JPS6113732Y2 - - Google Patents

Info

Publication number
JPS6113732Y2
JPS6113732Y2 JP10689280U JP10689280U JPS6113732Y2 JP S6113732 Y2 JPS6113732 Y2 JP S6113732Y2 JP 10689280 U JP10689280 U JP 10689280U JP 10689280 U JP10689280 U JP 10689280U JP S6113732 Y2 JPS6113732 Y2 JP S6113732Y2
Authority
JP
Japan
Prior art keywords
negative pressure
passage
pressure signal
valve
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10689280U
Other languages
Japanese (ja)
Other versions
JPS5730364U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10689280U priority Critical patent/JPS6113732Y2/ja
Publication of JPS5730364U publication Critical patent/JPS5730364U/ja
Application granted granted Critical
Publication of JPS6113732Y2 publication Critical patent/JPS6113732Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Description

【考案の詳細な説明】 本考案は内燃機関の排気還流制御装置に関し、
特に排気還流通路に並列に設けられ各々異なる負
圧信号により作動する2つの排気還流制御弁へ負
圧信号を送る各々の負圧信号通路の大気開放手段
に関する(特開昭53−143824号公報参照)。
[Detailed description of the invention] The present invention relates to an exhaust recirculation control device for an internal combustion engine.
In particular, it relates to a means for opening each negative pressure signal passage to the atmosphere, which sends a negative pressure signal to two exhaust gas recirculation control valves that are provided in parallel in the exhaust gas recirculation passage and each operated by a different negative pressure signal (see JP-A-53-143824). ).

本願以前の排気還流制御装置としては、例えば
第1図に示すようなものがある。即ち、吸気通路
1に接続される排気還流通路2に2つの負圧応動
型排気還流制御弁4,41を並列に設け、一方の
排気還流制御弁4に負圧信号を導く第1の負圧信
号通路8の大気開放割合を負圧制御弁9で変化さ
せるようにし、また他方の排気還流制御弁41に
負圧信号を導く第2の負圧信号通路32を、第3
の負圧信号通路21より導かれる負圧信号に応動
する負圧制御弁33で開閉するようにし、更に前
記第1の負圧信号通路8と第3の負圧信号通路2
1とをそれぞれ冷却水46の温度に応じて開閉す
る水温応動型開閉弁91,92を介して大気に開
放させるようにし、それぞれの排気還流制御弁
4,41に異なる作動特性を持たせて、機関の運
転状態に応じ適切な排気還流特性が得られるよう
にしてある。
As an example of an exhaust gas recirculation control device prior to the present application, there is one shown in FIG. 1, for example. That is, two negative pressure responsive exhaust recirculation control valves 4 and 41 are provided in parallel in the exhaust recirculation passage 2 connected to the intake passage 1, and a first negative pressure that guides a negative pressure signal to one exhaust recirculation control valve 4 is provided. The opening rate of the signal passage 8 to the atmosphere is changed by the negative pressure control valve 9, and the second negative pressure signal passage 32 which guides the negative pressure signal to the other exhaust gas recirculation control valve 41 is replaced by the third negative pressure signal passage 32.
The first negative pressure signal path 8 and the third negative pressure signal path 2
1 and 1 are opened to the atmosphere through temperature-responsive on-off valves 91 and 92 that open and close depending on the temperature of the cooling water 46, respectively, and the exhaust recirculation control valves 4 and 41 have different operating characteristics, Appropriate exhaust gas recirculation characteristics can be obtained depending on the operating condition of the engine.

しかしながら、このような従来の排気還流制御
装置にあつては、冷却水温度に応じて開閉する水
温応動型開閉弁を2つ使用する構成となつてお
り、これらの水温応動型開閉弁を機関に取付ける
スペースも2個分必要であり、また配管が複雑で
保守点検、コスト等の面で不利であるという問題
点があつた。
However, such conventional exhaust recirculation control devices are configured to use two water temperature-responsive on-off valves that open and close depending on the cooling water temperature, and these water temperature-responsive on-off valves are not used in the engine. There were problems in that two installation spaces were required, and the piping was complicated, which was disadvantageous in terms of maintenance and inspection, cost, etc.

本考案は、このような従来の問題点に着目して
なされたもので、第1の負圧信号通路のみに冷却
水温度に応じて開閉する水温応動型開閉弁を用
い、この第1の負圧信号通路と第3の負圧信号通
路とを第3の負圧信号通路に向かつてのみ大気の
流動を許容する逆止弁を介して連通させることに
より、上記の問題点を解決することを目的として
いる。
The present invention was developed by focusing on these conventional problems, and uses a water temperature-responsive on-off valve that opens and closes depending on the cooling water temperature only in the first negative pressure signal path. The above problem can be solved by communicating the pressure signal passage and the third negative pressure signal passage through a check valve that allows atmospheric air to flow only toward the third negative pressure signal passage. The purpose is

以下、第2図に示された一実施例に基づいて本
考案を詳細に説明する。
Hereinafter, the present invention will be explained in detail based on an embodiment shown in FIG.

図において、車両に搭載した内燃機関の気化器
絞り弁6下流の吸気通路1には、図示しない排気
通路から分岐させた排気還流通路2を接続してい
る。排気還流通路2に設けた弁体3は、負圧応動
型排気還流制御弁4のダイアフラム5に連結され
ており、ダイアフラム5によつて画成された負圧
作動室7と絞り弁6全閉状態において、絞り弁6
よりもやや上流側の吸気通路1に開口する第1の
負圧取出ポート8aとを第1の負圧信号通路8を
介して接続する。この第1の負圧信号通路8は負
圧制御弁9の弁体9aによつてその負圧信号が大
気で稀釈調整される。即ち、負圧制御弁9は吸気
通路1のベンチユリ部1aからのベンチユリ負圧
信号通路10を負圧作動室11に接続し、前記排
気還流通路2の排気還流制御弁4の上流部分4a
から分岐させた排気圧力信号通路13を負圧制御
弁9の圧力作動室14に接続しており、これら作
動室11,14を画成するダイアフラム12及び
15はロツド16を介して相互に連結されてい
る。そして吸気通路1のベンチユリ負圧(吸入空
気量の関数)と排気還流通路2の排気圧力(吸入
空気量,負荷等の関数)とに基づいてダイアフラ
ム12,15を上下動することにより弁体9aを
移動させ、第1の負圧信号通路8への大気開放通
路8bを開閉作動させ、ベンチユリ負圧から換算
する吸入空気量が増大するにともなつて、また、
排気圧力から換算する吸入空気量及び負荷が増大
するにともなつて第1の負圧信号通路8の大気稀
釈割合(吸入負圧の大気稀釈割合)を小さくし、
排気還流制御弁4の弁体3の開度を大きくして排
気還流量を増加させるようにしてある。尚、負圧
制御弁9は排気圧力信号通路13をとおる排気圧
力とベンチユリ負圧信号通路10をとおるベンチ
ユリ負圧で作動するようになつているが、少なく
とも排気圧力で応動する構造でもよい。
In the figure, an exhaust gas recirculation passage 2 branched from an exhaust passage (not shown) is connected to an intake passage 1 downstream of a carburetor throttle valve 6 of an internal combustion engine mounted on a vehicle. A valve body 3 provided in the exhaust gas recirculation passage 2 is connected to a diaphragm 5 of a negative pressure responsive exhaust recirculation control valve 4, and a negative pressure operating chamber 7 defined by the diaphragm 5 and a throttle valve 6 are fully closed. In the condition, the throttle valve 6
It is connected via a first negative pressure signal passage 8 to a first negative pressure take-out port 8a that opens into the intake passage 1 on the slightly upstream side. The negative pressure signal of the first negative pressure signal passage 8 is adjusted to be diluted with the atmosphere by the valve body 9a of the negative pressure control valve 9. That is, the negative pressure control valve 9 connects the vent lily negative pressure signal passage 10 from the vent lily portion 1a of the intake passage 1 to the negative pressure working chamber 11, and connects the upstream portion 4a of the exhaust recirculation control valve 4 of the exhaust gas recirculation passage 2 to the negative pressure working chamber 11.
An exhaust pressure signal passage 13 branched from the negative pressure control valve 9 is connected to a pressure working chamber 14 of the negative pressure control valve 9, and diaphragms 12 and 15 defining these working chambers 11 and 14 are interconnected via a rod 16. ing. The valve body 9a is then moved up and down by moving the diaphragms 12 and 15 up and down based on the vent lily negative pressure in the intake passage 1 (a function of the amount of intake air) and the exhaust pressure in the exhaust gas recirculation passage 2 (a function of the amount of intake air, load, etc.). is moved, the atmosphere opening passage 8b to the first negative pressure signal passage 8 is opened and closed, and as the amount of intake air calculated from the bench lily negative pressure increases,
As the amount of intake air converted from the exhaust pressure and the load increase, the atmospheric dilution ratio of the first negative pressure signal passage 8 (the atmospheric dilution ratio of the intake negative pressure) is decreased,
The opening degree of the valve body 3 of the exhaust gas recirculation control valve 4 is increased to increase the amount of exhaust gas recirculation. Although the negative pressure control valve 9 is designed to operate based on the exhaust pressure passing through the exhaust pressure signal passage 13 and the ventilator negative pressure passing through the ventilator negative pressure signal passage 10, it may be structured to respond to at least the exhaust pressure.

他方、排気還流通路2に弁体3と並列に設けた
弁体40は、負圧応動型排気還流制御弁41のダ
イアフラム42に連結されており、ダイアフラム
42によつて画成された負圧作動室43は途中に
負圧制御弁33を介して第2の負圧信号通路32
により吸気通路1に開口する第2の吸入負圧取出
ポート32aに接続する。更に第1の負圧取出ポ
ート8aよりやや上流の吸気通路1に開口した第
3の負圧取出ポート19に第3の負圧信号通路2
1を接続し、かつ該通路21を負圧制御弁33の
負圧作動室34に接続する。この負圧制御弁33
は第3の負圧取出ポート19から第3の負圧信号
通路21をへて、負圧作動室34に入つた負圧
と、第3の負圧信号通路21から遅延弁36及び
負圧タンク35をへて負圧作動室37に入つた負
圧との差圧で作動し、第2の負圧信号通路32の
開閉を行なう。つまり、絞り弁6が急開して差圧
が発生した加速初期のみに第2の負圧信号通路3
2を開く。ここで、第1の負圧信号通路8と第3
の負圧信号通路21とを第1の負圧信号通路8か
ら第3の負圧信号通路21に向つてのみ大気の流
動を許容する逆止弁25を有する通路21aによ
つて連通させる。また、前記第1の負圧信号通路
8は冷却水46が所定温度以下で大気導入する水
温応動型開閉弁44を有する通路8c及び通路2
1aを介して大気に開放されている。従つて逆止
弁25連通時は、第3の負圧信号通路21をも水
温応動型開閉弁44を介して大気に開放させるこ
とになる。
On the other hand, a valve body 40 provided in the exhaust gas recirculation passage 2 in parallel with the valve body 3 is connected to a diaphragm 42 of a negative pressure-responsive exhaust gas recirculation control valve 41. The chamber 43 is connected to the second negative pressure signal passage 32 via a negative pressure control valve 33 in the middle.
It is connected to a second suction negative pressure extraction port 32a that opens into the intake passage 1. Further, a third negative pressure signal passage 2 is connected to a third negative pressure output port 19 that opens into the intake passage 1 slightly upstream of the first negative pressure output port 8a.
1 and the passage 21 is connected to the negative pressure working chamber 34 of the negative pressure control valve 33. This negative pressure control valve 33
The negative pressure enters the negative pressure working chamber 34 from the third negative pressure output port 19 through the third negative pressure signal path 21, and the negative pressure enters the negative pressure working chamber 34 from the third negative pressure signal path 21 to the delay valve 36 and the negative pressure tank. 35 and enters the negative pressure operating chamber 37, the second negative pressure signal passage 32 is opened and closed. In other words, the second negative pressure signal path 3
Open 2. Here, the first negative pressure signal path 8 and the third
The negative pressure signal passage 21 is communicated with the negative pressure signal passage 21 by a passage 21a having a check valve 25 that allows atmospheric air to flow only from the first negative pressure signal passage 8 toward the third negative pressure signal passage 21. Further, the first negative pressure signal passage 8 includes a passage 8c and a passage 2 having a water temperature-responsive on-off valve 44 for introducing the cooling water 46 into the atmosphere at a predetermined temperature or lower.
It is open to the atmosphere via 1a. Therefore, when the check valve 25 is in communication, the third negative pressure signal passage 21 is also opened to the atmosphere via the water temperature responsive on-off valve 44.

逆止弁25は具体的には第3図に示されるよう
になつている。A,B両室を仕切る隔壁25aの
連通孔25bを、第3の負圧信号通路21に近い
B室にあるスプリング25cのばね力により弁体
25dで閉塞する構成としている。弁体25dは
A,B両室に圧力差が生じB室の圧力が低くなつ
た時のみ弁体25dが開きA室からB室へと空気
流が生じる。
Specifically, the check valve 25 is designed as shown in FIG. The communication hole 25b of the partition wall 25a that partitions the A and B chambers is closed by a valve body 25d by the spring force of a spring 25c located in the B chamber near the third negative pressure signal passage 21. The valve body 25d opens only when there is a pressure difference between the A and B chambers and the pressure in the B chamber becomes low, causing an air flow from the A chamber to the B chamber.

水温応動型開閉弁44は、具体的には第4図に
示されるようになつている。温度によつて体積が
容易に変化するワツクス44cを有するワツクス
容積44dを機関の冷却水46に接するように取
付け、弁体44aの一方は弁座44eに他方の突
端はワツクス44c内に接している。そして、弁
体44aには常に開弁方向の力がかかるようにス
プリング44bが設けてあり、機関の冷却水46
が所定温度以上になつたとき弁体44aが弁座4
4eに着座して大気通路45と第1の負圧通路8
を遮断するように調整してある。
Specifically, the water temperature responsive on-off valve 44 is as shown in FIG. A wax volume 44d having a wax 44c whose volume easily changes depending on the temperature is installed so as to be in contact with the cooling water 46 of the engine, and one end of the valve body 44a is in contact with the valve seat 44e and the other end is in contact with the inside of the wax 44c. . A spring 44b is provided on the valve body 44a so that a force in the valve opening direction is always applied to the valve body 44a.
reaches a predetermined temperature or higher, the valve body 44a closes to the valve seat 4
4e, the atmospheric passage 45 and the first negative pressure passage 8
It has been adjusted to block the

故に機関の冷却水46の温度が所定温度以下の
場合には、弁体44aが弁座44eから離れてお
り、第1の負圧信号通路8を通路21a,通路8
c,大気通路45を介して大気に開放して負圧制
御弁9に供給される信号負圧を大気で稀釈する。
このとき逆止弁25においてA室が大気圧となり
負圧の大きいB室との間に差圧が発生し弁体25
dを開く。その結果、大気通路45,通路8cか
ら逆止弁25を有する通路21aを介して第3の
負圧信号通路21に大気が流入し、第3の負圧信
号通路21の信号負圧をも大気で稀釈すべくして
ある。
Therefore, when the temperature of the engine cooling water 46 is below a predetermined temperature, the valve body 44a is separated from the valve seat 44e, and the first negative pressure signal passage 8 is connected to the passage 21a and the passage 8.
c. The signal negative pressure that is opened to the atmosphere via the atmospheric passage 45 and supplied to the negative pressure control valve 9 is diluted with the atmosphere.
At this time, in the check valve 25, chamber A becomes atmospheric pressure, and a pressure difference is generated between chamber A and chamber B, which has a large negative pressure, and the valve body 25
Open d. As a result, the atmosphere flows into the third negative pressure signal path 21 from the atmosphere path 45 and the path 8c through the path 21a having the check valve 25, and the signal negative pressure in the third negative pressure signal path 21 is also changed to the atmosphere. It is intended to be diluted with

また、かかる構成において、機関の冷却水46
の温度が所定温度以上の機関運転状態では、弁体
44aが弁座44eに着座して通路8cと大気通
路45を遮断している。従つて第1の負圧信号通
路8には大気が導入されず、第1の負圧取出ポー
ト8aから取出した負圧がそのままの状態で負圧
制御弁9の負圧作動室11に供給され、ベンチユ
リ部から導出しベンチユリ負圧信号通路10をと
おるベンチユリ負圧及び排気還流通路2から取出
した排気圧力信号通路13をとおる排気圧力に応
答して第1の負圧信号通路8の大気開放口を開閉
する負圧制御弁9を開閉制御し、これにより吸入
空気量及び負荷に応じて大気で稀釈された信号負
圧を排気還流制御弁4に供給し、弁体3の開度を
調整して所定量(率)の排気を吸気中に還流させ
る。一方、第3の負圧取出ポート19から取出し
た負圧はそのままの状態で第3の負圧信号通路2
1より負圧制御弁33の負圧作動室34に供給さ
れ負圧制御弁33を正常に作動させ、負圧制御弁
33が開弁作動した状態においては第2の負圧信
号通路32を開通させ、吸入通路1に開口した吸
入負圧取出ポート32aから取出した吸入負圧が
第2の負圧信号通路32より補助負圧作動型の排
気還流弁41の負圧作動室43に導かれ、これに
よりダイアフラム42に連結されている弁体40
を開弁方向に作動させ、所定量の排気を吸気中に
還流させる。
In addition, in such a configuration, the engine cooling water 46
When the engine is operating at a temperature equal to or higher than a predetermined temperature, the valve body 44a seats on the valve seat 44e and blocks the passage 8c from the atmosphere passage 45. Therefore, the atmosphere is not introduced into the first negative pressure signal passage 8, and the negative pressure taken out from the first negative pressure outlet port 8a is supplied as is to the negative pressure operating chamber 11 of the negative pressure control valve 9. , the atmosphere opening port of the first negative pressure signal passage 8 in response to the bench lily negative pressure led out from the bench lily portion and passed through the bench lily negative pressure signal passage 10 and the exhaust pressure passed through the exhaust pressure signal passage 13 taken out from the exhaust gas recirculation passage 2. The negative pressure control valve 9 is controlled to open and close, thereby supplying a signal negative pressure diluted with atmospheric air to the exhaust recirculation control valve 4 according to the intake air amount and load, and adjusting the opening degree of the valve body 3. A predetermined amount (rate) of exhaust gas is recirculated into the intake air. On the other hand, the negative pressure taken out from the third negative pressure take-out port 19 remains as it is and is transferred to the third negative pressure signal path 2.
1 to the negative pressure operating chamber 34 of the negative pressure control valve 33 to operate the negative pressure control valve 33 normally, and when the negative pressure control valve 33 is opened, the second negative pressure signal passage 32 is opened. Then, the suction negative pressure taken out from the suction negative pressure take-out port 32a opened to the suction passage 1 is guided from the second negative pressure signal passage 32 to the negative pressure operation chamber 43 of the auxiliary negative pressure operation type exhaust recirculation valve 41, Thereby, the valve body 40 connected to the diaphragm 42
is operated in the valve-opening direction to recirculate a predetermined amount of exhaust gas into the intake air.

以上説明したように本考案によれば、2個の排
気還流制御弁への負圧信号の独立性を保ちながら
それぞれの負圧信号通路への大気との連通作用を
1つの水温応動型開閉弁で制御することができる
ので、構造が簡単となり機関のレイアウト面や保
守点検さらにコスト等の面で極めて有利となると
いう効果が得られる。
As explained above, according to the present invention, while maintaining the independence of the negative pressure signals to the two exhaust gas recirculation control valves, the communication between the negative pressure signal passages and the atmosphere is controlled by one water temperature responsive on-off valve. Since the engine can be controlled by the engine, the structure can be simplified, which is extremely advantageous in terms of engine layout, maintenance and inspection, and cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の排気還流制御装置を示す断面
図、第2図は本考案の一実施例に係る排気還流制
御装置を示す断面図、第3図は第2図のA部詳細
断面図、第4図は第2図のB部詳細断面図であ
る。 1……吸気通路、2……排気還流通路、4……
排気還流制御弁、8……第1の負圧信号通路、9
……負圧制御弁、21……第3の負圧信号通路、
25……逆止弁、32……第2の負圧信号通路、
33……負圧制御弁、41……排気還流制御弁、
44……水温応動型開閉弁、45……大気通路、
46……冷却水。
FIG. 1 is a sectional view showing a conventional exhaust gas recirculation control device, FIG. 2 is a sectional view showing an exhaust gas recirculation control device according to an embodiment of the present invention, and FIG. 3 is a detailed sectional view of section A in FIG. FIG. 4 is a detailed sectional view of section B in FIG. 2. 1...Intake passage, 2...Exhaust recirculation passage, 4...
Exhaust recirculation control valve, 8...first negative pressure signal passage, 9
... Negative pressure control valve, 21 ... Third negative pressure signal passage,
25...Check valve, 32...Second negative pressure signal passage,
33... Negative pressure control valve, 41... Exhaust recirculation control valve,
44...Water temperature responsive on-off valve, 45...Atmospheric passage,
46...Cooling water.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 排気還流通路に2つの負圧応動型排気還流制御
弁を並列に設け、一方の排気還流制御弁と吸気通
路に開口する第1の負圧取出ポートとを第1の負
圧信号通路によつて接続し、すくなくとも排気圧
力に応動する負圧制御弁で、前記第1の負圧信号
通路の負圧に対する大気稀釈割合を変化させ、こ
の負圧制御弁で調整された負圧で一方の排気還流
制御弁を作動させるとともに、他方の排気還流制
御弁と吸気通路に開口する第2の負圧取出ポート
とを第2の負圧信号通路によつて接続し、第3の
負圧信号通路により導かれる負圧と、この負圧を
遅延弁を介して導入した負圧との差圧に応動する
負圧制御弁で前記第2の負圧信号通路を開閉し、
差圧が発生している前記加速初期のみ他方の排気
還流制御弁を作動させる構造の排気還流制御装置
において、機関の冷却水の温度検出手段を備え冷
却水が所定温度以下のとき開弁作動して大気導入
する水温応動型開閉弁を前記第1の負圧信号通路
の途中に設けると共に、この第1の負圧信号通路
と前記第3の負圧信号通路とを第3の負圧信号通
路に向かつてのみ大気の流動を許容する逆止弁を
有する通路で連通させたことを特徴とする排気還
流制御装置。
Two negative pressure-responsive exhaust recirculation control valves are provided in parallel in the exhaust gas recirculation passage, and one of the exhaust recirculation control valves and a first negative pressure take-out port that opens into the intake passage are connected by a first negative pressure signal passage. A negative pressure control valve connected to the valve and responsive to at least the exhaust pressure changes the atmospheric dilution ratio with respect to the negative pressure in the first negative pressure signal path, and controls one exhaust gas recirculation with the negative pressure adjusted by the negative pressure control valve. While operating the control valve, the other exhaust recirculation control valve and the second negative pressure take-out port that opens into the intake passage are connected through the second negative pressure signal path, and the third negative pressure signal path is connected to opening and closing the second negative pressure signal passage using a negative pressure control valve that responds to the differential pressure between the negative pressure generated and the negative pressure introduced via the delay valve;
The exhaust recirculation control device has a structure in which the other exhaust recirculation control valve is operated only in the early stages of acceleration when a pressure difference is generated, and the exhaust recirculation control valve is provided with temperature detection means for engine cooling water and opens the valve when the cooling water is at a predetermined temperature or lower. A water temperature-responsive on-off valve for introducing atmospheric air is provided in the middle of the first negative pressure signal path, and the first negative pressure signal path and the third negative pressure signal path are connected to a third negative pressure signal path. 1. An exhaust gas recirculation control device, characterized in that the exhaust gas recirculation control device is connected through a passage having a check valve that allows atmospheric air to flow only toward the direction of the air.
JP10689280U 1980-07-30 1980-07-30 Expired JPS6113732Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10689280U JPS6113732Y2 (en) 1980-07-30 1980-07-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10689280U JPS6113732Y2 (en) 1980-07-30 1980-07-30

Publications (2)

Publication Number Publication Date
JPS5730364U JPS5730364U (en) 1982-02-17
JPS6113732Y2 true JPS6113732Y2 (en) 1986-04-28

Family

ID=29468237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10689280U Expired JPS6113732Y2 (en) 1980-07-30 1980-07-30

Country Status (1)

Country Link
JP (1) JPS6113732Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619448U (en) * 1984-06-25 1986-01-20 松下電工株式会社 attic storage box
JPS62159609A (en) * 1985-12-28 1987-07-15 株式会社岡村製作所 Rotary receiving shelf
JPS6462551A (en) * 1987-08-31 1989-03-09 Daiichi Home Kk Garret container

Also Published As

Publication number Publication date
JPS5730364U (en) 1982-02-17

Similar Documents

Publication Publication Date Title
US4041914A (en) Exhaust gas recirculation system with control apparatus for exhaust gas flow control valve
US4186698A (en) Engine exhaust gas recirculation control system
US4033309A (en) Exhaust gas recirculation system with control apparatus for exhaust gas flow control valve
US3977381A (en) Exhaust gas recirculation system
US4111172A (en) System to feed exhaust gas into the induction passage of an internal combustion engine
US4398525A (en) Multi-stage exhaust gas recirculation system
JPS6113732Y2 (en)
GB1442509A (en) Engine exhaust gas recirculating system
US4173204A (en) Control valve of exhaust recirculation apparatus
US4202524A (en) Valve positioner and method of making the same
US4398524A (en) Exhaust gas recirculation system
US3885536A (en) Recirculating exhaust gas load initiated control (relic)
US4114575A (en) Exhaust pressure regulating system
US4150649A (en) Load responsive EGR valve
JPS6157465B2 (en)
US4218040A (en) Valve positioner and method of making same
US4409945A (en) Exhaust gas recirculation system
JPS5917265B2 (en) exhaust gas recirculation valve
US4181254A (en) Pneumatically and temperature controlled valve construction
JPS6212832Y2 (en)
US4508134A (en) Controlling EGR in an internal combustion engine and fluid pressure signal controller therefor
JPH0349341Y2 (en)
US4401092A (en) Exhaust gas recirculation system
JPH0322518Y2 (en)
JPS5823976Y2 (en) Exhaust gas recirculation device