるから、
低電流であってもよい。電流を多く流すとその分だけ水
の加熱蒸発が生じ本発明においてはむしろエネルギー損
失となって再生効率が低下する。使用する電極材料は、
例えばグラファイト、ステンレス等である。When the hygroscopic agent prepared as described above is brought into contact with indoor air, the hygroscopic material in the hygroscopic agent adsorbs moisture in the air. The saturated moisture absorbent is regenerated by electricity treatment. In the regeneration of the present invention, a moisture absorbent is placed in the gap between the electrodes, and a high AC voltage is applied to both electrodes. As used herein, "high voltage" means a voltage higher than the voltage applied in electrolysis. In regeneration by electrolysis, a voltage of about 2 to 25 V is applied, taking into account the theoretical decomposition voltage of water L7V and both oxygen and hydrogen overpotentials. In the regeneration of the present invention, even higher voltages are applied to the electrodes. Preferred high voltage is IO to 600
V, more preferably 30 to 220V. Further, the current is preferably alternating current. Although direct current is applied in the electrolysis method, efficiency decreases when direct current is used in the present invention. AC power must be low frequency, at least 60Hz
It is preferably 20H2 or less. Regeneration efficiency is improved by applying a pulsed AC high voltage to the electrodes. The current application time depends on factors such as the type of moisture absorbent and the applied voltage.
Approximately several minutes to several tens of minutes. The current value is not an important factor in the reproduction of the present invention. In the conventional electrolysis method, adsorbed moisture is decomposed and removed in proportion to the amount of electricity, so the current value is necessarily determined. However, the present invention K
In this method, the adsorbed water is not electrolyzed, but the adsorbed water that has become crystallized water is converted into a free state.
It may be a low current. When a large amount of current is passed, water is heated and evaporated by that amount, and in the present invention, this results in an energy loss and a decrease in regeneration efficiency. The electrode material used is
For example, graphite, stainless steel, etc.
第2図は本発明の装置にて用いる潜熱交換器の一例を示
す図でちる。吸湿剤は特に拡大して描いている。吸湿剤
を湿シ空気に接触させると空気中の水分は吸湿剤の吸湿
材料22に吸着される。例えば吸湿材料22として無水
塩化マグネシウムを用いた場合、吸湿によりMIICI
12・6H2oとなる。充填した吸湿剤が水分を吸湿す
ることKよプ飽和した後、吸湿剤を通電処理して再生を
行う。所定の間隔で配置した電極24に交流電圧を再生
用電源4によシ印加しつつ、再生用空気21を吸湿剤に
供給する。吸湿材料に含まれていた結晶水は通電処理に
よシ遊離の水となシ再生用空気に伴送されて湿潤空気2
5として系外に排出される。本発明における再生原理は
必ずしも明らかではないが、担体23の表面に担持され
た吸湿材料のみが導電性であるからこの部分のみに電流
が流れ、特定の通電条件による作用により少ないエネル
ギーで結晶水に転移したものと考えられる。FIG. 2 is a diagram showing an example of a latent heat exchanger used in the apparatus of the present invention. The moisture absorbent is particularly enlarged. When the hygroscopic agent is brought into contact with humid air, moisture in the air is adsorbed by the hygroscopic material 22 of the hygroscopic agent. For example, when anhydrous magnesium chloride is used as the moisture absorbing material 22, MIICI increases due to moisture absorption.
It becomes 12.6H2o. After the filled hygroscopic agent absorbs moisture and becomes saturated, the hygroscopic agent is regenerated by being energized. Regeneration air 21 is supplied to the moisture absorbent while applying AC voltage from regeneration power source 4 to electrodes 24 arranged at predetermined intervals. The crystallized water contained in the moisture-absorbing material is turned into free water by energization treatment, and is entrained in the regeneration air to become humid air 2.
5 and is discharged from the system. The regeneration principle in the present invention is not necessarily clear, but since only the moisture-absorbing material supported on the surface of the carrier 23 is conductive, current flows only in this portion, and crystal water is converted to crystal water with less energy by the action of specific current conditions. It is thought that it has metastasized.
第3図は、本発明に係る潜熱交換器の好適な例を示す斜
視図である。回転式潜熱交換器の中心軸を一方の電極(
中心電極31)とし、他方の電極(周囲電極32)は、
潜熱交換器の円周部に図の如く各電極が互いに絶縁され
てはいるが吸湿剤とは接触して配設されている。再生帯
域34に相当する外周部には、周囲電極32と接触した
状態で金属片33が固定されており、潜熱交換器p回転
により再生帯域に入った周囲電極32にのみ電圧が印加
され、これによシ再生(再生帯域34)と吸湿ノ(1;
吸湿帯域35°)を同時に行う。FIG. 3 is a perspective view showing a preferred example of the latent heat exchanger according to the present invention. Connect the center axis of the rotary latent heat exchanger to one electrode (
The center electrode 31) and the other electrode (surrounding electrode 32) are
As shown in the figure, electrodes are arranged around the circumference of the latent heat exchanger so as to be insulated from each other but in contact with the moisture absorbent. A metal piece 33 is fixed to the outer periphery corresponding to the regeneration zone 34 in contact with the surrounding electrode 32, and a voltage is applied only to the surrounding electrode 32 that has entered the regeneration zone by rotation of the latent heat exchanger p. Regeneration (regeneration zone 34) and moisture absorption (1;
35° moisture absorption zone) at the same time.
第4図は、本発明に係る装置の他の態様を示す構成図で
ある。潜熱交換器2によシ除湿された空気を顕熱交換器
41に送シ、ここで加湿器51により冷却された外気と
顕熱交換して予冷する。この予冷した空気を加湿器3に
送って加湿冷却し室内に循環する。顕熱交換器4□1は
従来周知のものを用いることができ、例えばアルミニウ
ム製ハニカム構造体を内蔵した回転式顕熱交換器を好適
に用いることができる。 ゛1
加湿器3には、スプレ一式あるいは二流体ノズル式等を
採用することができる=
作用
第5図は、第1図の装置の作用を示す空気線図である。FIG. 4 is a configuration diagram showing another aspect of the device according to the present invention. The air dehumidified by the latent heat exchanger 2 is sent to the sensible heat exchanger 41, where it is precooled by exchanging sensible heat with the outside air cooled by the humidifier 51. This pre-cooled air is sent to the humidifier 3, humidified and cooled, and then circulated indoors. As the sensible heat exchanger 4□1, a conventionally known one can be used, and for example, a rotary sensible heat exchanger incorporating an aluminum honeycomb structure can be suitably used. 1. A spray set or a two-fluid nozzle type can be adopted as the humidifier 3. Effects FIG. 5 is an psychrometric chart showing the function of the device shown in FIG. 1.
第5図の番号は第1−の番号に相当する。The numbers in FIG. 5 correspond to the 1-th numbers.
相対湿度65s、温度31″′5℃の外気■を全熱交換
器によシ冷却減湿して得た空気■と相対湿度・50チ、
温度26℃の室内空気■とを混合して得□られる空気■
を、潜熱交換器2に供給する。空気■に含まれている水
蒸気は吸湿剤に吸着されるとともに温度1典し、相対湿
度′16%、温度31.5℃の空気■が得られる。この
空気■を加湿器3に送って加湿冷却し、相対温度80−
1温度18℃の空気■を得る。この空気■を室内に給気
する。The air ■ obtained by cooling and dehumidifying outside air ■ with a relative humidity of 65 seconds and a temperature of 31'''5℃ using a total heat exchanger and a relative humidity of 50 degrees Celsius.
Air obtained by mixing indoor air with a temperature of 26℃■
is supplied to the latent heat exchanger 2. The water vapor contained in the air (2) is adsorbed by the moisture absorbent, and the temperature of the air (2) decreases to 16% relative humidity and 31.5°C. This air ■ is sent to the humidifier 3 where it is humidified and cooled to a relative temperature of 80-
1. Obtain air ■ at a temperature of 18°C. This air ■ is supplied into the room.
こうして温度26℃の室内空気は18℃まで冷却される
。In this way, indoor air at a temperature of 26°C is cooled to 18°C.
次に1第6図は第4図に示す装置の作用を示す空気線図
であり、第6図の番号は第4図の番号に対応する。潜熱
交換器2によシ除湿するところまでは、第5図と同様で
ある。潜熱交換器2t−出た空気■を加湿器3に送る前
に、顕熱交換器411Cより予冷する。すなわち、相対
湿度16%、31.5℃の空気■と外気■を加湿器51
Vcよシ冷却した空気■(27,5℃)との間で顕熱交
換して空気■を28.5℃まで冷却して空気■を得る。Next, FIG. 6 is a psychrometric diagram showing the operation of the apparatus shown in FIG. 4, and the numbers in FIG. 6 correspond to the numbers in FIG. 4. The process up to dehumidification using the latent heat exchanger 2 is the same as that shown in FIG. Latent heat exchanger 2t - Before sending the exiting air to the humidifier 3, it is precooled by the sensible heat exchanger 411C. In other words, the air (■) with a relative humidity of 16% and the outside air (■) at 31.5°C is transferred to the humidifier 51.
Sensible heat is exchanged between Vc and the cooled air (27.5°C) to cool the air (2) to 28.5°C to obtain air (2).
この空気を加湿器3で加湿冷却して相対湿度95%、1
5℃の空気■を得て、この空気を室内に給気する。This air is humidified and cooled by humidifier 3 to achieve a relative humidity of 95%.
Obtain air ■ at 5°C and supply this air into the room.
第1図に示す装置と比較すると、顕熱交換器の使用によ
シ最終的に得られる空気の温度は3℃低いことがわかる
。When compared with the device shown in FIG. 1, it can be seen that the temperature of the air finally obtained is 3° C. lower due to the use of the sensible heat exchanger.
参考例!−12
吸湿材料として′MIICJ 2 t CaCl2 、
およびLi(J2゜担体としてシリカゲルを用い、それ
ぞれの吸湿材料の水溶液に担体t’1〜24時間浸漬し
た後、乾燥して吸湿剤を得た。この吸湿剤には約0.2
7ないし0.4017I!の吸湿材料が担体に担持され
ていた。吸湿剤約100IIを装填した試験容器に外気
を通して除湿操作を行った。その後、使用済吸湿剤を通
電処理して再生した。結果を以下の第1表にまとめて示
す、担体としてシリカゲルのかわシに導電性の活性炭を
用いた場合も同様にして行い、比較参考例として同表に
示す。Reference example! -12 As a hygroscopic material, 'MIICJ 2 t CaCl2,
and Li (J2°) Using silica gel as a carrier, the carrier was immersed in an aqueous solution of each moisture-absorbing material for 24 hours from t'1, and then dried to obtain a moisture-absorbing agent.
7 to 0.4017I! The hygroscopic material was supported on the carrier. A dehumidifying operation was performed by passing outside air into a test container loaded with about 100 II of a moisture absorbent. Thereafter, the used moisture absorbent was treated with electricity and regenerated. The results are summarized in Table 1 below. The same procedure was conducted when conductive activated carbon was used as a carrier for silica gel, and the results are shown in the same table as a comparative example.
実施例1−12
参考例1−12および比較参考例の各吸湿剤を用い、第
6図に示す空気線図に従って室内空気の冷房を作った。Example 1-12 Using each of the hygroscopic agents of Reference Example 1-12 and Comparative Reference Example, indoor air was cooled according to the psychrometric chart shown in FIG.
このときの成績係数を第2表に示す。参考例1−12の
吸湿剤を用い九場合は1.12〜&26であり、一方比
較参考例の吸湿剤を用いると0.19であった。The coefficient of performance at this time is shown in Table 2. When the moisture absorbent of Reference Example 1-12 was used, the value was 1.12 to &26, while when the moisture absorbent of Comparative Example was used, the value was 0.19.
第2表
1 参考例1 &262
“ 2L48
3 ’ 3 L304
“ 4L34
5 ” 5L28
6 “ 5 1.127
“ 7
1.748 “ 8z
31
9 “ 9 2..3110
“10 t2811
“11 3.0612 “1
2 5.25比較例 比較参考例
0.19効果
本発明の空気調和装置は、従来の太陽熱利用デフカント
式空気調和装置と比べて約10倍ないし20倍高い成績
係数を得ることができる。このため、広い占有面積を必
要とする太陽熱集熱器を用いることなくデシカント式空
気調和を行うことができ、例えばビル、工場あるいは一
般家庭の空気調和装量として本発明の装置を適用するこ
とができる。また、本発明の装置では再生用空気として
常温の外気をそのtま用いることができかつ再生時の発
熱もほとんどないため、再生後吸湿剤を特に冷却するこ
となくすぐ(吸湿操作に移行することができる。さらに
、本発明では吸湿剤が粒状であるため、従来のハニカム
型吸湿剤あるいは液体吸湿剤と比べて空気との接触効率
が高いなどの特徴を有する。Table 2 1 Reference example 1 &262
“ 2L48 3 ' 3 L304
“4L34 5” 5L28 6 “5 1.127
“ 7
1.748 “8z
31 9 “ 9 2..3110
“10 t2811
“11 3.0612 “1
2 5.25 Comparative example Comparative reference example
0.19 Effect The air conditioner of the present invention can obtain a coefficient of performance that is approximately 10 to 20 times higher than that of a conventional differential air conditioner using solar heat. Therefore, desiccant air conditioning can be performed without using a solar heat collector that requires a large area, and the device of the present invention can be applied as an air conditioning system for buildings, factories, or general homes, for example. can. In addition, in the device of the present invention, ambient temperature outside air can be used as the regeneration air until that time, and there is almost no heat generation during regeneration. Furthermore, since the hygroscopic agent of the present invention is in the form of particles, it has features such as higher contact efficiency with air compared to conventional honeycomb-type hygroscopic agents or liquid hygroscopic agents.
第1図および第4図は、本発明に係る装置を示す概略構
成図である。第2図は、本発明の装置cK用いる潜熱交
換器の一例を示す図である。第3図は、好ましい回転式
潜熱交換器の斜視図である。
第5図および第6図線、本発明の作用を示す空気線図で
ある。
′ 2・・・潜熱交換器、 3・・・加湿器4、・
・・再生用電源 22・・・吸湿材料23・・・担
体 31・・・中心電極32・・・周囲電番3
3・・・金属片
34・・・再生帯域 35・・・吸湿帯域(外5名
)1 and 4 are schematic configuration diagrams showing an apparatus according to the present invention. FIG. 2 is a diagram showing an example of a latent heat exchanger using the device cK of the present invention. FIG. 3 is a perspective view of a preferred rotary latent heat exchanger. FIG. 5 and FIG. 6 are psychrometric diagrams showing the effect of the present invention. ' 2...Latent heat exchanger, 3...Humidifier 4,...
...Regeneration power source 22...Moisture absorbing material 23...Carrier 31...Center electrode 32...Surrounding electrical number 3
3...Metal piece 34...Reproduction band 35...Moisture absorption band (5 people outside)
Claims (1)
デシカント式空気調和装置であつて; a)室内空気を潜熱交換器に通し、次いで加湿器を経て
室内に供給する室内空気流路を配設し; b)再生用空気を潜熱交換器に送つて湿潤空気を排気す
る再生空気流路を配設し; c)潜熱交換器には、非導電性担体に結晶水をもつこと
のできる吸湿性無機電解質の吸湿材料を担持した吸湿剤
が充填されており;および d)再生用電源と電気的に接続した電極が潜熱交換器内
に吸湿剤を隔てて配設されている;ことからなるデシカ
ント式空気調和装置。 2)潜熱交換器と加湿器との間の室内空気流路に顕熱交
換器を配設して、潜熱交換器から流出する室内空気を予
冷する、特許請求の範囲第1項に記載の装置。 3)潜熱交換器は回転式潜熱交換器である、特許請求の
範囲第1項に記載の装置。 4)顕熱交換器の熱交換用流体は加湿冷却した外気であ
る、特許請求の範囲第2項に記載の装置。 5)担体は、シリカ、アルミナ、ガラス繊維、酸化鉄、
マグネシア、ゼオライト、セラミックスあるいはこれら
の混合物からなる無機酸化物;ポリエチレン、ポリプロ
ピレン、ポリスチレン、ポリエステル、ポリ塩化ビニル
、ポリウレタンあるいはこれらの混合物からなるプラス
チック;または植物性繊維;である、特許請求の範囲第
1項ないし第4項の何れかに記載の装置。 6)吸湿材料は、塩化マグネシウム、塩化カルシウム、
塩化リチウム、硫酸マグネシウム、硫酸カルシウム、硫
酸アルミニウムまたはこれらの混合物である、特許請求
の範囲第1項ないし第5項の何れかに記載の装置。 7)周波数60Hz以下の交流電圧10ないし600V
を電極に印加して吸湿剤の再生を行う、特許請求の範囲
第1項ないし第6項の何れかに記載の装置。 8)回転式潜熱交換器はその周囲に互いに絶縁されては
いるが吸湿剤とは接触した状態で複数の周囲電極が配設
されているものであり、かつ前記周囲電極の少なくとも
一部と接触した状態で金属片が設置されており、前記回
転式潜熱交換器の回転軸と前記金属片とに再生用電源か
らの電圧が印加されている、特許請求の範囲第3項に記
載の装置。[Scope of Claims] 1) A desiccant air conditioner comprising a latent heat exchanger, a humidifier, and a regeneration power source, which includes: a) passing indoor air through the latent heat exchanger, then supplying it indoors through a humidifier; an indoor air flow path; b) a regeneration air flow path for sending regeneration air to a latent heat exchanger and exhausting humid air; c) a latent heat exchanger containing crystalline water on a non-conductive carrier and d) an electrode electrically connected to a power source for regeneration is disposed in the latent heat exchanger with the moisture absorbent disposed therebetween. A desiccant air conditioner consisting of; 2) The device according to claim 1, wherein a sensible heat exchanger is disposed in the indoor air flow path between the latent heat exchanger and the humidifier, and the indoor air flowing out from the latent heat exchanger is precooled. . 3) The device according to claim 1, wherein the latent heat exchanger is a rotary latent heat exchanger. 4) The apparatus according to claim 2, wherein the heat exchange fluid of the sensible heat exchanger is humidified and cooled outside air. 5) Supports include silica, alumina, glass fiber, iron oxide,
An inorganic oxide made of magnesia, zeolite, ceramics, or a mixture thereof; a plastic made of polyethylene, polypropylene, polystyrene, polyester, polyvinyl chloride, polyurethane, or a mixture thereof; or vegetable fiber; The apparatus according to any one of Items 1 to 4. 6) Moisture-absorbing materials include magnesium chloride, calcium chloride,
6. A device according to any one of claims 1 to 5, which is lithium chloride, magnesium sulfate, calcium sulfate, aluminum sulfate or a mixture thereof. 7) AC voltage 10 to 600V with a frequency of 60Hz or less
7. The apparatus according to any one of claims 1 to 6, wherein the moisture absorbent is regenerated by applying this to the electrode. 8) A rotary latent heat exchanger is one in which a plurality of surrounding electrodes are disposed around the circumference, insulated from each other but in contact with the moisture absorbent, and in contact with at least a portion of the surrounding electrodes. 4. The device according to claim 3, wherein a metal piece is installed in a state in which the latent heat exchanger is heated, and a voltage from a regeneration power source is applied to the rotating shaft of the rotary latent heat exchanger and the metal piece.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26054484A JPS61138038A (en) | 1984-12-10 | 1984-12-10 | Desiccant type air conditioning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26054484A JPS61138038A (en) | 1984-12-10 | 1984-12-10 | Desiccant type air conditioning device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61138038A true JPS61138038A (en) | 1986-06-25 |
JPH0121413B2 JPH0121413B2 (en) | 1989-04-20 |
Family
ID=17349429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26054484A Granted JPS61138038A (en) | 1984-12-10 | 1984-12-10 | Desiccant type air conditioning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61138038A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998046959A1 (en) * | 1997-04-11 | 1998-10-22 | Ebara Corporation | Air-conditioning system and method of operating the same |
WO1998046957A1 (en) * | 1997-04-11 | 1998-10-22 | Ebara Corporation | Air-conditioning system and method of operating the same |
WO1999022182A1 (en) * | 1997-10-24 | 1999-05-06 | Ebara Corporation | Dehumidifying air-conditioning system and method of operating the same |
WO1999022181A1 (en) * | 1997-10-24 | 1999-05-06 | Ebara Corporation | Dehumidifying air-conditioning system |
JP2012141118A (en) * | 2011-01-06 | 2012-07-26 | Mitsubishi Electric Corp | Air conditioning device, and air conditioning system |
JP2013238395A (en) * | 2013-09-05 | 2013-11-28 | Mitsubishi Electric Corp | Air conditioning device and air conditioning system |
-
1984
- 1984-12-10 JP JP26054484A patent/JPS61138038A/en active Granted
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998046959A1 (en) * | 1997-04-11 | 1998-10-22 | Ebara Corporation | Air-conditioning system and method of operating the same |
WO1998046957A1 (en) * | 1997-04-11 | 1998-10-22 | Ebara Corporation | Air-conditioning system and method of operating the same |
US6199389B1 (en) | 1997-04-11 | 2001-03-13 | Ebara Corporation | Air Conditioning system and method for operating the same |
US6205797B1 (en) | 1997-04-11 | 2001-03-27 | Ebara Corporation | Air-conditioning system and method of operating the same |
WO1999022182A1 (en) * | 1997-10-24 | 1999-05-06 | Ebara Corporation | Dehumidifying air-conditioning system and method of operating the same |
WO1999022181A1 (en) * | 1997-10-24 | 1999-05-06 | Ebara Corporation | Dehumidifying air-conditioning system |
US6311511B1 (en) | 1997-10-24 | 2001-11-06 | Ebara Corporation | Dehumidifying air-conditioning system and method of operating the same |
US6324860B1 (en) | 1997-10-24 | 2001-12-04 | Ebara Corporation | Dehumidifying air-conditioning system |
JP2012141118A (en) * | 2011-01-06 | 2012-07-26 | Mitsubishi Electric Corp | Air conditioning device, and air conditioning system |
JP2013238395A (en) * | 2013-09-05 | 2013-11-28 | Mitsubishi Electric Corp | Air conditioning device and air conditioning system |
Also Published As
Publication number | Publication date |
---|---|
JPH0121413B2 (en) | 1989-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2950444B2 (en) | Deodorizing and dehumidifying cooling method and deodorizing and dehumidifying cooling device | |
CN110030654B (en) | Air-exchanging air conditioner | |
JP6383467B1 (en) | Dehumidifying air conditioner | |
US4341539A (en) | Thermally regenerative desiccant element | |
JP4475823B2 (en) | System and method for controlling temperature and humidity | |
CN108187459B (en) | Air spiral type membrane dehumidifier, electrodialysis regeneration device and dehumidification heating system thereof | |
US6478855B1 (en) | Method of dehumidifying and dehumidifier with heat exchanger having first and second passages and moisture cooling in the second passages | |
US6334316B1 (en) | Desiccant assisted air conditioning system | |
JP2013094776A (en) | Dehumidification device and electrified desorption device thereof | |
Jain et al. | Evaluation of liquid dessicant based evaporative cooling cycles for typical hot and humid climates | |
JPS61138038A (en) | Desiccant type air conditioning device | |
JPH06221618A (en) | Dehumidifying type air conditioning device | |
JPS6168119A (en) | Dehumidifier and dehumidifying method using said dehumidifier | |
JPS62297647A (en) | Dehumidification system of building | |
JP2007170786A (en) | Ventilation system | |
JPH0115780B2 (en) | ||
JPS6297627A (en) | Method and apparatus for regenerating moisture absorbing solution | |
JP2001330273A (en) | Cooling system using solid absorbent | |
JP3302833B2 (en) | Dehumidification method and dehumidification system | |
JPH06322A (en) | Open-type absorptive air conditioner | |
WO2022239822A1 (en) | Water generation system | |
WO2000010689A1 (en) | Dehumidifying system | |
JPS59231340A (en) | Dehumidifying air conditioner | |
JP4393478B2 (en) | Desiccant ventilation system | |
JPS61181520A (en) | Deodorizing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |