JPH023327B2 - - Google Patents

Info

Publication number
JPH023327B2
JPH023327B2 JP59259128A JP25912884A JPH023327B2 JP H023327 B2 JPH023327 B2 JP H023327B2 JP 59259128 A JP59259128 A JP 59259128A JP 25912884 A JP25912884 A JP 25912884A JP H023327 B2 JPH023327 B2 JP H023327B2
Authority
JP
Japan
Prior art keywords
speed
gate
josephson
circuit
josephson junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59259128A
Other languages
Japanese (ja)
Other versions
JPS61137427A (en
Inventor
Hideaki Nakane
Juji Hatano
Kunio Yamashita
Yutaka Harada
Ushio Kawabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59259128A priority Critical patent/JPS61137427A/en
Publication of JPS61137427A publication Critical patent/JPS61137427A/en
Publication of JPH023327B2 publication Critical patent/JPH023327B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Logic Circuits (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は計算機用論理回路に係り、特に超高速
動作に好適なジヨセフソン論理回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a logic circuit for a computer, and particularly to a Josephson logic circuit suitable for ultra-high-speed operation.

〔発明の背景〕[Background of the invention]

半導体の分野で、論理回路の出力端子に並列に
キヤパシターやダイオードを付加してスピードア
ツプコンデンサとして高速化を図ることは例え
ば、昭和58年度、電子通信学会全国大会半導体材
料部門218に見られるように公知であつた。キヤ
パシタや、逆バイアスしたダイオードの容量を利
用した微分回路を付加して、高速動作を実現する
ものである。しかし、ジヨセフソン回路のような
超電導回路で同様な高速化を実現可能かについて
は検討されていなかつた。また、キヤパシタとで
はなくてジヨセフソン接合を用いる点については
配慮されていなかつた。
In the field of semiconductors, the use of capacitors and diodes in parallel with the output terminals of logic circuits to increase speed was demonstrated in the Semiconductor Materials Division 218 of the 1985 National Conference of the Institute of Electronics and Communication Engineers, for example. It was publicly known. High-speed operation is achieved by adding a capacitor or a differentiator circuit that uses the capacitance of a reverse biased diode. However, no consideration had been given to whether similar speed increases could be achieved with superconducting circuits such as Josephson circuits. Further, no consideration was given to the use of Josephson junctions rather than capacitors.

〔発明の目的〕[Purpose of the invention]

本発明の目的は低消費電力でしかも、超高速な
動作が可能な論理回路を提供することにある。
An object of the present invention is to provide a logic circuit that consumes low power and can operate at extremely high speed.

〔発明の概要〕[Summary of the invention]

上記の目的である高速化を達成するために、ジ
ヨセフソン論理回路の出力抵抗や論理回路間の結
合抵抗に並列にジヨセフソン接合を付加すること
により、最大40%程度、動作速度が速くなること
がわかつた。
In order to achieve the above objective of speeding up, we found that by adding a Josephson junction in parallel to the output resistance of Josephson logic circuits and the coupling resistance between logic circuits, the operating speed can be increased by up to 40%. Ta.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明をORゲートである磁束結合形
量子干渉論理回路に実施した回路の回路図であ
る。第1図のORゲート1の入力は通常、前段の
終端抵抗4のみによつて終端されている。この終
端抵抗4に並列に前段用スピードアツプジヨセフ
ソン接合8を付加することによりORゲートの動
作速度を高速化できる。つまり、ジヨセフソン接
合8は最初超電導状態であるから、入力に信号が
与えられると、電流は急激に流れる。電流量があ
る値を超えると、ジヨセフソン接合8は電圧状態
となり、終端抵抗4で規定される電流が流れるこ
とになる。第2図は前段用スピードアツプジヨセ
フソン接合8を付加しない場合のORゲートの入
出力電流波形である。第2図中、Inは前段からの
入力電流波形であり、Outは出力電流波形であ
る。この場合、ゲートの電源バイアス率は70%で
あり、入出間のゲート遅延時間は21.5psであつ
た。この時、磁束結合形量子干渉回路に用いたジ
ヨセフソン接合は面積:1.5μm2、超電導電流密
度:Jc=5000A/cm2、最大超電導電流:Im=
75μAの接合を4個使用しており、回路電流は
0.3mAである。ベース電極はNbN、カウンター
電極はPb−In−An合金である。前段の終端抵抗
4は10Ωである。第3図は、第1図において前段
用スピードアツプジヨセフソン接合8を付加した
場合の入出力電流波形であり、動作条件は第2図
の場合とまつたく同じである。付加した前段用ス
ピードアツプジヨセフソン接合8は最大超電導電
流In=0.15mAの接合である。この場合、同じ電
源バイアス率70%における入出力間のゲート遅延
時間は18.5psとなり、ゲート遅延時間が16%短く
なつた。
FIG. 1 is a circuit diagram of a circuit in which the present invention is implemented in a flux-coupled quantum interference logic circuit, which is an OR gate. The input of the OR gate 1 in FIG. 1 is normally terminated only by the terminating resistor 4 in the preceding stage. By adding a speed-up Josephson junction 8 for the front stage in parallel to the termination resistor 4, the operating speed of the OR gate can be increased. That is, since Josephson junction 8 is initially in a superconducting state, current flows rapidly when a signal is applied to the input. When the amount of current exceeds a certain value, Josephson junction 8 becomes a voltage state, and a current defined by terminating resistor 4 flows. Figure 2 shows the input/output current waveforms of the OR gate when the speed-up Josephson junction 8 for the front stage is not added. In FIG. 2, In is the input current waveform from the previous stage, and Out is the output current waveform. In this case, the gate power supply bias rate was 70%, and the gate delay time between input and output was 21.5 ps. At this time, the Josephson junction used in the flux-coupled quantum interference circuit has an area of 1.5 μm 2 , a superconducting current density: Jc = 5000 A/cm 2 , and a maximum superconducting current: Im =
Four 75μA junctions are used, and the circuit current is
It is 0.3mA. The base electrode is NbN and the counter electrode is a Pb-In-An alloy. The terminating resistor 4 at the front stage is 10Ω. FIG. 3 shows the input/output current waveforms when the speed-up Josephson junction 8 for the front stage is added in FIG. 1, and the operating conditions are exactly the same as in FIG. 2. The added speed-up Josephson junction 8 for the front stage is a junction with a maximum superconducting current In=0.15 mA. In this case, the gate delay time between input and output at the same power supply bias rate of 70% was 18.5 ps, which was a 16% reduction in gate delay time.

第4図は、種々の電源バイアス条件下におい
て、ORゲート単体とスピードアツプジヨセフソ
ン接合を付加した回路の遅延時間を調べたグラフ
である。バイアス率50%で最大40%程度、動作速
度が増大し、バイアス率が高くなると動作速度の
増加率は小さくなるが依然として動作速度が増大
することがわかつた。
FIG. 4 is a graph showing the delay times of a single OR gate and a circuit with a speed-up Josephson junction added under various power supply bias conditions. It was found that at a bias rate of 50%, the operating speed increases by about 40% at most, and as the bias rate increases, the rate of increase in operating speed decreases, but the operating speed still increases.

第5図はOR−ANDゲートにスピードアツプジ
ヨセフソン接合を付加した場合の回路図である。
付加した接合、前段用スピードアツプジヨセフソ
ン接合8を2個、結合用スピードアツプジヨセフ
ソン接合9を2個、終端用スピードアツプジヨセ
フソン接合10を1個である。終端抵抗4及び7
は10Ω、段間結合抵抗5は0.5Ω、段間結合抵抗6
は7.5Ωである。ORゲート1及び3は第1図の場
合と同じ磁束結合形量子干渉論理回路である。
ANDゲートは、3種類について検討した、すな
わち、単一ジヨセフソン接合(単一JJ)、抵抗結
合形論理回路(RCJL)、電流注入形論理回路
(CIL)である。これらの回路の動作に必要な入
力電流と次段への出力電流は全て同一になるよう
にした。第6図に、OR−ANDゲートの遅延時間
のバイアス率による変化を示す。図中で、AND
ゲートを抵抗結合形論理回路(RCJL)を用い
て、スピードアツプジヨセフソン接合8,9,1
0を付加した場合の遅延時間の変化も合わせて示
している。スピードアツプジヨセフソン接合8,
9,10を付加することにより、バイアス率60%
で30%程度高速化できることがわかり、バイアス
率が高くなつても高速化の効果があることがわか
つた。他の単一ジヨセフソン接合(単一JJ)が電
流注入形論理回路においても同様の効果を得るこ
とができた。ORゲートを他の直結形回路
(DCL,RCJL,RCL,4JLなど)で構成しても
同様の効果を得た。また、スピードアツプジヨセ
フソン接合として、接合1個の場合と接合2個を
直列に接合した場合において高速化の効果は同じ
であつた。回路を作製する上で、接合1個の場
合、抵抗への接続電極の一方がベース電極、他方
がカウンター電極となり、接続が難しくなる。
Figure 5 is a circuit diagram when a speed-up Josephson junction is added to the OR-AND gate.
The added joints are two speed-up Josephson junctions 8 for the front stage, two speed-up Josephson junctions 9 for coupling, and one speed-up Josephson junction 10 for the end. Terminal resistors 4 and 7
is 10Ω, interstage coupling resistance 5 is 0.5Ω, interstage coupling resistance 6
is 7.5Ω. OR gates 1 and 3 are the same flux-coupled quantum interference logic circuits as in FIG.
Three types of AND gates were considered: single Josephson junction (single JJ), resistive coupled logic (RCJL), and current injection logic (CIL). The input current required for the operation of these circuits and the output current to the next stage were all made to be the same. FIG. 6 shows changes in the delay time of the OR-AND gate depending on the bias rate. In the diagram, AND
Speed-up Josephson junctions 8, 9, 1 using resistance-coupled logic circuits (RCJL) for the gates.
The change in delay time when 0 is added is also shown. Speed up Josephson junction 8,
By adding 9 and 10, bias rate is 60%
It was found that the speed could be increased by about 30%, and it was found that even if the bias rate was high, there was an effect of speeding up. Another single Josephson junction (single JJ) could achieve similar effects in current injection logic circuits. Similar effects were obtained by configuring the OR gate with other direct-coupled circuits (DCL, RCJL, RCL, 4JL, etc.). Further, as for the speed-up Josephson junction, the effect of speeding up was the same in the case of one junction and in the case of two junctions joined in series. When producing a circuit, in the case of one junction, one of the electrodes connected to the resistor becomes a base electrode and the other becomes a counter electrode, making connection difficult.

第7図は、ジヨセフソン接合を2つ接合した場
合の基板断面図であるが、図において、16は基
板20a,20bはベース電極21は絶縁膜、2
2はカウンター電極であり、12a,12bは
夫々ジヨセフソン接合を形成している。2つのジ
ヨセフソン接合を用いた場合、入力、出力20
a,20bが両者ともベース電極となる。基板配
線はベース電極を同一の材質を用いて行なうの
で、終端抵抗と2つのジヨセフソン接合との接続
が容易となる。スピードアツプジヨセフソン接合
としては、1個、あるいは2個以上の接合を直列
に接続したものが使用でき、特に偶数個にすると
抵抗への接続が容易となる。
FIG. 7 is a cross-sectional view of the substrate when two Josephson junctions are bonded together.
2 is a counter electrode, and 12a and 12b each form a Josephson junction. When using two Josephson junctions, the input and output are 20
Both a and 20b become base electrodes. Since the base electrode of the substrate wiring is made of the same material, connection between the terminating resistor and the two Josephson junctions is facilitated. As the speed-up Josephson junction, one or two or more junctions connected in series can be used, and in particular, an even number makes connection to the resistor easier.

第8図は、高速化するために付加した回路素子
を示した。ジヨセフソン論理回路においては、ジ
ヨセフソン接合11や直列接続したジヨセフソン
接合12を使用できる。さらに、半導体材料を用
いると、シヨツトキーダイオード14が使用でき
る。超電導回路ではスーパーシヨツトキダイオー
ドも使用することができる。尚、これらの素子は
直列に2個以上接続しても高個化の効果があるこ
とがわかつた。
FIG. 8 shows circuit elements added to increase speed. In the Josephson logic circuit, Josephson junctions 11 and series-connected Josephson junctions 12 can be used. Furthermore, the use of semiconductor materials allows the use of Schottky diodes 14. Supershot diodes can also be used in superconducting circuits. It has been found that even when two or more of these elements are connected in series, it is possible to increase the number of devices.

以上のように、論理回路に、ジヨセフソン接合
などを付加するだけで動作速度を高速にできると
いう効果があることがわかつた。
As described above, it has been found that simply adding Josephson junctions to logic circuits has the effect of increasing operating speed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、論理回路を変更することなく
小形の回路素子を付加するだけで回路を高速化で
き、ジヨセフソン集積回路の高集積化に著しい効
果がある。さらに、超電導回路一般にわたつて、
回路の高速化を容易に実現できるという効果があ
る。
According to the present invention, the speed of the circuit can be increased simply by adding a small circuit element without changing the logic circuit, and this has a significant effect on increasing the degree of integration of Josephson integrated circuits. Furthermore, regarding superconducting circuits in general,
This has the effect of easily increasing the speed of the circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明をORゲートに実施した場合の
回路図、第2図はORゲート単体の入出力電流波
形を示す図、第3図はORゲートに本発明を実施
した際の入出力電流波形を示す図、第4図はOR
ゲート単体と本発明を実施したORゲートの電源
バイアス率とゲート遅延時間の関係を示す図、第
5図はOR−ANDゲートに本発明を実施した回路
図、第6図は第5図の回路の遅延時間とバイアス
率の関係を示す図、第7図はジヨセフソン接合を
2つ接続した場合の基板断面図、第8図は高速化
のために付加すべき回路素子を示す回路図であ
る。 符号の説明、1…ORゲート、2…ANDゲー
ト、3…次段ORゲート、4…前段負荷抵抗、5
…結合抵抗a、6…結合抵抗b、7…負荷抵抗、
8…前段用スピードアツプジヨセフソン接合、9
…結合用スピードアツプジヨセフソン接合、10
…終端用スピードアツプジヨセフソン接合、11
…ジヨセフソン接合、12…ジヨセフソン接合
(直列用)、13…キヤパシタ、14…シヨツトキ
ーダイオード、15…スーパーシヨツトキーダイ
オード。
Figure 1 is a circuit diagram when the present invention is implemented in an OR gate, Figure 2 is a diagram showing the input/output current waveforms of a single OR gate, and Figure 3 is the input/output current when the present invention is implemented in an OR gate. Diagram showing the waveform, Figure 4 is OR
A diagram showing the relationship between power supply bias rate and gate delay time of a single gate and an OR gate implementing the present invention. Figure 5 is a circuit diagram of an OR-AND gate implementing the present invention. Figure 6 is the circuit of Figure 5. FIG. 7 is a cross-sectional view of a substrate when two Josephson junctions are connected, and FIG. 8 is a circuit diagram showing circuit elements to be added to increase speed. Explanation of symbols, 1...OR gate, 2...AND gate, 3...Next stage OR gate, 4...Previous stage load resistance, 5
...coupling resistance a, 6...coupling resistance b, 7...load resistance,
8...Speed up Josephson junction for front stage, 9
…Speed-up Josephson junction for coupling, 10
…Speed-up Josephson junction for termination, 11
... Josephson junction, 12... Josephson junction (for series), 13... Capacitor, 14... Schottky diode, 15... Super shot key diode.

Claims (1)

【特許請求の範囲】[Claims] 1 超電導薄膜と絶縁体薄膜と抵抗薄膜より成る
超電導回路において、回路の終端抵抗及び結合抵
抗に並列に一個以上のジヨセフソン接合を接続す
ることを特徴とする超電導高速回路。
1. A superconducting high-speed circuit comprising a superconducting thin film, an insulating thin film, and a resistive thin film, which is characterized in that one or more Josephson junctions are connected in parallel to the terminating resistor and coupling resistor of the circuit.
JP59259128A 1984-12-10 1984-12-10 Superconductive high-speed circuit Granted JPS61137427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59259128A JPS61137427A (en) 1984-12-10 1984-12-10 Superconductive high-speed circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59259128A JPS61137427A (en) 1984-12-10 1984-12-10 Superconductive high-speed circuit

Publications (2)

Publication Number Publication Date
JPS61137427A JPS61137427A (en) 1986-06-25
JPH023327B2 true JPH023327B2 (en) 1990-01-23

Family

ID=17329702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59259128A Granted JPS61137427A (en) 1984-12-10 1984-12-10 Superconductive high-speed circuit

Country Status (1)

Country Link
JP (1) JPS61137427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219268A (en) * 1988-06-29 1990-01-23 Matsushita Electric Ind Co Ltd Part collecting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219268A (en) * 1988-06-29 1990-01-23 Matsushita Electric Ind Co Ltd Part collecting apparatus

Also Published As

Publication number Publication date
JPS61137427A (en) 1986-06-25

Similar Documents

Publication Publication Date Title
US5455519A (en) Josephson logic circuit
US4371796A (en) Josephson logic gate device
US3953749A (en) Binary circuitry including switching elements utilizing superconductive tunneling effects
US4423430A (en) Superconductive logic device
US4051393A (en) Current switched josephson junction memory and logic circuits
JPH02503141A (en) Feedback source coupled FET logic
US3323071A (en) Semiconductor circuit arrangement utilizing integrated chopper element as zener-diode-coupled transistor
JP4066012B2 (en) Superconducting driver circuit and superconducting equipment
US4039856A (en) Distributed josephson junction logic circuit
JPH023327B2 (en)
US4137465A (en) Multi-stage integrated injection logic circuit
US5515007A (en) Triple buffered amplifier output stage
JPS6333374Y2 (en)
US4373138A (en) Hybrid unlatching flip-flop logic element
EP0074604B1 (en) Circuit utilizing josephson effect
JP4374092B2 (en) Superconducting junction and superconducting circuit
US4646125A (en) Semiconductor device including Darlington connections
JPH0577352B2 (en)
US3327130A (en) Tunnel diode polarity inverter
JP2783032B2 (en) Josephson reverse current prevention circuit
Elmasry et al. Analysis of load structures for current-mode logic
JPS60140878A (en) Semiconductor device
US3200257A (en) Tunnel diode switching circuit
Fujimaki et al. Variable threshold logic with superconducting quantum interferometers
JPH0234530B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term