JPH0349341Y2 - - Google Patents

Info

Publication number
JPH0349341Y2
JPH0349341Y2 JP16063584U JP16063584U JPH0349341Y2 JP H0349341 Y2 JPH0349341 Y2 JP H0349341Y2 JP 16063584 U JP16063584 U JP 16063584U JP 16063584 U JP16063584 U JP 16063584U JP H0349341 Y2 JPH0349341 Y2 JP H0349341Y2
Authority
JP
Japan
Prior art keywords
valve
negative pressure
hole
reed
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16063584U
Other languages
Japanese (ja)
Other versions
JPS6175566U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16063584U priority Critical patent/JPH0349341Y2/ja
Publication of JPS6175566U publication Critical patent/JPS6175566U/ja
Application granted granted Critical
Publication of JPH0349341Y2 publication Critical patent/JPH0349341Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Fluid-Driven Valves (AREA)
  • Check Valves (AREA)
  • Flow Control (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、自動車の排気ガス浄化システム等に
使用される流量制御装置に関し、特に、弁筐内に
形成した流入路と流出路との間にリード弁を設け
るとともに、該リード弁の上流側に1個の開閉弁
を配設したリード弁付流量制御装置、とりわけ開
閉弁の開放時に流入路から流出路へ流れる流体の
流量を3段階に可変制御し得るようにしたものに
関する。
[Detailed description of the invention] (Field of industrial application) The present invention relates to a flow rate control device used in an automobile exhaust gas purification system, etc. A flow control device with a reed valve is provided with a reed valve in the reed valve, and one on-off valve is arranged on the upstream side of the reed valve. In particular, when the on-off valve is opened, the flow rate of the fluid flowing from the inflow path to the outflow path is set in three stages. It relates to something that can be variably controlled.

(従来の技術) 従来、リード弁付流量制御装置としては第3図
に示すようなものが知られている。すなわち、弁
筐101内に形成された流入路102と流出路1
03との間にリード弁105が設けられ、該リー
ド弁105の上流側に開閉弁106が配設され、
この開閉弁106は、外周部を弁筐101に固着
されるとともに中央部に弁孔107aを備えた弁
座部材107と、その弁座部材107の上方に上
下方向に移動可能に配置されて弁孔107aを開
閉し得る弁体108とからなる。弁体108に
は、弁筐101に上下方向に摺動可能に支承され
た弁杆109の一端が固着され、その弁杆109
の他端は、外周部を弁筐101に挟持されたダイ
ヤフラム110の中央部に固着されており、該ダ
イヤフラム110により弁筐101の内部は大気
に連通する大気圧室111と負圧源(図示せず)
に連通される負圧室112とに区画されている。
負圧室112内には、ダイヤフラム110を下方
に付勢するコイルばね113が縮設され、このば
ね113によつてダイヤフラム110は大気圧室
111側へ押圧され、通常時、弁杆109を介し
て弁体108が弁座部材107に着座するように
押圧されて弁孔107aを閉じるようになつてい
る。
(Prior Art) Conventionally, a flow control device with a reed valve as shown in FIG. 3 is known. That is, the inlet passage 102 and the outlet passage 1 formed in the valve housing 101
A reed valve 105 is provided between the reed valve 105 and the reed valve 105, and an on-off valve 106 is provided upstream of the reed valve 105.
The on-off valve 106 includes a valve seat member 107 whose outer circumferential portion is fixed to the valve housing 101 and which has a valve hole 107a in the central portion, and a valve seat member 107 which is disposed above the valve seat member 107 so as to be movable in the vertical direction. It consists of a valve body 108 that can open and close the hole 107a. One end of a valve rod 109 that is vertically slidably supported by the valve housing 101 is fixed to the valve body 108.
The other end is fixed to the center of a diaphragm 110 whose outer periphery is held between the valve housing 101, and the diaphragm 110 connects the inside of the valve housing 101 to an atmospheric pressure chamber 111 communicating with the atmosphere and a negative pressure source (Fig. (not shown)
It is divided into a negative pressure chamber 112 and a negative pressure chamber 112 which is communicated with.
A coil spring 113 that urges the diaphragm 110 downward is installed in the negative pressure chamber 112, and the diaphragm 110 is pressed toward the atmospheric pressure chamber 111 by the spring 113. The valve body 108 is pressed so as to be seated on the valve seat member 107, thereby closing the valve hole 107a.

また流入路102は大気側に連通されるととも
に流出路103は負圧側に連通されており、流出
路103内の負圧が一定値を越えたときリード弁
105が該負圧により開放される。第4図に示す
ように、負圧室112内の負圧が所定値Aを越え
たとき、ダイヤフラム110が負圧によりばね1
13の付勢力に抗して負圧室112側へ移動され
て弁体108が弁座部材107より離れて弁孔1
07aを開放し始め、負圧が所定値Bを越えたと
き、弁体108が弁孔107aを完全に開放して
それ以後負圧が上昇しても弁孔107aを通過す
る流体の流量は一定になる。
Further, the inlet passage 102 is communicated with the atmosphere, and the outlet passage 103 is communicated with the negative pressure side, and when the negative pressure in the outlet passage 103 exceeds a certain value, the reed valve 105 is opened by the negative pressure. As shown in FIG. 4, when the negative pressure in the negative pressure chamber 112 exceeds a predetermined value A, the diaphragm 110 is caused to spring 1 by the negative pressure.
The valve body 108 is moved toward the negative pressure chamber 112 against the biasing force of the valve member 13, and the valve body 108 is separated from the valve seat member 107 and closed to the valve hole 1.
07a and when the negative pressure exceeds a predetermined value B, the valve body 108 completely opens the valve hole 107a, and even if the negative pressure increases thereafter, the flow rate of the fluid passing through the valve hole 107a remains constant. become.

尚、第3図中、114は弁孔114aを備えた
リード弁105の弁座、115はリード弁体、1
16はリードストツパである。
In addition, in FIG. 3, 114 is a valve seat of the reed valve 105 equipped with a valve hole 114a, 115 is a reed valve body, 1
16 is a lead stopper.

(考案が解決しようとする問題点) しかしながら上記した従来例にあつては、開閉
弁106の開閉時には流入路102からの流体は
全量、開閉弁106の弁孔107aおよびリード
弁105の弁孔114aを通つて流出路103へ
流れ、一方開閉弁106の閉鎖時には流入路10
2から流出路103への流体は完全に遮断され
る。従つて、負圧室112の負圧の変化によつて
流体の流量を2段階(零又は微小量と最大量)に
しか変更できなかつた。従つて流体の流量を3段
階以上に可変制御する必要のある場合には、開閉
弁106の開弁量を3段階以上に制御する特殊な
アクチユエータを使用したり、電磁弁等の開閉弁
を更に追加しなければならず、このため構造が複
雑化するとともに部品点数が増加してコストアツ
プを招くという問題点があつた。
(Problem to be Solved by the Invention) However, in the conventional example described above, when the on-off valve 106 is opened and closed, the entire amount of fluid from the inflow passage 102 is transferred to the valve hole 107a of the on-off valve 106 and the valve hole 114a of the reed valve 105. through the outflow passage 103, while when the on-off valve 106 is closed, the inflow passage 10
2 to the outflow path 103 is completely blocked. Therefore, by changing the negative pressure in the negative pressure chamber 112, the fluid flow rate can only be changed in two stages (zero or very small amount and maximum amount). Therefore, if it is necessary to variably control the flow rate of the fluid in three or more stages, a special actuator that controls the opening amount of the on-off valve 106 in three or more stages may be used, or an on-off valve such as a solenoid valve may be used. Therefore, there were problems in that the structure became complicated and the number of parts increased, leading to an increase in costs.

そこで本考案は上記した問題点に着目してなさ
れたもので、その目的とするところは、特殊なア
クチユエータや開閉弁を2個以上必要とすること
なく、唯1個の開閉弁により負圧の変化に応じて
流体の流量を3段階に可変制御し得る、構造簡単
で安価なリード弁付流量制御装置を提供すること
にある。
Therefore, the present invention was developed with a focus on the above-mentioned problems, and its purpose is to reduce negative pressure by using only one on-off valve, without requiring two or more special actuators or on-off valves. It is an object of the present invention to provide a flow control device with a reed valve that is simple in structure and inexpensive and can variably control the flow rate of fluid in three stages according to changes.

(問題点を解決するための手段) 上記目的を達成するため、本考案は、弁筐内に
形成した流入路を隔壁により第一、第二流入路に
区画するとともに該隔壁に、開閉弁の弁座部材に
形成された弁孔に対面する位置に通孔を穿設し、
前記開閉弁の弁体を前記通孔と弁孔との間に配設
して該弁体により前記弁孔および通孔を選択的に
開閉し得るように構成した。
(Means for Solving the Problems) In order to achieve the above object, the present invention divides the inflow path formed in the valve casing into a first and second inflow path by a partition wall, and also includes an on-off valve in the partition wall. A through hole is bored at a position facing the valve hole formed in the valve seat member,
The valve body of the on-off valve is disposed between the through hole and the valve hole so that the valve hole and the through hole can be selectively opened and closed by the valve body.

(作用) 流出路内には負圧が脈動的に働き、リード弁が
開閉を繰り返しているが、負圧室内の負圧が所定
値に達するまでは、弁孔は閉じられており、吸気
は成されない(第1段階)。
(Function) Negative pressure acts in a pulsating manner in the outflow passage, and the reed valve repeatedly opens and closes, but until the negative pressure in the negative pressure chamber reaches a predetermined value, the valve hole is closed and the intake air is Not achieved (first stage).

次に、負圧室内の負圧が所定値に達すると、そ
の負圧により弁体が弁座部材より離隔して弁孔が
流入路と連通する。そして、この時、流出路内に
は負圧がかけられているため、流出路内に流入路
から吸気が成される。この状態では、第一、第二
流入路は、ともに弁座部材の弁孔へと通じている
(第2段階)。
Next, when the negative pressure in the negative pressure chamber reaches a predetermined value, the negative pressure causes the valve body to separate from the valve seat member, and the valve hole communicates with the inflow path. At this time, since a negative pressure is applied to the inside of the outflow path, air is drawn into the outflow path from the inflow path. In this state, both the first and second inflow passages communicate with the valve hole of the valve seat member (second stage).

そして、負圧室内の負圧がさらに増大して第2
段階での所定値を越えると、その負圧により弁体
が隔壁に着座して通孔を閉鎖する。この状態で
は、第一流入路と流出路との連通は遮断され、第
二流入路だけが弁孔を介して流出路に連通する。
従つて、このとき流入路から流出路への流量は第
2段階での値よりも減少された値となる(第3段
階)。
Then, the negative pressure in the negative pressure chamber further increases and the second
When the predetermined value in the step is exceeded, the negative pressure causes the valve body to seat against the partition wall and close the passage hole. In this state, communication between the first inflow path and the outflow path is cut off, and only the second inflow path communicates with the outflow path via the valve hole.
Therefore, at this time, the flow rate from the inflow path to the outflow path becomes a value that is smaller than the value in the second stage (third stage).

このようにして、1個の開閉弁により負圧の変
化に応じて流量が第1段階乃至第3段階の3段階
に可変制御される。
In this way, the flow rate is variably controlled in three stages, from the first stage to the third stage, according to changes in negative pressure by one on-off valve.

(実施例) 以下、図面を参照して本考案の実施例について
説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図には、本考案に係るリード弁付流量制御
装置を車両用エンジンの排気ガス対策用の二次空
気導入システムに適用した場合の実施例が示され
ている。第1図において、1は弁筐で、この弁筐
1は弁筐本体1aと、その弁筐本体1aの上端に
取付けられた蓋体1bとからなり、弁筐本体1a
内には、大気側すなわちエンジンの吸気路(図示
せず)の絞り弁(図示せず)よりも上流側の部分
に連通される流入路2と、負圧側すなわちエンジ
ンの吸気路(図示せず)の絞り弁(図示せず)よ
りも下流側の部分に連通される流出路3が形成さ
れている。流入路2は隔壁4により第一流入路2
aと第二流入路2bとに区画され、この隔壁4に
は、後述する開閉弁5の弁座部材6に設けた弁孔
6aに対面する位置に通孔4a,4a…が形成さ
れており、該通孔4a,4a…により第一流入路
2aと第二流入路2bとが連通されている。
FIG. 1 shows an embodiment in which a flow rate control device with a reed valve according to the present invention is applied to a secondary air introduction system for exhaust gas control of a vehicle engine. In FIG. 1, 1 is a valve housing, and this valve housing 1 consists of a valve housing body 1a and a lid body 1b attached to the upper end of the valve housing body 1a.
Inside, there is an inflow passage 2 that communicates with the atmosphere side, that is, a portion of the engine intake passage (not shown) upstream of the throttle valve (not shown), and a negative pressure side, that is, the engine intake passage (not shown). ) is formed with an outflow path 3 that communicates with a portion on the downstream side of the throttle valve (not shown). The inflow path 2 is connected to the first inflow path 2 by the partition wall 4.
The partition wall 4 is formed with through holes 4a, 4a, . , the first inflow path 2a and the second inflow path 2b are communicated with each other through the through holes 4a, 4a, . . . .

弁筐本体1a内において第二流入路2bと流出
路3との間には弁室10が設けられ、その弁室1
0にはリード弁11と開閉弁5が配設されてい
る。リード弁11は、外周部においてガスケツト
13を介して弁筐本体1aに気密状に取付けら
れ、中央部に弁孔14aを備えた弁座14と、そ
の弁座14の、流出路3側の側面にリードストツ
パ15とともに取付けられたリード弁体16とか
らなり、該リード弁体16は通常弁座14に着座
して弁孔14aを閉じているが、流出路3内の負
圧が一定値を越えると弁孔14aを開放するよう
になつている。
A valve chamber 10 is provided between the second inflow path 2b and the outflow path 3 within the valve housing body 1a, and the valve chamber 1
0 is provided with a reed valve 11 and an on-off valve 5. The reed valve 11 is airtightly attached to the valve housing main body 1a via a gasket 13 on the outer periphery, and includes a valve seat 14 having a valve hole 14a in the center, and a side surface of the valve seat 14 on the outflow path 3 side. The reed valve body 16 is usually seated on the valve seat 14 and closes the valve hole 14a, but if the negative pressure in the outflow passage 3 exceeds a certain value. and opens the valve hole 14a.

前記リード弁11の上流側に設けられた開閉弁
5は、外周部をガスケツト13と弁筐本体1a間
に挟持され、中央部に弁孔14aを有する弁座部
材6と、その弁座部材6の上方に配置された弁体
18と、一端を弁体18に固着されるとともに他
端をダイヤフラム19に固着された弁杆20とか
らなり、弁杆20は第一、第二流入路2a,2b
間の隔壁4に一体に形成した環状のガイド部4b
に上下方向に摺動自在に嵌合されている。
The on-off valve 5 provided on the upstream side of the reed valve 11 includes a valve seat member 6 whose outer periphery is sandwiched between a gasket 13 and a valve housing body 1a, and which has a valve hole 14a in the center, and the valve seat member 6. It consists of a valve body 18 disposed above, and a valve rod 20 whose one end is fixed to the valve body 18 and the other end is fixed to the diaphragm 19, and the valve rod 20 has first and second inflow passages 2a, 2b
An annular guide portion 4b integrally formed with the partition wall 4 between
is fitted to be slidable vertically.

弁杆20に固着されたダイヤフラム19は外周
部を弁筐本体1aの上端面と、蓋体1bの下端面
とにより挟持され、蓋体1b内部にはダイヤフラ
ム19によつて負圧室25が区画形成され、該負
圧室25は負圧源、例えばエンジンの吸気路(図
示せず)の絞り弁(図示せず)の下流側の部分に
連通されており、またダイヤフラム19の、前記
負圧室25と反対側には、弁筐本体1a、ダイヤ
フラム19および隔壁4とにより大気圧室26が
区画形成され、該大気圧室26は第一流入路2a
に連通されている。
The outer periphery of the diaphragm 19 fixed to the valve rod 20 is held between the upper end surface of the valve housing body 1a and the lower end surface of the lid body 1b, and a negative pressure chamber 25 is defined inside the lid body 1b by the diaphragm 19. The negative pressure chamber 25 is in communication with a negative pressure source, for example, a portion of the intake passage (not shown) of the engine downstream of a throttle valve (not shown), and the negative pressure chamber 25 of the diaphragm 19 is connected to On the side opposite to the chamber 25, an atmospheric pressure chamber 26 is defined by the valve housing body 1a, the diaphragm 19, and the partition wall 4, and the atmospheric pressure chamber 26 is connected to the first inflow path 2a.
is communicated with.

負圧室25内にはコイルばね27が縮設されて
おり、このコイルばね27によりダイヤフラム1
9は第1図で下方へ押圧され、弁杆20を介して
弁体18が弁座部材6へ押圧されて弁孔6aを閉
鎖し、一方負圧室25内の負圧が一定値C(第2
図参照)を超すと、負圧力がコイルばね27の押
圧力に打勝つてダイヤフラム19を第1図で負圧
室25側へ移動させて弁孔6aを開放する。負圧
室25内の負圧が更に増大して一定値Dを超える
と、ダイヤフラム19が該負圧により更に負圧室
25側へ移動されて弁体18は隔壁4に当接して
通孔4a,4a…を閉鎖する。
A coil spring 27 is compressed in the negative pressure chamber 25, and this coil spring 27 causes the diaphragm 1 to
9 is pressed downward as shown in FIG. Second
(see figure), the negative pressure overcomes the pressing force of the coil spring 27 and moves the diaphragm 19 toward the negative pressure chamber 25 in FIG. 1, opening the valve hole 6a. When the negative pressure in the negative pressure chamber 25 further increases and exceeds a certain value D, the diaphragm 19 is further moved toward the negative pressure chamber 25 side by the negative pressure, and the valve body 18 comes into contact with the partition wall 4 and closes the through hole 4a. , 4a... are closed.

尚、図中、符号28は第二流入路2bに設けた
固定オリフイスである。
In addition, in the figure, the reference numeral 28 is a fixed orifice provided in the second inflow path 2b.

次に、上記実施例の作用について説明する。 Next, the operation of the above embodiment will be explained.

今、エンジンの運転中に絞り弁(図示せず)を
閉じると、吸気路(図示せず)よりエンジンの燃
焼室(図示せず)へ供給される空気量が減少して
燃焼室内では不完全燃焼が生じ易くなり、その結
果大気へ放出される排気ガス中の一酸化炭素等の
未燃成分の割合が増加して大気汚染につながる。
しかしながら、この場合、絞り弁の閉鎖により吸
気路の絞り弁下流側の負圧が増大していくので、
該吸気路の絞り弁下流側に連通する弁筐1の流出
路3内の負圧が増大し、まずリード弁11が開放
され、次いで吸気路の絞り弁下流側に連通する負
圧室25内の負圧が所定値Cを越えると、該負圧
によりダイヤフラム19がコイルばね27の付勢
力に抗して負圧室25側へ移動されて弁体18が
弁座部材6より離隔して弁孔6aが開放される。
この状態では、第一、第二流入路2a,2bが隔
壁4に設けた通孔4a,4b…を介して互に連通
されているので、吸気路(図示せず)の絞り弁
(図示せず)上流側に連通される流入路2へ流入
した大気は、第一流入路2a、大気圧室26およ
び隔壁4の通孔4a,4a…を通つて弁室10へ
流入するとともに第二流入路2bのオリフイス2
8を通つて弁室10へ流入し、該弁室10から弁
座部材6の弁孔6aおよびリード弁11の弁孔1
4aを通つて流出路3に導かれ、そこから吸気路
(図示せず)を介してエンジンの燃焼室(図示せ
ず)へ供給される。
Now, when the throttle valve (not shown) is closed while the engine is running, the amount of air supplied from the intake passage (not shown) to the combustion chamber (not shown) of the engine will be reduced and the air will be incomplete in the combustion chamber. Combustion becomes more likely to occur, and as a result, the proportion of unburned components such as carbon monoxide in the exhaust gas released into the atmosphere increases, leading to air pollution.
However, in this case, the negative pressure on the downstream side of the throttle valve in the intake passage increases due to the closure of the throttle valve.
The negative pressure in the outflow passage 3 of the valve housing 1 that communicates with the downstream side of the throttle valve in the intake passage increases, first the reed valve 11 is opened, and then the negative pressure in the negative pressure chamber 25 that communicates with the downstream side of the throttle valve in the intake passage increases. When the negative pressure exceeds a predetermined value C, the diaphragm 19 is moved toward the negative pressure chamber 25 against the biasing force of the coil spring 27, and the valve body 18 is separated from the valve seat member 6 to close the valve. Hole 6a is opened.
In this state, the first and second inflow passages 2a, 2b communicate with each other via the through holes 4a, 4b... provided in the partition wall 4, so the throttle valve (not shown) of the intake passage (not shown) 1) Atmospheric air that has flowed into the inflow path 2 communicating with the upstream side flows into the valve chamber 10 through the first inflow path 2a, the atmospheric pressure chamber 26, and the through holes 4a, 4a... of the partition wall 4, and also flows into the second inflow path. Orifice 2 of road 2b
8 into the valve chamber 10, and from the valve chamber 10 into the valve hole 6a of the valve seat member 6 and the valve hole 1 of the reed valve 11.
4a into the outlet passage 3, from where it is supplied via an intake passage (not shown) to the combustion chamber (not shown) of the engine.

また、負圧室25内の負圧が更に増大して所定
値Dを超えると、該負圧によりダイヤフラム19
が負圧室25側へ更に移動して弁体18が隔壁4
を着座して通孔4a,4a…を閉鎖する。この状
態では、第二流入路2aと弁室10との連通は遮
断されるので、大気は第二流入路2bのオリフイ
ス28を通つて弁室10へ流入し、そこから弁孔
6a,14aを通つて流出路3へ導かれる。従つ
て、このとき流入路2から流出路3へ流れる空気
量はオリフイス28により絞られて一定値r(第
2図参照)に減少される。
Further, when the negative pressure inside the negative pressure chamber 25 increases further and exceeds the predetermined value D, the negative pressure causes the diaphragm 19 to
further moves toward the negative pressure chamber 25 side, and the valve body 18 moves toward the partition wall 4.
is seated, and the through holes 4a, 4a, . . . are closed. In this state, communication between the second inflow path 2a and the valve chamber 10 is cut off, so the atmosphere flows into the valve chamber 10 through the orifice 28 of the second inflow path 2b, and from there flows into the valve holes 6a, 14a. through which it is led to the outflow channel 3. Therefore, at this time, the amount of air flowing from the inflow path 2 to the outflow path 3 is throttled by the orifice 28 and reduced to a constant value r (see FIG. 2).

(考案の効果) 本考案に係るリード弁付流量制御装置は以上の
構成および作用からなるもので、弁の開閉作動用
の特殊なアクチユエータや開閉弁を2個以上必要
とすることなく、唯1個の開閉弁により負圧室内
の負圧の変化に応じて流入路から流出路へ流れる
流体の流量を3段階に可変制御し得るものであ
る。また開閉弁を唯1個使用するだけなので、従
来のものに較べて部品点数が少なく構成が簡単に
なりコストダウンを図ることができるとともに、
装置全体をコンパクトにすることができる。
(Effect of the invention) The flow control device with a reed valve according to the invention has the above-described configuration and operation, and is the only one that does not require special actuators or two or more on-off valves for opening and closing the valve. The flow rate of the fluid flowing from the inflow path to the outflow path can be variably controlled in three stages according to changes in the negative pressure in the negative pressure chamber using the individual on-off valves. In addition, since only one on-off valve is used, the number of parts is reduced compared to conventional ones, simplifying the configuration and reducing costs.
The entire device can be made compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係るリード弁付流量制御装置
の縦断側面図、第2図はその流量特性を示すグラ
フ、第3図は従来のリード弁付流量制御装置の縦
断側面図、第4図はその流量特性を示すグラフで
ある。 符号の説明、1……弁筐、2……流入路、2a
……第一流入路、2b……第二流入路、3……流
出路、4……隔壁、4a……通孔、5……開閉
弁、6……弁座部材、6a……弁孔、11……リ
ード弁、18……弁体。
Fig. 1 is a longitudinal side view of a flow control device with a reed valve according to the present invention, Fig. 2 is a graph showing its flow characteristics, Fig. 3 is a longitudinal side view of a conventional flow control device with a reed valve, and Fig. 4 is a graph showing the flow rate characteristics. Explanation of symbols, 1...Valve housing, 2...Inflow path, 2a
...First inflow path, 2b...Second inflow path, 3...Outflow path, 4...Partition wall, 4a...Through hole, 5...Opening/closing valve, 6...Valve seat member, 6a...Valve hole , 11... Reed valve, 18... Valve body.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 弁筐内に形成した流入路と流出路との間にリー
ド弁を設けるとともに、該リード弁の上流側に負
圧により作動される開閉弁を配設したリード弁付
流量制御装置において、前記流入路を隔壁により
第一、第二流入路に区画するとともに該隔壁に、
前記開閉弁の弁座部材に形成した弁孔に対面する
位置に通孔を穿設し、前記開閉弁の弁体を前記通
孔と弁孔との間に配設して該弁体により前記弁孔
および通孔を選択的に開閉し得るようにしてなる
リード弁付流量制御装置。
In a flow control device with a reed valve, a reed valve is provided between an inflow path and an outflow path formed in a valve casing, and an on-off valve operated by negative pressure is provided upstream of the reed valve. The passage is divided into a first and second inflow passage by a partition wall, and the partition wall includes:
A through hole is formed at a position facing the valve hole formed in the valve seat member of the on-off valve, and a valve body of the on-off valve is disposed between the through hole and the valve hole, and the valve body allows the A flow control device with a reed valve that can selectively open and close a valve hole and a through hole.
JP16063584U 1984-10-24 1984-10-24 Expired JPH0349341Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16063584U JPH0349341Y2 (en) 1984-10-24 1984-10-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16063584U JPH0349341Y2 (en) 1984-10-24 1984-10-24

Publications (2)

Publication Number Publication Date
JPS6175566U JPS6175566U (en) 1986-05-21
JPH0349341Y2 true JPH0349341Y2 (en) 1991-10-22

Family

ID=30718558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16063584U Expired JPH0349341Y2 (en) 1984-10-24 1984-10-24

Country Status (1)

Country Link
JP (1) JPH0349341Y2 (en)

Also Published As

Publication number Publication date
JPS6175566U (en) 1986-05-21

Similar Documents

Publication Publication Date Title
US7040451B2 (en) Automotive exhaust silencer system with variable damping characteristics
JPS5982559A (en) Exhaust gas recirculation apparatus
US5524593A (en) Electropneumatic control valve
US4702209A (en) Device for adjusting the idling rpm
JPH0352362U (en)
GB1206261A (en) By-pass valve for controlling air flow in an internal combustion engine exhaust system air injector
US4111172A (en) System to feed exhaust gas into the induction passage of an internal combustion engine
US4173204A (en) Control valve of exhaust recirculation apparatus
US4202524A (en) Valve positioner and method of making the same
US4070830A (en) Integral air switching diverter valve
US4398524A (en) Exhaust gas recirculation system
US4022237A (en) Exhaust gas recirculation flow control system
JPH0349341Y2 (en)
US4114575A (en) Exhaust pressure regulating system
JPS6113732Y2 (en)
US4191014A (en) Power mode air switching diverter valve
US4174610A (en) Power cruise diverter valve
JPS6353362B2 (en)
US4409945A (en) Exhaust gas recirculation system
GB1583110A (en) Reciprocating-piston internal combustion engine with a crankcase ventilation system
US4401092A (en) Exhaust gas recirculation system
JPS6133249Y2 (en)
US4213233A (en) Method of making a pilot operated valve positioner
JPS5827083Y2 (en) Exhaust recirculation control device
JPS6157941B2 (en)