JPS61137427A - Superconductive high-speed circuit - Google Patents

Superconductive high-speed circuit

Info

Publication number
JPS61137427A
JPS61137427A JP59259128A JP25912884A JPS61137427A JP S61137427 A JPS61137427 A JP S61137427A JP 59259128 A JP59259128 A JP 59259128A JP 25912884 A JP25912884 A JP 25912884A JP S61137427 A JPS61137427 A JP S61137427A
Authority
JP
Japan
Prior art keywords
speed
josephson junction
gate
josephson
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59259128A
Other languages
Japanese (ja)
Other versions
JPH023327B2 (en
Inventor
Hideaki Nakane
中根 英章
Yuji Hatano
波田野 雄治
Kunio Yamashita
山下 邦男
Yutaka Harada
豊 原田
Ushio Kawabe
川辺 潮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59259128A priority Critical patent/JPS61137427A/en
Publication of JPS61137427A publication Critical patent/JPS61137427A/en
Publication of JPH023327B2 publication Critical patent/JPH023327B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a logical circuit low in power consumption operating at an extremely high speed by adding Josephson junction in parallel to the output resistance of a Josephson logical circuit and the coupling resistance between logical circuits. CONSTITUTION:An input of an OR gate 1 is normally terminated only with a terminating resistance 4 as its front stage. The speed-up Josephson junction 8 for the front stage is added in parallel to the terminating resistance 4 to increase the operation speed of the OR gate. Namely, the Josephson junction 8 is initially in an conductive state, so when a signal is supplied to the input, a current flows abruptly. When the quantity of the current exceeds some value, the Josephson junction 8 enters a voltage state and a current specified by the terminating resistance 4 flows.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は計算機用論理回路に係り、特に超高速動作に好
適なジョセフソン論理回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a logic circuit for a computer, and particularly to a Josephson logic circuit suitable for ultra-high-speed operation.

〔発明の背景〕[Background of the invention]

半導体の分野で、論理回路の出力端子に並列にキャパシ
ターやダイオードを付加してスピードアップコンデンサ
として高速化を図ることは例えば、昭和58年度、電子
通信学会全国大会半導体材料部門 218に見られるよ
うに公知であった。キャパシタや、逆バイアスしたダイ
オードの容量を利用した微分回路を付加して、高速動作
を実現するものである。しかし、ジョセフソン回路のよ
うな超電導回路で同様な高速化を実現可能かについては
検討されていなかった。また、キャパシタとではなくて
ジョセフソン接合を用いる点については配慮されていな
かった。
In the field of semiconductors, adding a capacitor or diode in parallel to the output terminal of a logic circuit as a speed-up capacitor in order to increase the speed was seen in 1981, Semiconductor Materials Division, National Conference of the Institute of Electronics and Communication Engineers, 218. It was publicly known. High-speed operation is achieved by adding a capacitor or a differentiator circuit that utilizes the capacitance of a reverse biased diode. However, no consideration had been given to whether similar speed increases could be achieved with superconducting circuits such as Josephson circuits. Further, no consideration was given to the use of a Josephson junction instead of a capacitor.

〔発明の目的〕[Purpose of the invention]

本発明の目的は低消費電力でしかも、超高速な動作が可
能な論理回路を提供することにある。
An object of the present invention is to provide a logic circuit that consumes low power and can operate at extremely high speed.

〔発明の概要〕[Summary of the invention]

上記の目的である高速化を達成するために、ジョセフソ
ン論理回路の出力抵抗や論理回路間の結合抵抗に並列に
ジョセフソン接合を付加することにより、最大40%程
度、動作速度が速くなることがbかった。
In order to achieve the above objective of speeding up, by adding a Josephson junction in parallel to the output resistance of the Josephson logic circuit and the coupling resistance between the logic circuits, the operating speed can be increased by up to 40%. It was b.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明をORゲートである磁束結合形量子干渉
論理回路に実施した回路の回路図である。
FIG. 1 is a circuit diagram of a circuit in which the present invention is implemented in a flux-coupled quantum interference logic circuit, which is an OR gate.

第1図の○Rゲートlの入力は通常、前段の終端抵抗4
のみによって終端されている。この終端抵抗4に並列に
前段用スピードアンプジョセフソン接合8を付加するこ
とによりORゲートの動作速度を高速化できる。つまり
、ジョセフソン接合8は最初超電導状態であるから、入
力に信号が与えられると、電流は急激に流れる。電流量
がある値を超えると、ジョセフソン接合8は電圧状態と
なり、終端抵抗4で規定される電流が流れることになる
。第2図は前段用スピードアップジョセフソン接合8を
付加しない場合のORゲートの入出力電流波形である。
The input of the ○R gate l in Figure 1 is usually the terminating resistor 4 in the previous stage.
terminated only by By adding a pre-stage speed amplifier Josephson junction 8 in parallel to the termination resistor 4, the operating speed of the OR gate can be increased. In other words, since the Josephson junction 8 is initially in a superconducting state, current flows rapidly when a signal is applied to the input. When the amount of current exceeds a certain value, the Josephson junction 8 enters a voltage state, and a current defined by the terminating resistor 4 flows. FIG. 2 shows the input/output current waveforms of the OR gate when the speed-up Josephson junction 8 for the front stage is not added.

第2図中、Inは前段からの入力電流波形であり、Ou
t、は出力電流波形である。
In Fig. 2, In is the input current waveform from the previous stage, and Ou
t is the output current waveform.

この場合、ゲートの電源バイアス率は70%であり、人
出間のゲート遅延時間は21.5 psであった。この
時、磁束結合形量子干渉回路に用いたジョセフソン接合
は面積:l、5μイ、超電導電流密度: Jc=500
0A/cnf、最大超電導電流:lm=75μAの接合
を4個使用しており、回路電流は0.3mAである。ベ
ース電極はNbN、カウンター電極はPb−In−An
合金である。前段の終端抵抗4は10Ωである。第3図
は、第1図において前段用スピードアップジョセフソン
接合8を付加した場合の入出力電流波形であり、動作条
件は第2図の場合とまったく同じである。付加した前段
用スピードアップジョセフソン接合8は最大超電導電流
I n=0.15mAの接合である。
In this case, the gate power supply bias rate was 70%, and the gate delay time between turnouts was 21.5 ps. At this time, the area of the Josephson junction used in the flux-coupled quantum interference circuit is: l, 5μ, superconducting current density: Jc = 500
Four junctions with 0 A/cnf and maximum superconducting current: lm = 75 μA are used, and the circuit current is 0.3 mA. Base electrode is NbN, counter electrode is Pb-In-An
It is an alloy. The terminating resistor 4 at the front stage is 10Ω. FIG. 3 shows the input/output current waveforms when the front-stage speed-up Josephson junction 8 is added in FIG. 1, and the operating conditions are exactly the same as in FIG. 2. The added speed-up Josephson junction 8 for the front stage is a junction with a maximum superconducting current I n =0.15 mA.

この場合、同じ電源バイアス率70%における入呂力間
のゲート遅延時間は18.5 psとなり、ゲート遅延
時間が16%短くなった。
In this case, the gate delay time between inputs at the same power supply bias rate of 70% was 18.5 ps, which was a 16% reduction in gate delay time.

第4図は、種々の電源バイアス条件下において、ORゲ
ート単体とスピードアップジョセフソン接合を付加した
回路の遅延時間を調べたグラフである。バイアス率50
%で最大40%程度、動作速度が増大し、バイアス率が
高くなると動作速度の増加率は小さくなるが依然として
動作速度が増大することがわかった。
FIG. 4 is a graph showing delay times of a single OR gate and a circuit with a speed-up Josephson junction added under various power supply bias conditions. bias rate 50
It was found that the operating speed increases by about 40% at most, and as the bias rate increases, the operating speed decreases, but the operating speed still increases.

第5図は0R−ANDゲートにスピードアップジョセフ
ソン接合を付加した場合の回路図である。
FIG. 5 is a circuit diagram when a speed-up Josephson junction is added to the 0R-AND gate.

付加した接合は、前段用スピードアップジョセフソン接
合8を2個、結合用スピードアップジョセフソン接合9
を2個、終端用スピードアップジョセフソン接合10を
1個である。終端抵抗4及び7は10Ω、段間結合抵抗
5は0.5Ω、段間結合抵抗6は7,5Ωである。OR
ゲート1及び3は第1図の場合と同じ磁束結合形量子干
渉論理回路である。ANDゲートは、3種類について検
討した、すなわち、単一ジョセフソン接合(単−JJ)
−抵抗結合形論理回路(RCJL)、電流注入形論理回
路(CI L)である。これらの回路の動作に必要な入
力電流と次段への出力電流は全て同一になるようにした
。第6図に、0R−ANDゲートの遅延時間のバイアス
率による変化を示す。図中で、ANDゲートを抵抗結合
形論理回路(RCJL)を用いて、スピードアップジョ
セフソン接合8,9.10を付加した場合の遅延時間の
変化も合わせて示している。スピードアンプジョセフソ
ン接合8,9.’10を付加することにより、バイアス
率60%で30%程度高速化できることがわかり、バイ
アス率が高くなっても高速化の効果があることがわかっ
た。他の単一ジョセフソン接合(単−JJ)や電流注入
形論理回路においても同様の効果を得ることができた。
The added joints are two speed-up Josephson joints 8 for the front stage and speed-up Josephson joint 9 for the connection.
and one speed-up Josephson junction 10 for termination. The terminating resistors 4 and 7 are 10Ω, the interstage coupling resistance 5 is 0.5Ω, and the interstage coupling resistance 6 is 7.5Ω. OR
Gates 1 and 3 are the same flux-coupled quantum interference logic circuits as in FIG. Three types of AND gates were considered: single Josephson junction (single-JJ);
- Resistance coupled logic circuit (RCJL) and current injection logic circuit (CIL). The input current required for the operation of these circuits and the output current to the next stage were all made to be the same. FIG. 6 shows changes in the delay time of the 0R-AND gate depending on the bias rate. The figure also shows changes in delay time when a resistance coupled logic circuit (RCJL) is used for the AND gate and speed-up Josephson junctions 8, 9, and 10 are added. Speed amplifier Josephson junction 8,9. It was found that by adding '10, the speed could be increased by about 30% at a bias rate of 60%, and it was found that even if the bias rate became high, there was an effect of speeding up. Similar effects could be obtained with other single Josephson junctions (single-JJ) and current injection type logic circuits.

ORゲートを他の直結形回路(DCL、RCJL。Connect the OR gate to other direct-coupled circuits (DCL, RCJL.

RCL、4JLなど)で構成しても同様の効果を得た。A similar effect was obtained even when configured with RCL, 4JL, etc.).

また、スピードアップジョセフソン接合として、接合1
個の場合と接合2個を直列に接合しト場合において高速
化の効果は同じであった。回1トを作製する上で、接合
1個の場合、抵抗への接″ト電極の一方がベース電極、
他方がカウンター電極となり、接続が難しくなる。
In addition, as a speed-up Josephson junction, junction 1
The effect of speeding up was the same in the case of 1 piece and in the case of 2 pieces joined in series. When making one junction, one of the contact electrodes to the resistor is the base electrode,
The other electrode becomes a counter electrode, making connection difficult.

第7図は、ジョセフソン接合を2つ接合した場合の基板
断面図であるが、図において、L6は基板20a、20
bはベース電極21は絶縁膜、22はカウンター電極で
あり、12a、12bは夫々ジョセフソン接合を形成し
ている。2つのジョセフソン接合を用いた場合、入力、
出力(20a、20b)か両者ともベース電極となる。
FIG. 7 is a cross-sectional view of the substrate when two Josephson junctions are joined. In the figure, L6 is the substrate 20a, 20
The base electrode 21 b is an insulating film, 22 is a counter electrode, and 12a and 12b each form a Josephson junction. When using two Josephson junctions, the input,
Both outputs (20a, 20b) serve as base electrodes.

基板配線はベース電極と同一の材質を用いて行なうので
、終端抵抗と2つのジョセフソン接合との接続が容易と
なる。スピードアップジョセフソン接合としては、1個
、あるいは2個以上の接合を直列に接続したものが使用
でき、特に偶数個にすると抵抗への接続が容易となる。
Since the substrate wiring is made of the same material as the base electrode, connection between the terminating resistor and the two Josephson junctions is facilitated. As the speed-up Josephson junction, one or two or more junctions connected in series can be used, and an even number of junctions can be used to facilitate connection to a resistor.

第8図は、高速化するために付加した回路素子を示した
。ジョセフソン論理回路においては、ジョセフソン接合
11や直列接続したジョセフソン接合12を使用できる
。さらに、半導体材料を用いると、ショットキーダイオ
ード14が使用できる。超電導回路ではスーパーショッ
トキダイオードも使用することができる。尚、これらの
素子は櫂列に2個以上接続しても高側化の効果があるこ
七がわかった。
FIG. 8 shows circuit elements added to increase speed. In the Josephson logic circuit, a Josephson junction 11 or a series-connected Josephson junction 12 can be used. Furthermore, the use of semiconductor materials allows the use of Schottky diodes 14. Super Schottky diodes can also be used in superconducting circuits. It has been found that even if two or more of these elements are connected in a row of paddles, the effect of increasing the height can be obtained.

以上のように、論理回路に、ジョセフソン接合などを付
加するだけで動作速度を高速にできるという効果がある
ことがわかった。
As described above, it has been found that simply adding a Josephson junction or the like to a logic circuit has the effect of increasing the operating speed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、論理回路を変更することなく小形の回
路素子を付加するだけで回路を高速化でき、ジョセフソ
ン論理回路の高集積化に著しい効果がある。さらに、超
電導回路一般にわたって、回路の高速化を容易に実現で
きるという効果がある。
According to the present invention, the speed of the circuit can be increased simply by adding small circuit elements without changing the logic circuit, and this has a significant effect on increasing the integration of Josephson logic circuits. Furthermore, there is an effect that speeding up the circuit can be easily achieved in general superconducting circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明をORゲートに実施した場合の回路図、
第2図はORゲート単体の入出力電流波形を示す図、第
3図はORゲートに本発明を実施した際の入出力電流波
形を示す図、第4図はORゲート単体と本発明を実施し
たORゲートの電源バイアス率とゲート遅延時間の関係
を示す図、第5図は0R−ANDゲートに本発明を実施
した回路図、第6図は第5図の回路の遅延時間とバイア
ス率の関係を示す図、第7図はジョセフソン接合を2つ
接続した場合の基板断面図、第8図は高速化のために付
加すべき回路素子を示す回路図である。 符号の説明 1・・・ORゲート、2・・・ANDゲート、3・次段
ORゲート、4・・・前段負荷抵抗、5・・結合抵抗a
。 6・・・結合抵抗す、7・・・負荷抵抗、8−・・前段
用スピードアップジョセフソン接合、9・・・結合用ス
ピードアップジョセフソン接合、lO・・・終端用スピ
ードアップジョセフソン接合、11・・・ジョセフソン
接合、12・・・ジョセフソン接合(直列用)。 13・・・キャパシタ、14・・・ショットキーダイオ
ード、15・・・スーパーショットキーダイオード。
FIG. 1 is a circuit diagram when the present invention is implemented in an OR gate,
Figure 2 is a diagram showing the input/output current waveforms of a single OR gate, Figure 3 is a diagram showing input/output current waveforms when the present invention is implemented in an OR gate, and Figure 4 is a diagram showing the input/output current waveforms when the present invention is implemented with a single OR gate. Figure 5 is a circuit diagram in which the present invention is implemented in an OR-AND gate, and Figure 6 shows the relationship between the delay time and bias rate of the circuit in Figure 5. FIG. 7 is a cross-sectional view of a substrate when two Josephson junctions are connected, and FIG. 8 is a circuit diagram showing circuit elements to be added to increase speed. Explanation of symbols 1...OR gate, 2...AND gate, 3...Next stage OR gate, 4...Previous stage load resistance, 5...Coupling resistance a
. 6...Coupling resistance, 7...Load resistance, 8-...Speed-up Josephson junction for front stage, 9...Speed-up Josephson junction for coupling, lO...Speed-up Josephson junction for termination , 11... Josephson junction, 12... Josephson junction (for series). 13... Capacitor, 14... Schottky diode, 15... Super Schottky diode.

Claims (1)

【特許請求の範囲】[Claims] 1、超電導薄膜と絶縁体薄膜と抵抗薄膜より成る超電導
回路において、回路の終端抵抗及び結合抵抗に並列に一
個以上のジョセフソン接合を接続することを特徴とする
超電導高速回路。
1. A superconducting high-speed circuit comprising a superconducting thin film, an insulating thin film, and a resistive thin film, which is characterized in that one or more Josephson junctions are connected in parallel to the terminating resistor and coupling resistor of the circuit.
JP59259128A 1984-12-10 1984-12-10 Superconductive high-speed circuit Granted JPS61137427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59259128A JPS61137427A (en) 1984-12-10 1984-12-10 Superconductive high-speed circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59259128A JPS61137427A (en) 1984-12-10 1984-12-10 Superconductive high-speed circuit

Publications (2)

Publication Number Publication Date
JPS61137427A true JPS61137427A (en) 1986-06-25
JPH023327B2 JPH023327B2 (en) 1990-01-23

Family

ID=17329702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59259128A Granted JPS61137427A (en) 1984-12-10 1984-12-10 Superconductive high-speed circuit

Country Status (1)

Country Link
JP (1) JPS61137427A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219268A (en) * 1988-06-29 1990-01-23 Matsushita Electric Ind Co Ltd Part collecting apparatus

Also Published As

Publication number Publication date
JPH023327B2 (en) 1990-01-23

Similar Documents

Publication Publication Date Title
US4371796A (en) Josephson logic gate device
US5455519A (en) Josephson logic circuit
US3953749A (en) Binary circuitry including switching elements utilizing superconductive tunneling effects
JPH0413312A (en) Superconductive non-hysteresis logical circuit
US4980580A (en) CMOS interconnection circuit
EP0061930A2 (en) Josephson-junction logic circuit
JPH02503141A (en) Feedback source coupled FET logic
US4039856A (en) Distributed josephson junction logic circuit
JPS61137427A (en) Superconductive high-speed circuit
US4413197A (en) Four Josephson junction direct-coupled and gate circuit
US4678945A (en) Unidirectional single-flux-quantum logic circuit
US4373138A (en) Hybrid unlatching flip-flop logic element
EP0074604B1 (en) Circuit utilizing josephson effect
US4859879A (en) Superconducting digital logic amplifier
Schwarzbek et al. Digital logic with YBa2Cu3O7− x dc SQUIDs
Fujimaki et al. Variable threshold logic with superconducting quantum interferometers
JPH0577352B2 (en)
JPS60134625A (en) Superconduction multi-terminal element switching circuit
JP2550587B2 (en) The Josephson Gate
Elmasry et al. Analysis of load structures for current-mode logic
JP2783032B2 (en) Josephson reverse current prevention circuit
JPH0588567B2 (en)
Terzioglu et al. Margins and yield in superconducting circuits with gain
Akahori et al. A Josephson current-injection three-input AND gate
Fulton et al. Josephson junction current-switched logic circuits

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term