JPS61137119A - Automatic focus detecting device - Google Patents

Automatic focus detecting device

Info

Publication number
JPS61137119A
JPS61137119A JP25919684A JP25919684A JPS61137119A JP S61137119 A JPS61137119 A JP S61137119A JP 25919684 A JP25919684 A JP 25919684A JP 25919684 A JP25919684 A JP 25919684A JP S61137119 A JPS61137119 A JP S61137119A
Authority
JP
Japan
Prior art keywords
light
signal
outputs
focus
areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25919684A
Other languages
Japanese (ja)
Inventor
Toshiaki Kawanishi
利明 川西
Susumu Kozuki
上月 進
Masamichi Toyama
当山 正道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25919684A priority Critical patent/JPS61137119A/en
Publication of JPS61137119A publication Critical patent/JPS61137119A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/30Systems for automatic generation of focusing signals using parallactic triangle with a base line
    • G02B7/32Systems for automatic generation of focusing signals using parallactic triangle with a base line using active means, e.g. light emitter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To control a driving system for automatic focus detection by detecting synchronously outputs of two photodetector areas with a signal which does not synchronize with a pulse-modulated signal, and detecting only external light components inputted to the two photodetector areas on the basis of the synchronous detection outputs. CONSTITUTION:Pulse-modulated projection spot light is projected by a projecting element 31 on an object and its reflected light is photodetected by the two areas 35A and 35B, whose outputs are detected synchronously by the 2nd synchronous detecting circuits 61a and 61b with a signal which does not synchronize with the pulse-modulated signal, i.e. asynchronously with the 1st synchronous detecting circuits 42a and 42b. Only external light components are extracted as their output signals and inputted to a comparator 64 to calculate their difference, which is inputted to a succeeding stage comparator 65 to judge whether the difference is larger than a constant level VC or not; when the difference is larger than VC, it is inputted to a control circuit 51 to control the driving of a motor 36 for driving an image formation optical system. Consequently, stable operation is performed even against an object with large contrast.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、結像光学系の焦点検出を自動的に行い、かつ
該結像光学系を合焦状態に移動させる駆動モータを有す
るアクティブ方式の自動焦点検出装置の改良に関するも
のである。
Detailed Description of the Invention <Industrial Application Field> The present invention is an active method having a drive motor that automatically detects the focus of an imaging optical system and moves the imaging optical system to a focused state. This invention relates to an improvement of an automatic focus detection device.

〈従来の技術〉 従来、結像光学系の自動焦点検出装置として、第3図に
示すように対象物OBに向けて近赤外光発光ダイオード
等から成る投光素子1から投光レンズ2を通して投光ス
ポット像を投射し、その反射光を赤外線透過フィルタ3
、受光レンズ4を通して2分割された感光領域5A、5
Bを有する受光素子5で受光し、その出力信号を利用し
て自動焦点検出回路(以下rAF回路Jという)7によ
り対象物OBまでの距離を検出したり、寸だ、結像光学
系りの焦点調定状態を検出し、結像光学系駆動用モータ
6の駆動を制御し、結像光学系りを合焦位置に設定する
ようにしたものがある。
<Prior Art> Conventionally, as an automatic focus detection device for an imaging optical system, as shown in FIG. Project a projected light spot image, and transmit the reflected light to an infrared transmission filter 3.
, photosensitive areas 5A, 5 divided into two through the light receiving lens 4.
The light is received by the light receiving element 5 having the B, and the output signal is used to detect the distance to the object OB by the automatic focus detection circuit (hereinafter referred to as rAF circuit J), or to use the imaging optical system. Some systems detect the focus adjustment state, control the driving of the imaging optical system drive motor 6, and set the imaging optical system at the in-focus position.

同図においては、受光素子5が結像光学系りと連動して
動くようになっている。すなわち、第3図からも容易に
理解されるように、投光素子1から投射された投光スポ
ット像が位置S、にある対象物OBに当たって反射され
、その反射光が受光素子5の感光領域5Aと5Bの丁度
中間に形成されているとする。この状態は、第4図(a
)に示すようにファインダー視野Fに対し感光領域5A
、5Bが上下に構成され、その中間部に投光スポット像
Pが形成されることになる。
In the figure, the light receiving element 5 moves in conjunction with the imaging optical system. That is, as can be easily understood from FIG. Assume that it is formed exactly between 5A and 5B. This state is shown in Figure 4 (a
), the photosensitive area 5A for the viewfinder field of view F.
, 5B are arranged one above the other, and a projected spot image P is formed in the middle part thereof.

そこで、対象物OBがさらに離れた位置S2にある状態
を考えると、対象物OBから反射される投光スポット像
Pは受光素子5の感光領域5A側に寄った位置、すなわ
ち第4図(b)に示すPaの位置に形成される。また、
対象物OBが近い位置S3にあると仮定すれば、対象物
OBから反射される投光スポット像Pは受光素子5の感
光領域5B側に寄った位置、すなわち第4図(b)に示
すpbの位置に形成される。そのため、対象物OBが位
置S1にある時、結像光学系りの焦点位置が予定焦点面
M上にある(合焦状態)とすれば、対象物OBが位置S
2又ハS3にあって非合焦状態となったとしても、受光
素子5の感光領域5Aと5Bの受光出力を比較すること
によって結像光学系りの焦点位置が予定焦点面Mからど
ちら側にずれているか知ることができる。この原理を応
用して結像光学系りが非合焦状態にある際、受光素子5
の感光領域5A、、5Bの出力の大小関係に応じて手動
又はモータ6等により該結像光学系りを光軸に沿って合
焦位置にある方向へ動かす。そして、その結像光学系り
の移動に伴い、受光素子5の受光方向を変化させ、受光
素子5の感光領域5Aと5Bとの丁度中間に前記投光ス
ポット像Pが形成された時、結像光学系りの焦点位置が
予定焦点面M上に来るようにしておけば、感光領域5A
と5Bとの受光出力の差が零となったことを検知するこ
とによって結像光学系りの合焦検出が行える。これによ
り該受光素子5の感光領域5A、5Bの出力の差が零で
あれば合焦であり、感光領域5Bの出力が感光領域5A
の出力より大きければ前ビン(予定焦点面Mより前側に
結像光学系りのピント位置がある状態)、感光領域5A
の出力が感光領域5Bよりも大きければ後ピン(予定焦
点面Mよシ後側に結像光学系りのピント位置がある状態
)となる。したがって、感光領域5A、5Bの出力の大
小関係によって前ビンの場合は後方に、後ピンの場合は
前方に、結像光学系りを手動又はモータ6で動かせば、
結像光学系りを合焦状態にすることができる。
Therefore, considering a state where the object OB is at a position S2 further away, the projected light spot image P reflected from the object OB is at a position closer to the photosensitive area 5A of the light receiving element 5, that is, as shown in FIG. ) is formed at the position Pa shown in ). Also,
Assuming that the object OB is at a nearby position S3, the projected light spot image P reflected from the object OB is at a position closer to the photosensitive area 5B of the light receiving element 5, that is, pb shown in FIG. 4(b). It is formed at the position of Therefore, when the object OB is at position S1, if the focal position of the imaging optical system is on the planned focal plane M (in-focus state), then the object OB is at position S1.
Even if an out-of-focus state occurs due to the two-way lens S3, by comparing the light receiving outputs of the photosensitive regions 5A and 5B of the light receiving element 5, the focal position of the imaging optical system can be determined on which side from the expected focal plane M. You can tell if it is out of alignment. Applying this principle, when the imaging optical system is out of focus, the light receiving element 5
The imaging optical system is moved along the optical axis in the direction of the in-focus position, depending on the magnitude of the output of the photosensitive areas 5A, 5B, manually or by a motor 6 or the like. Then, as the imaging optical system moves, the light receiving direction of the light receiving element 5 is changed, and when the projected light spot image P is formed exactly in the middle between the photosensitive areas 5A and 5B of the light receiving element 5, the light receiving direction is changed. If the focal position of the imaging optical system is placed on the planned focal plane M, the photosensitive area 5A
Focus detection of the imaging optical system can be performed by detecting that the difference in the received light outputs between the light and the light receiving outputs 5B and 5B has become zero. As a result, if the difference between the outputs of the photosensitive areas 5A and 5B of the light receiving element 5 is zero, it is in focus, and the output of the photosensitive area 5B is equal to the output of the photosensitive area 5A.
If the output is larger than the output of
If the output is larger than that of the photosensitive area 5B, the lens is rear focused (the focus position of the imaging optical system is on the rear side of the expected focal plane M). Therefore, if the imaging optical system is moved manually or by the motor 6, depending on the magnitude of the outputs of the photosensitive areas 5A and 5B, the front bin can be moved backwards, and the rear focus can be moved forward.
The imaging optical system can be brought into focus.

そこで、第5図は前記従来例のAF回路7の構成を示し
、第6図はその回路の動作信号波形図を示すもので、そ
の焦点検出作用は、前述のように受光素子5の感光領域
5A、5Bでそれぞれ受光され、光電変換された光情報
は増幅器11a 、 11bにより十分増幅される。そ
して、該増幅器11a。
Therefore, FIG. 5 shows the configuration of the conventional AF circuit 7, and FIG. 6 shows an operating signal waveform diagram of the circuit.The focus detection function is performed on the photosensitive area of the light receiving element 5 as described above. Optical information received by 5A and 5B and photoelectrically converted is sufficiently amplified by amplifiers 11a and 11b. And the amplifier 11a.

11bは投光スポット像となる投光赤外光の変調周波数
に対して十分な増幅度を持ち、不要な太陽光や商用電源
による変調光の周波数に対して増幅度を極力抑えた周波
数特性を持つ増幅回路が望ましい。この増幅器の出力は
同期検波回路12a 、 12bにかけられて同期検波
される。この際、同期信号は投光素子1の発光駆動信号
と同じ周波数であり、一定の位相関係を保っている。該
同期検波回路12a 、 12bの出力は積分回路13
a 、 13bで積分され、目的信号の信号強度に比例
した増加率を持つて時々刻々増加する。以上の信号処理
によって積分回路13a 、 13bよシ独立に得られ
た積分電圧VA。
11b has a frequency characteristic that has sufficient amplification for the modulation frequency of the projected infrared light that becomes the projected light spot image, and minimizes the amplification for the frequency of modulated light from unnecessary sunlight or commercial power. It is desirable to have an amplifier circuit with The output of this amplifier is applied to synchronous detection circuits 12a and 12b for synchronous detection. At this time, the synchronization signal has the same frequency as the light emission drive signal of the light projecting element 1, and maintains a constant phase relationship. The outputs of the synchronous detection circuits 12a and 12b are sent to an integrating circuit 13.
a and 13b, and increases moment by moment at an increasing rate proportional to the signal strength of the target signal. Integral voltage VA obtained independently from the integrating circuits 13a and 13b through the above signal processing.

VBは以下で説明する演算回路によって処理、判定され
、幾ビットかのディジタル情報に変換される。
VB is processed and determined by an arithmetic circuit, which will be explained below, and converted into several bits of digital information.

すなわち、積分電圧VA 、 VBは、一方で減算器1
4によって差信号VA  Vl]を作り、他方では加算
器15によって和信号VA + Veを作る。差信号V
A  VBは絶対値回路16に加えられて、i VA−
Valを得る。この値IVA−VBIは比較器17にお
いて比較値VDと比較され、その大小関係が出力される
。一方、和信号VA +Vnは比較器18゜19におい
て、それぞれ比較値VL、 V、と比較され、各々の大
小関係が出力される。また、比較器20で積分電圧VA
 、 Vnの大小関係が比較される。
That is, the integrated voltages VA, VB are, on the one hand, subtractor 1
4 produces a difference signal VA Vl], and on the other hand, an adder 15 produces a sum signal VA + Ve. difference signal V
AVB is added to the absolute value circuit 16 and i VA-
Get Val. This value IVA-VBI is compared with a comparison value VD in a comparator 17, and the magnitude relationship thereof is output. On the other hand, the sum signal VA +Vn is compared with comparison values VL and V, respectively, in comparators 18 and 19, and the magnitude relationship between them is output. Also, the comparator 20 calculates the integrated voltage VA
, Vn are compared in magnitude.

以上から得られる4つのディジタル情報、すなわち比較
器17.18,19.20の出力は制御回路21に加え
られ、システム全体の動作が決定される。さらに、該制
御回路21に接続された同期信号形成回路22からの同
期信号は前記同期検波回路12a 、 12bに加えら
れるとともに発光駆動回路23に加えられて投光素子1
に電流を供給し、該投光素子1の発光量を制御しており
、また、該制御回路21からの信号によってモータ駆動
回路24は結像光学系駆動用モータ6の回転方向及び回
転速度を制御する。
The four digital information obtained from the above, ie, the outputs of comparators 17.18 and 19.20, are applied to the control circuit 21 to determine the operation of the entire system. Further, a synchronizing signal from a synchronizing signal forming circuit 22 connected to the control circuit 21 is applied to the synchronized detection circuits 12a and 12b, and is also applied to the light emitting drive circuit 23 to drive the light emitting element 1.
The motor drive circuit 24 controls the rotation direction and rotation speed of the imaging optical system drive motor 6 based on the signal from the control circuit 21. Control.

第6図の波形図において、同期信号5YNCは前述のよ
うに投光素子1の電流駆動にも用いられ、発光出力IR
EDが得られる。一方、受光素子5の感光領域5A、5
Bよシ得られる出力信号5PC−A。
In the waveform diagram of FIG. 6, the synchronization signal 5YNC is also used to drive the current of the light emitting element 1 as described above, and the light emission output IR
ED can be obtained. On the other hand, the photosensitive areas 5A and 5 of the light receiving element 5
Output signal 5PC-A obtained from B.

5PC−Bは投光した赤外光の反射光成分a、bと太陽
光や人工光の外光成分Cが重畳した形になる。
5PC-B has a form in which the reflected light components a and b of the projected infrared light and the external light component C of sunlight or artificial light are superimposed.

このような信号5PC−A、5PC−Bは増幅器11a
Such signals 5PC-A and 5PC-B are supplied to the amplifier 11a.
.

11bによシ増幅され、同期信号5YNCで同期検波回
路12a 、 12bによシ同期検波して信号AMP−
A。
The signal AMP- is amplified by the synchronous signal 5YNC and synchronously detected by the synchronous detection circuits 12a and 12b using the synchronous signal 5YNC.
A.

AMI) −Bを得る。発光を開始すると同時にCLR
信号を解除すると信号AMP−A、AMP−Bは積分回
路13a 、 13bによシ積分され、出力信号Int
 −A 。
AMI) -B is obtained. CLR at the same time as it starts emitting light
When the signal is released, the signals AMP-A and AMP-B are integrated by the integrating circuits 13a and 13b, and the output signal Int
-A.

Int −Bが得られる。Int-B is obtained.

なお、第6図においては、前記太陽光もしくは人工光等
のいわゆる外光成分Cは信号5PC−A。
In FIG. 6, the so-called external light component C such as sunlight or artificial light is a signal 5PC-A.

5PC−Bの波形に示すように感光領域5A、5Bに等
しく出力されたものとしている。
As shown in the waveform 5PC-B, it is assumed that the same amount of light is output to the photosensitive areas 5A and 5B.

こうして、出力信号丁nt −A 、 Int −Bす
なわち積分出力VA 、 Vnを求め、また前述のよう
にIVAVBI及びVA + VBを求め、これらの値
と比較器17,18419.20の出力により焦点検出
、すなわち合焦、前ピン、後ピンを判定する方式を第7
図にて説明する。
In this way, the output signals NT-A, Int-B, that is, the integral outputs VA, Vn are obtained, and IVAVBI and VA+VB are obtained as described above, and focus detection is performed using these values and the outputs of the comparators 17 and 18419.20. , that is, the method for determining focus, front focus, and rear focus is the seventh method.
This will be explained with a diagram.

第7図(a)に示すように■い+Vnがある所定の積−
VB l < VDならば、「合焦状態」であると判定
する。換言すると、VA 、 VBとも充分出力は大き
くかつその差が非常に小さいVAキVnとなる状態が合
焦であるからである。
As shown in Fig. 7(a), a given product − with +Vn
If VB l <VD, it is determined that the state is "in focus". In other words, in-focus is achieved when both VA and VB have sufficiently large outputs and the difference between them is VA-Vn.

次ニ、第7図(b)ニオイテ、l VA  Vn l 
カある所定の積分時間T。以内にレベルVDとなった時
点tにおけるVh + VBを求め、VL < VA 
+ Vn < VHならば、比較的小さな非合焦状態で
あるとし、また、同時にVA 、 VBを比較器20に
より求めて、VA〉VeあるいはVA < VBにより
それぞれ駆動用モータ6を低速度で至近側あるいは無限
大側に駆動させる0 さらに、第7図(C)ニオイテ、IVA  Vo l 
−Vnとなる時点でのVA + VB< VLの場合は
、大きく合焦状態から外れているとして駆動用モータ6
をより高速で駆動させる。
Next, Figure 7 (b) Nioite, l VA Vn l
A certain predetermined integration time T. Find Vh + VB at time t when it reaches level VD within
If +Vn<VH, it is assumed that there is a relatively small out-of-focus state, and at the same time, VA and VB are determined by the comparator 20, and if VA>Ve or VA<VB, the drive motor 6 is brought closer at a low speed. Further, Fig. 7 (C) Nioite, IVA Vol.
If VA + VB < VL at the time of -Vn, it is assumed that the focus is significantly out of focus and the drive motor 6
drive at higher speed.

〈発明が解決しようとする問題点〉 ところで、前述の述来例装置のように感光領域5A、5
Bの出力の大小によりピント状態を判断するものにおい
ては、もし、第4図(C)に示すように被写体自体が領
域F、 、 F2の反射率(投光素子の発光波長)を異
にする場合、すなわちコントラストが異なる場合、たま
たま領域F、 、 F2の境界と感光領域5 A、 、
 5 Bの境界と一致又はそれに近い状態になった場合
では、たとえスポット像Pが感光領域5A、5Bの両方
に均等にまたがっていて合焦状態であっても、領域F、
 、 F2の反射率差があるために感光領域5A、5B
の出力に差が生じてしまい、非合焦とみなす、いわゆる
誤動作を起こす場合があった。
<Problems to be Solved by the Invention> By the way, as in the above-mentioned conventional device, the photosensitive areas 5A, 5
In a system that determines the focus state based on the magnitude of the output of B, if the subject itself has different reflectances (emission wavelengths of the light projecting element) in areas F, , F2, as shown in Figure 4 (C). If the contrast is different, it happens that the boundary of area F, , F2 and the sensitive area 5 A, ,
5B, even if the spot image P evenly straddles both the photosensitive areas 5A and 5B and is in focus, the area F,
, due to the difference in reflectance of F2, the photosensitive areas 5A and 5B
This results in a difference in the output of the camera, which may result in what is called a malfunction, which is considered to be out of focus.

本発明は、前述従来例の欠点を除去し、外光成分の影響
が生ぜず、被写体がその領域で反射率に差を有している
場合でも合焦判定に誤動作を生じないアクティブ方式の
自動焦点検出装置を提供することを目的とする。
The present invention eliminates the drawbacks of the conventional example described above, and provides an active automatic method that is free from the influence of external light components and does not cause malfunctions in focus judgment even if the subject has a difference in reflectance in that area. An object of the present invention is to provide a focus detection device.

〈問題点を解決するだめの手段〉 本発明を実施例に対応する第1図を用いて説明する。〈Failure to solve the problem〉 The present invention will be explained using FIG. 1 corresponding to an embodiment.

被写体に投光素子31のパルス変調された投光スポット
光を投射し、被写体からの反射光を受光素子3502つ
の領域35A 、 35Bにより受光し、その2つの受
光素子領域の出力を前記パルス変調信号と同期した信号
により第1の同期検波回路42a 、 42bで同期検
波し、該第1の検波出力に基づき制御回路51により合
焦、非合焦状態を検出する自動焦点検出装置にお“いて
、前記2つの受光素子領域35A 、 35Bの出力を
前記パルス変調信号とは同期しない信号によシ第2の同
期検波回路61a 、 61bで同期検波し、該第2の
検波出力に基づき2つの受光素子領域の出力のうちの外
光成分を出力信号として検出し、該出力信号を比較器6
4゜65を介して前記制御回路51に入力して前記焦点
検出のための駆動系を制御している。
A pulse-modulated spot light from the light projecting element 31 is projected onto the subject, and the reflected light from the subject is received by the two areas 35A and 35B of the light receiving element 350, and the outputs of the two light receiving element areas are converted into the pulse modulated signal. In the automatic focus detection device, the first synchronous detection circuits 42a and 42b perform synchronous detection using a signal synchronized with the first synchronous detection circuit, and the control circuit 51 detects the in-focus state or out-of-focus state based on the first detection output. The outputs of the two light-receiving element regions 35A and 35B are synchronously detected by second synchronous detection circuits 61a and 61b using signals that are not synchronized with the pulse modulation signal, and the two light-receiving elements are detected based on the second detection outputs. The external light component of the output of the area is detected as an output signal, and the output signal is sent to the comparator 6.
The signal is inputted to the control circuit 51 via the 4°65 signal to control the drive system for focus detection.

く作用〉 投光素子31から投射したパルス変調された投光スポッ
ト光の被写体による反射光を受光素子35の2つの領域
35A、 、 35Bで受光し、その出力は該パルス変
調信号とは同期しない信号、すなわち第1の同期検波回
路42a 、 42bとは非同期タイミングで第2の同
期検波回路61a 、’61bによりそれぞれ同期検波
される。そうすると、その出力信号は2つの受光素子領
域の出力である外光成分と赤外光の反射光成分のうち、
外光成分のみが取り出されたものとなり、該2つの出力
信号が比較器64に入力してその差を求め、その差信号
が次段の比較器65に入力して一定しベル■cより大き
いか小さいかを判断し、Voよシ大きい場合は制御回路
51に入力して結像光学系駆動用モータ36の駆動を制
御する。
Effect> The light reflected by the subject of the pulse-modulated projected spot light projected from the light-emitting element 31 is received by the two regions 35A, 35B of the light-receiving element 35, and its output is not synchronized with the pulse-modulated signal. The signals, that is, the first synchronous detection circuits 42a and 42b are synchronously detected by the second synchronous detection circuits 61a and 61b, respectively, at asynchronous timing. Then, the output signal consists of the external light component and the reflected infrared light component, which are the outputs of the two light-receiving element regions.
Only the external light component is extracted, and the two output signals are input to the comparator 64 to find the difference, and the difference signal is input to the next stage comparator 65 and is constant and larger than the bell c. If it is larger than Vo, it is input to the control circuit 51 to control the driving of the imaging optical system driving motor 36.

〈実施例〉 第1図は本発明に係る自動焦点検出装置の実施例のブロ
ック回路図、第2図はその動作信号波形図である。
<Embodiment> FIG. 1 is a block circuit diagram of an embodiment of an automatic focus detection device according to the present invention, and FIG. 2 is a diagram of its operating signal waveform.

第1図において、被写体に投射される投光素子31から
の近赤外光のスポット光の反射光を受光素子35の2分
割された領域35A 、 35Bが受光し、光電変換す
るようになっている。それぞれの領域35A 、 35
Bの出力は増幅器41a 、 41bで増幅され、それ
ぞれの増幅器41a 、 41bの出力は投光素子31
のパルス変調された発光駆動信号と同期した信号5YN
Cで第1の同期検波回路42a 、 42bにより同期
検波され、該第1の同期検波回路42a 、 42bの
出力は第1の積分回路43a 、 43bにより積分さ
れてそれぞれ出力VA 、 Vnを得て、これを一方で
減算器44、絶対値回路46によッテl VA  VB
 lを、他方で加算器45によってVA +VBを、そ
れぞれ求めている。この値1VA  Vn lは比較器
47において比較レベルVDと比較され、VA +VB
は比較器48.49においてそれぞれ比較レベルVL。
In FIG. 1, two areas 35A and 35B of the light receiving element 35 receive the reflected light of the near-infrared spot light from the light projecting element 31 projected onto the subject, and photoelectrically convert the light. There is. Respective areas 35A, 35
The output of B is amplified by amplifiers 41a and 41b, and the output of each amplifier 41a and 41b is amplified by the light projecting element 31.
A signal 5YN synchronized with the pulse-modulated light emission drive signal of
At C, synchronous detection is performed by first synchronous detection circuits 42a and 42b, and the outputs of the first synchronous detection circuits 42a and 42b are integrated by first integration circuits 43a and 43b to obtain outputs VA and Vn, respectively, On the other hand, this is applied to the subtracter 44 and the absolute value circuit 46.
On the other hand, the adder 45 calculates VA +VB. This value 1VA Vn l is compared with the comparison level VD in the comparator 47, and VA +VB
are comparison levels VL in comparators 48 and 49, respectively.

−11〜 ■Hと比較され、VAとVBの大小関係を比較器5Cで
比較され、これらの比較器47,48.49及び50の
出力は制御回路51に入力され、合焦。
-11 ~ (1) H is compared, and the magnitude relationship between VA and VB is compared by a comparator 5C, and the outputs of these comparators 47, 48, 49, and 50 are input to the control circuit 51 and focused.

非合焦の判断をするようになし、その判断による制御回
路51の信号によってモータ駆動回路54を介して結像
光学系駆動用モータ36の回転方向及び回転速度を制御
している。また、該制御回路51に接続された同期信号
形成回路52からの同期信号5YNCを前記同期検波回
路42a 、 42bに入力するとともに投光素子発光
駆動回路53に入力して投光素子31の発光をパルス変
調制御している。以上の構成は前述の従来例と同様であ
る。
A determination is made as to whether the lens is out of focus, and a signal from the control circuit 51 based on the determination controls the rotational direction and rotational speed of the imaging optical system drive motor 36 via the motor drive circuit 54. Further, a synchronizing signal 5YNC from a synchronizing signal forming circuit 52 connected to the control circuit 51 is inputted to the synchronous detection circuits 42a and 42b and also inputted to the light emitting element light emission driving circuit 53 to cause the light emitting element 31 to emit light. Controlled by pulse modulation. The above configuration is similar to the conventional example described above.

また、前記増幅器41a 、 41bの出力側に第2の
同期検波回路61a 、 61bがそれぞれ接続され、
該第2の同期検波回路61a 、 61bは前記同期信
号形成回路52に接続された位相反転(又はシフト)回
路63からの信号PI−8YNCが入力して第1の同期
検波回路41a 、 41bの同期タイミングとは18
0°ずれたタイミング、すなわち第2図の投光素子31
のパルス変調された発光出力■REDとは非同期のタイ
ミングで同期検波されるようにしている。さらに、該第
2の同期検波回路61a 、 61bの出力側は第2の
積分回路62a 、 62bがそれぞれ接続され、該第
2の積分回路62a 、 62bの出力側は比較器64
に接続され、該比較器64の出力側は次段の一定電圧V
oを基準とする比較器65に接続され、該比較器65の
出力は前記制御回路51に入力されている。
Further, second synchronous detection circuits 61a and 61b are connected to the output sides of the amplifiers 41a and 41b, respectively,
The second synchronous detection circuits 61a and 61b receive the signal PI-8YNC from the phase inversion (or shift) circuit 63 connected to the synchronous signal forming circuit 52, and synchronize the first synchronous detection circuits 41a and 41b. What is timing?18
The timing is shifted by 0°, that is, the light emitting element 31 in FIG.
The pulse-modulated light emission output ■RED is synchronously detected at an asynchronous timing. Furthermore, the output sides of the second synchronous detection circuits 61a and 61b are connected to second integration circuits 62a and 62b, respectively, and the output sides of the second integration circuits 62a and 62b are connected to a comparator 64.
The output side of the comparator 64 is connected to the constant voltage V of the next stage.
The output of the comparator 65 is input to the control circuit 51.

そこで、第2図の波形図において、受光素子35の2つ
の領域35A 、 35Bからの出力信号5PC−A。
Therefore, in the waveform diagram of FIG. 2, the output signal 5PC-A from the two regions 35A and 35B of the light receiving element 35.

5PC−Bの波形は第6図に示す従来例のものと同じで
あるが、出力信号5PC−Aのレベルは外光成分c1と
赤外光の反射光成分aが重畳したものであり、出力信号
5PC−Bのレベルは外光成分c2と赤外光の反射光成
分すが重畳したもので、第6図と異なりcl:′I:c
2と外光成分が領域35A 、 35Bで異なっている
場合である。
The waveform of 5PC-B is the same as that of the conventional example shown in Fig. 6, but the level of the output signal 5PC-A is the superposition of the external light component c1 and the reflected infrared light component a, and the output The level of the signal 5PC-B is the superposition of the external light component c2 and the reflected infrared light component, and unlike in FIG. 6, cl:'I:c
This is a case where the external light components are different in the regions 35A and 35B.

このような出力信号5PC−A 、5PC−Bは増幅器
41a 、 41bによシそれぞれ増幅され、同期信号
5YNCの波形で第1の同期検波回路42a 、 42
1)により同期検波して信号AMP−A、、AMP−B
を得るが、その振幅はそれぞれc、+a 、 c2−1
−bとなる。
These output signals 5PC-A and 5PC-B are amplified by amplifiers 41a and 41b, respectively, and are detected by the first synchronous detection circuits 42a and 42 using the waveform of the synchronous signal 5YNC.
1) synchronously detects the signals AMP-A, AMP-B.
are obtained, and their amplitudes are c, +a, and c2-1, respectively.
-b.

ここで、前記出力信号5PC−A 、5PC−Bを同期
信号5YNCと位相の反転した信号、す彦わちP■−8
YNCの波形で第2の同期検波回路61a 、 611
)により同期検波すると、その出力信号A、MP−A、
Here, the output signals 5PC-A and 5PC-B are a signal whose phase is inverted from that of the synchronizing signal 5YNC, that is, P■-8.
The second synchronous detection circuit 61a, 611 uses the YNC waveform.
), the output signals A, MP-A,
.

A、MP−B’の波形は外光成分CI + c、、のみ
が取り出された振幅レベルの波形が得られる。
The waveforms A and MP-B' have amplitude levels in which only the external light component CI + c is extracted.

このような出力信号AMP−A’; AMP−B’を第
2の積分回路62a、62bに入力し、さらに比較器6
4によりその差を求め、次いで次段の比較器65により
その差がある一定しベル■。より大きいか小さいかを判
断する。
These output signals AMP-A';AMP-B' are inputted to the second integration circuits 62a and 62b, and further to the comparator 6.
4, the difference is determined by the comparator 65 in the next stage, and the difference is determined to be constant. Decide whether it is larger or smaller.

その判断の結果、v。より大きい場合には、領域35A
と領域35Bとに入射される外光成分の差が大きい状態
、すなわちコントラスト差の大きい被写体と判断し、そ
の出力は制御回路51に入力され、結像光学系駆動用モ
ータ36を、停止状態にし、あるいは警告ランプを点灯
する等の自動焦点検出のための駆動回路を制御する。
As a result of that judgment, v. If larger, area 35A
It is determined that there is a large difference between the external light components incident on the area 35B and the area 35B, that is, the object has a large contrast difference, and its output is input to the control circuit 51, and the imaging optical system driving motor 36 is stopped. , or control a drive circuit for automatic focus detection, such as lighting a warning lamp.

〈発明の効果〉 本発明は、以上説明したように赤外光の反射光とともに
受光素子に入射される外光成分の影響を除去し、コント
ラスト差の大きい被写体に対しても安定的に動作する自
動焦点検出装置にすることができる効果がある。
<Effects of the Invention> As explained above, the present invention eliminates the influence of external light components incident on the light receiving element together with reflected infrared light, and operates stably even for subjects with large contrast differences. There is an effect that it can be used as an automatic focus detection device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る自動焦点検出装置の実施例のブロ
ック回路図、第2図はその動作信号波形図、第3図は従
来例の自動焦点検出装置の概略構成図、第4図(a) 
(b) (C)はその受光素子の受光状態説明図、第5
図はその自動焦点検出回路のブロック回路図、第6図は
その動作信号波形図、第7図(a)(b) (C)はそ
の合焦判定方式の動作特性図である。 31・投光素子、35・・受光素子、35A 、 35
B・・・2分割された受光素子領域、36・・結像光学
系駆動用モータ、41a 、 41b−増幅器、42a
 、 42b・第1の同期検波回路、43a 、 43
b・・第1の積分回路、44・・減算器、45・・加算
器、46・絶対値回路、47.48,49.50・比較
器、51制御回路、52・・同期信号形成回路、53・
投光素子発光駆動回路、54・・・モータ駆動回路、6
1a。 61b・・第2の同期検波回路、62a 、 62b・
・・第2の積分回路、63・・位相反転回路、64.6
5・・比較器 第4図 (a)     (b) (c) ぃ/
FIG. 1 is a block circuit diagram of an embodiment of an automatic focus detection device according to the present invention, FIG. 2 is an operation signal waveform diagram thereof, FIG. 3 is a schematic configuration diagram of a conventional automatic focus detection device, and FIG. a)
(b) (C) is an explanatory diagram of the light receiving state of the light receiving element, the fifth
The figure is a block circuit diagram of the automatic focus detection circuit, FIG. 6 is an operation signal waveform diagram thereof, and FIGS. 7(a), (b), and (C) are operation characteristic diagrams of the focus determination method. 31. Light emitting element, 35... Light receiving element, 35A, 35
B... Light-receiving element area divided into two, 36... Imaging optical system drive motor, 41a, 41b-Amplifier, 42a
, 42b-first synchronous detection circuit, 43a, 43
b: first integration circuit, 44: subtracter, 45: adder, 46: absolute value circuit, 47.48, 49.50: comparator, 51 control circuit, 52: synchronization signal forming circuit, 53・
Light emitting element light emission drive circuit, 54...Motor drive circuit, 6
1a. 61b... second synchronous detection circuit, 62a, 62b...
...Second integration circuit, 63...Phase inversion circuit, 64.6
5... Comparator Figure 4 (a) (b) (c) ぃ/

Claims (1)

【特許請求の範囲】[Claims] 1 被写体に投光素子のパルス変調された投光スポット
光を投射し、被写体からの反射光を受光素子の2つの領
域により受光し、その2つの受光素子領域の出力を前記
パルス変調信号と同期した信号により第1の同期検波を
し、該第1の検波出力に基づき合焦、非合焦状態を検出
する自動焦点検出装置において、前記2つの受光素子領
域の出力を前記パルス変調信号とは同期しない信号によ
り第2の同期検波をし、該第2の検波出力に基づき2つ
の受光素子領域に入力される外光成分のみを検出して前
記自動焦点検出のための駆動系を制御することを特徴と
する自動焦点検出装置。
1 Project a pulse-modulated spot light from a light projecting element onto a subject, receive reflected light from the subject by two areas of a light receiving element, and synchronize the outputs of the two light receiving element areas with the pulse modulation signal. In an automatic focus detection device that performs first synchronous detection based on the detected signal and detects in-focus and out-of-focus states based on the first detection output, the outputs of the two light receiving element areas are used as the pulse modulation signal. Performing second synchronous detection using unsynchronized signals, and controlling the drive system for automatic focus detection by detecting only external light components input to the two light receiving element areas based on the second detection output. An automatic focus detection device featuring:
JP25919684A 1984-12-10 1984-12-10 Automatic focus detecting device Pending JPS61137119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25919684A JPS61137119A (en) 1984-12-10 1984-12-10 Automatic focus detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25919684A JPS61137119A (en) 1984-12-10 1984-12-10 Automatic focus detecting device

Publications (1)

Publication Number Publication Date
JPS61137119A true JPS61137119A (en) 1986-06-24

Family

ID=17330709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25919684A Pending JPS61137119A (en) 1984-12-10 1984-12-10 Automatic focus detecting device

Country Status (1)

Country Link
JP (1) JPS61137119A (en)

Similar Documents

Publication Publication Date Title
US4758082A (en) Distance detection apparatus
JPS61137119A (en) Automatic focus detecting device
US6426494B1 (en) Optical signal detector and optical signal detecting method
JPS61165713A (en) Automatic focus detector
JPS61137118A (en) Automatic focus detecting device
JP2878502B2 (en) Automatic focusing device
JPS59220708A (en) Automatic focus detector
JPS63148214A (en) Automatic focusing device
JPS58166329A (en) Automatic focusing converter
JPS6138916A (en) Video camera having automatic focus detecting system
JPS62186212A (en) Automatic focus detecting method
JP3332948B2 (en) camera
JPS6256940A (en) Automatic focus detecting device for camera
JP2531238B2 (en) Imaging device
JPH02267508A (en) Automatic focusing device
JPH04283713A (en) Automatic focus detector
JPS59228213A (en) Automatic focus detector
JPS6262312A (en) Automatic focus adjusting device
JPH04107437A (en) Af priority aperture control system
JPH02267506A (en) Automatic focusing device
JPS62246009A (en) Automatic focus detecting method
JPH03249715A (en) Automatic focus adjusting device
JPS62166308A (en) Automatic focus detecting device
JPS63179666A (en) Fluorescent lamp flickering detector
JPH056399B2 (en)