JPS61137017A - Mental capacity built-in type thermal flow amount detector - Google Patents

Mental capacity built-in type thermal flow amount detector

Info

Publication number
JPS61137017A
JPS61137017A JP59259742A JP25974284A JPS61137017A JP S61137017 A JPS61137017 A JP S61137017A JP 59259742 A JP59259742 A JP 59259742A JP 25974284 A JP25974284 A JP 25974284A JP S61137017 A JPS61137017 A JP S61137017A
Authority
JP
Japan
Prior art keywords
temperature
heating element
flowing fluid
flow rate
current supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59259742A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
博 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59259742A priority Critical patent/JPS61137017A/en
Publication of JPS61137017A publication Critical patent/JPS61137017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To keep high accuracy over a wide characteristic range, by providing an operational processing part for operating the feedback current supply electric energy to the heat generation element in a feedback current supply control loop and outputting a current supply signal matched with the characteristic of a flowing fluid. CONSTITUTION:An operational processing part 8 constituted of a microprocessor takes in the digital signal output of an A/D converter part 7 and operates the feedback current supply electric energy to a heat generation element 1a corre sponding to the temp. of a flowing fluid to output a feedback current supply control signal. the temp. TH of the heat generation element 1a and the temp. TC of a temp. compensation element 2a are taken in the operational processing part 8. PID control is performed in the operational processing part 8 so as th keep TH-TC always constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発BAは発熱体と流動流体間の熱伝達量から流速、
流量等の流動流体の流動tを検出する感熱式流量検出装
置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This BA is based on the flow velocity,
The present invention relates to a thermal flow rate detection device that detects the flow rate t of a flowing fluid such as a flow rate.

〔従来の技術〕[Conventional technology]

従来この種の装置として第3図に示すものかあった。図
において、■はセラミックボビン上に巻線された白金線
よシなる発熱素子、2はこの発熱素子1とほぼ同一の形
状、材質で構成された温度補償素子、3は発熱素子工と
温度補償素子2この電気抵抗の差、即ち温度差に相当す
る差分量を検出し所定の大きさに増巾する差動増巾部、
4はこの差動増巾部3の出力に応じて発熱素子1へのフ
イード・バツク給電電力量を制御する給電制御部である
。なお、5は抵抗、6は後述するリニアライブである。
A conventional device of this type is shown in FIG. In the figure, ■ is a heating element made of platinum wire wound on a ceramic bobbin, 2 is a temperature compensation element made of almost the same shape and material as heating element 1, and 3 is the heating element construction and temperature compensation. Element 2: a differential amplification section that detects the difference in electrical resistance, that is, the amount of difference corresponding to the temperature difference, and amplifies it to a predetermined size;
Reference numeral 4 denotes a power supply control section that controls the amount of feedback power supplied to the heating element 1 in accordance with the output of the differential amplification section 3. Note that 5 is a resistor, and 6 is a linear drive which will be described later.

次Kかかる構成の感熱式流量検出装置の動作について説
明する。発熱素子1には感温性材料として前述したよう
に白金細線が用いられている。白金を用いる理由は、温
度標準として一般に使われる材料であること、抵抗対温
度特性の線形性に優れていること、“化学的に安定な材
料であるからであ勺、また細線を用いるのは、熱的時定
数なホさくとること、少ない材料で、ある程度の抵抗値
を安く得るねらいからである。白熱細線はセラミックメ
ビン上に巻線され表面はがラスコートされて保護層が設
けられて2り、また温度補償素子2も同様でその抵抗値
、温度特性共に等しくなっている。
Next, the operation of the heat-sensitive flow rate detection device having the above configuration will be explained. As described above, thin platinum wire is used as a temperature-sensitive material for the heating element 1. The reasons for using platinum are that it is a material commonly used as a temperature standard, that it has excellent linearity in resistance vs. temperature characteristics, and that it is a chemically stable material. This is because the aim is to reduce the thermal time constant and to obtain a certain resistance value cheaply with a small amount of material.The incandescent thin wire is wound on a ceramic mesh and the surface is coated with a lath to provide a protective layer. Similarly, the temperature compensation element 2 has the same resistance value and temperature characteristics.

白金の抵抗値は常温の抵抗値’t Ro、抵抗温度係数
をαとすれば、温度Tに対してRel’l = Ro十
α(TTo)で近似できる。tた差動増巾部3は、発熱
素子1の電気抵抗RH■、温度補償素子2の電気抵抗を
Rcの、温度差音つけるための抵抗をRxとすれば定数
Ct 、Czに対して(1+C+−Rii(Tl)・f
unc (RH)の出力と(i +Cz・(Re E)
+ Rx) ) ・func (RH)の出力この差が
0となるように増巾する働きをなすもので、C1と02
が#デぼ等しくなるよう調整されているのでRx=RH
(1)−Re中5α°(TH−Tc )という関係が成
立する。そして差動増巾部3の出力に応じて発熱素子1
のフイード・バツク給電電力量を制御する給電制御部4
によって発熱素子1の温度THと温度補償素子2の温度
Tcの差が一定に保たれる定温度差駆動が実現される。
The resistance value of platinum can be approximated by Rel'l = Ro + α (TTo) with respect to temperature T, where the resistance value at room temperature is 't Ro and the temperature coefficient of resistance is α. The differential amplification unit 3 has a temperature difference of 1.5 m, where RH is the electrical resistance of the heating element 1, Rc is the electrical resistance of the temperature compensation element 2, and Rx is the resistance for producing a temperature difference sound. 1+C+-Rii(Tl)・f
The output of unc (RH) and (i + Cz・(Re E)
+ Rx) ) ・It works to amplify the output of func (RH) so that this difference becomes 0, and C1 and 02
is adjusted so that #de is approximately equal, so Rx=RH
(1) The relationship 5α° (TH-Tc) in −Re holds true. Then, depending on the output of the differential amplification section 3, the heating element 1
power supply control unit 4 that controls the amount of feed back power supply;
This realizes constant temperature difference drive in which the difference between the temperature TH of the heating element 1 and the temperature Tc of the temperature compensation element 2 is kept constant.

この定温度差駆動は、同相増巾器を構成する演算増巾器
と差動増巾器を構成する演算増巾器と電流増巾器である
トランゾスタの3点を基本要素とするアナログ信号処理
回路よシ行われる0この信号処理回路ではCIとC!の
回路定数が等しくなるよう精密な抵抗調整が行われてお
シ、広い温度範囲で使われる自動車用の検出器ではこの
精度を左右する重要な部分である。抵抗としては5 p
prr/℃の高い精度のものが使われているが自動車で
要求される温度範H−40℃〜+130℃を十分に満足
するものとはなっていない。
This constant temperature difference drive is based on analog signal processing that uses three basic elements: an operational amplifier that constitutes a common-mode amplifier, an operational amplifier that constitutes a differential amplifier, and a transoster that is a current amplifier. In this signal processing circuit, CI and C! Precise resistance adjustment is performed to ensure that the circuit constants of the two are equal, and this is an important part that determines the accuracy of automotive detectors that are used over a wide temperature range. 5 p as resistance
Although products with high accuracy of prr/°C are used, they do not fully satisfy the temperature range H-40°C to +130°C required for automobiles.

流量検出装置の基本動作原理は公知の熱線流速計の原理
に基づいており、発熱¥子11の給電電力をPin 、
発熱素子1と流体間の熱伝達量をPoutとすると、熱
平衡状態においてはPin == Pout =h−A
s・ΔTが成立する。ここでhは発熱素子1と流体間の
熱伝達率、Asは発熱素子1の表面積、ΔTは発熱素子
1と流体間の温度差である。一般に°レイノルズ数Re
が、1<Re<2000の層流条件下において熱伝達a
hは流速Vに対してh=a+b−v  で近似できる。
The basic operating principle of the flow rate detection device is based on the principle of a known hot wire anemometer, and the power supplied to the heating element 11 is set to Pin,
If the amount of heat transfer between the heating element 1 and the fluid is Pout, then in a state of thermal equilibrium, Pin == Pout =h-A
s·ΔT holds true. Here, h is the heat transfer coefficient between the heating element 1 and the fluid, As is the surface area of the heating element 1, and ΔT is the temperature difference between the heating element 1 and the fluid. Generally °Reynolds number Re
However, under laminar flow conditions of 1<Re<2000, the heat transfer a
h can be approximated with respect to the flow velocity V by h=a+b−v.

ここでa、t)は定数である。発熱素子1への給電電力
Pinは発熱素子1の抵抗をR11、電流なIs、電圧
なVaとするとP in = I’m −Rs == 
V!12/ R11で表わされるため、R8を一定とす
る定温度差駆動方式においてはVa = (As ・Δ
T−Ra(a+b−voos、、0.!Sという関係式
が得られ、出力電圧が流速の14乗に依存するという非
線形な関係となる。従って流速に対して直線的な関係が
必要な場合は、第3図に示すようにマイクロプロセッサ
で構成されるリニアライザ6を外付けして補正を行い線
形な関係を得るようにしていた。
Here a, t) are constants. The electric power Pin to be supplied to the heating element 1 is as follows: where the resistance of the heating element 1 is R11, the current is Is, and the voltage is Va, then Pin = I'm - Rs ==
V! 12/R11, so in the constant temperature difference drive method where R8 is constant, Va = (As ・Δ
The relational expression T-Ra(a+b-voos,,0.!S) is obtained, which is a non-linear relationship in which the output voltage depends on the 14th power of the flow velocity.Therefore, when a linear relationship with respect to the flow velocity is required As shown in FIG. 3, a linearizer 6 composed of a microprocessor was attached externally to perform correction and obtain a linear relationship.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の感熱式流量検出装置は以上のように構成されてい
るので、検出装置に高い精度を補償するためには精密な
抵抗調整を必要とし、広い使用温度範囲に亘って高い精
度と信頼性を得るのが困難であったばか夛か、検出特性
が非線形であるため外部にリニア・ライブを必要とし、
コスト高くなるなどの問題点があった。
Conventional thermal flow rate detection devices are configured as described above, so precise resistance adjustment is required to ensure high accuracy in the detection device, and high accuracy and reliability can be achieved over a wide operating temperature range. Either it was difficult to obtain, or the detection characteristics are non-linear, so an external linear drive is required.
There were problems such as high cost.

この発明は上記の問題点を解決するためになされたもの
で、広い温度範囲に亘って高い精度を有し信頼性の高い
知能内蔵形感熱式流量検出装置を得ることを目的とする
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a heat-sensitive flow rate detection device with built-in intelligence that has high accuracy over a wide temperature range and is highly reliable.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る知能内蔵形感熱式流量検出装置は、発熱
素子のフイード・バツク給電制御ループ内に、A/D変
換部、D/A変換部と、該発熱素子のフイード・バツク
給電電力量を演算し、流動流体の流速範囲、温度に応じ
たフイード・バツク給1iE制御信号を出力する演算処
理部とを備えたものである。
The heat-sensitive flow rate detection device with built-in intelligence according to the present invention includes an A/D converter, a D/A converter, and a feed-back power supply amount of the heat-generating element in the feed-back power supply control loop of the heat-generating element. It is equipped with an arithmetic processing section that performs arithmetic operations and outputs a feed/back supply 1iE control signal according to the flow rate range and temperature of the flowing fluid.

〔作用〕[Effect]

この発明の知能内蔵形感熱式流量検出装置は、PID制
御のアルゴリズムによって決定された制御信号を、流動
流体の流速範囲に応じてマイクロプロセッサ内のテーブ
ルルックアップ方式による非線形補正を施した後、温度
補償素子の出力に応じた再補正をかけ流量信号としてい
る。
The heat-sensitive flow rate detection device with built-in intelligence of the present invention performs nonlinear correction on a control signal determined by a PID control algorithm using a table lookup method in a microprocessor according to the flow velocity range of the flowing fluid, and then The flow rate signal is then re-corrected according to the output of the compensation element.

〔実施例〕〔Example〕

第1図はこの発明の一実施例による知能内蔵形感熱式流
量検出装置の構成を示すものである。図において1aは
白金等の感温性物質からなる発熱素子、2aは流動流体
の温度を直接あるいは間接的に検出するための白金、サ
ーミスタ等の感温性物質からなる温度補償素子である。
FIG. 1 shows the configuration of a heat-sensitive flow rate detection device with built-in intelligence according to an embodiment of the present invention. In the figure, 1a is a heating element made of a temperature-sensitive material such as platinum, and 2a is a temperature compensation element made of a temperature-sensitive material such as platinum or a thermistor for directly or indirectly detecting the temperature of a flowing fluid.

7はこの発熱素子1aと温度補償素子2aの抵抗値に相
当するアナログ電圧値をデヅタル信号に変換するA/D
変換部、8はA/D変換部7のデジタル信号出力な城シ
込み、流動流体の温度に応じて発熱素子1へのフイード
・バツク給電電力量を演・算し、フイード・バツク給電
制御信号を出力するマイクロプロセッサで構成される演
算処理部、9はこの演算処理部8のフイード・バツク給
を制御信号をアナログ信号に変換するD/A変換部、4
aはD/A変換部9の出力に応じて発熱素子1aへのフ
イード・バツク給電電力量を制御する給電制御部である
7 is an A/D that converts analog voltage values corresponding to the resistance values of the heating element 1a and temperature compensation element 2a into digital signals.
A converter 8 is a digital signal output of the A/D converter 7, calculates the amount of feed back power supplied to the heating element 1 according to the temperature of the flowing fluid, and generates a feed back power supply control signal. 9 is a D/A converter that converts the feed back supply of this arithmetic processing unit 8 into a control signal into an analog signal; 4
Reference numeral a denotes a power supply control section that controls the amount of feedback power supplied to the heating element 1a according to the output of the D/A conversion section 9.

このように構成された知能内蔵形感熱式流量検出装置に
おいて、発熱素子1aの温度THと温度補償素子2aの
温度Tcは画素子の抵抗値RHs Rcが時々刻々、A
/D変換部7でデジタル信号に変換されて演算処理部8
に取シ込まれる。この演算処理部8では常にTH−’r
cが一定となるようマイクロプロセッサによる公知のP
ID制御がなされてお)、本発明の定温度差駆動が実現
される。一方熱伝達率りの近似式h = a + b・
7 はキングの式として知られる概略の近似式であり、
実際は発熱素子1aの具体的な形状、発熱素子1a周囲
の境界条件による影譬によって修正が必要である上、流
動流体のレイツルーe数範囲によっても実験公式上流速
依存性が0.3乗から0.8乗まで大きく変化する。さ
らに流動流体の性状を決定するプラントル数Prや動粘
性係数νおよび熱伝導″4kが流動流体の温度に応じて
変化するので、自動車用のように使用温度範囲が広い条
件下では故チ程度の誤差要因となるが、この実施例にお
いてはPID餉御O7ルゴリズムによって決定された制
御信号を、流動流体の流速範囲に応じてマイクロプロセ
ラ讐内のテーブルルックアップ方式による非線形補正を
施した後、温度補償素子2aO出力に応じた再補正をか
け流量信号とするように構成しであるので、広い流速範
囲、温度範囲に亘って高い精贋を保持することができる
In the heat-sensitive flow rate detection device with built-in intelligence configured as described above, the temperature TH of the heating element 1a and the temperature Tc of the temperature compensation element 2a are determined by the resistance value RHs Rc of the pixel element momentarily, A
It is converted into a digital signal by the /D converter 7 and sent to the arithmetic processor 8.
It will be taken into account. In this arithmetic processing unit 8, TH-'r is always
The microprocessor uses the known P so that c is constant.
ID control), the constant temperature difference drive of the present invention is realized. On the other hand, the approximate formula for heat transfer coefficient h = a + b・
7 is a rough approximate equation known as King's equation,
In reality, it is necessary to make corrections depending on the specific shape of the heating element 1a and the boundary conditions around the heating element 1a, and the upstream velocity dependence of the experimental formula varies from 0.3 to 0 depending on the range of the Ray true e number of the flowing fluid. It changes greatly up to the 8th power. Furthermore, the Prandtl number Pr, kinematic viscosity coefficient ν, and heat conduction ``4k, which determine the properties of the flowing fluid, change depending on the temperature of the flowing fluid, so under conditions where the operating temperature range is wide such as in automobiles, the In this example, the control signal determined by the PID control O7 algorithm is subjected to nonlinear correction using a table lookup method within the microprocessor according to the flow velocity range of the flowing fluid, and then the temperature Since the flow rate signal is re-corrected according to the output of the compensating element 2aO, high accuracy can be maintained over a wide flow rate range and temperature range.

第3図はこの実施例の制御動作を示すフローチャートで
あり、10はパワー・オン・リセット処理で、電源ON
直後に各係数等の初期値設定とRAMをクリヤする。1
1は発熱素子1aと温度補償素子2aの抵抗値に相当す
る量”kA/D変換部7を介してマイクロプロセッサの
メモリに取シ込む入力処理、12は定温度差駆動のため
の各種演算をしP’ID制御を行う演算処理、13はこ
の演算処理12の結果をD/A変換部9を介して発熱素
子1aヘフイードバツク出力する出力処理からなってい
る。
FIG. 3 is a flowchart showing the control operation of this embodiment, and 10 is a power-on reset process, in which the power is turned on.
Immediately after, initial value settings for each coefficient etc. and RAM are cleared. 1
1 is a quantity corresponding to the resistance value of the heating element 1a and the temperature compensating element 2a, and 12 is an input process to be input into the memory of the microprocessor via the A/D converter 7, and 12 is various calculations for constant temperature difference drive. and an output process 13 for outputting the result of the arithmetic process 12 as a feedback to the heating element 1a via the D/A converter 9.

演算処理12では発#&素子1all?:フイードパツ
クされる制御偏差なΔVN+1とすればΔVN+1 =
VN+1− VN= KIVN’+ Km(VN’ −
VN−′1 ) + Ka E VN’であり、この制
御量VN+1を出力処理13でD/A変換変換上9して
発熱素子1aにフイード・バツクすることによシ所望の
定温度差駆動が実現される。
In arithmetic processing 12, the output #&element 1all? : If ΔVN+1 is the control deviation to be packed, then ΔVN+1 =
VN+1- VN= KIVN'+ Km(VN'-
VN-'1) + Ka E VN', and by converting this control amount VN+1 into D/A conversion in the output processing 13 and feeding it back to the heating element 1a, the desired constant temperature difference drive is achieved. Realized.

なおここで、K、 、 K、 、 K、は比例係数、V
N+1は次回の制御動作量、vNは前回の制御動作量、
V′は発熱素子1aと温度補償素子2aの温度差に相当
する量を表わし、Nは現在、N−1は前回の値を示して
いる。
Here, K, , K, , K are proportional coefficients, V
N+1 is the next control operation amount, vN is the previous control operation amount,
V' represents an amount corresponding to the temperature difference between the heating element 1a and the temperature compensating element 2a, N represents the current value, and N-1 represents the previous value.

なお、上記実施例では、A/Dfi換都7 、D/A変
換部9を演算処理部8の外部に設けた例を示したが、A
/D変換部7やD/A変換部を内蔵するマイクロプロセ
ッサを用いても良く、この場合コンパクトかつ安価な構
成で上記実施例と同様の効果を奏する。
In addition, in the above embodiment, an example was shown in which the A/Dfi converter 7 and the D/A converter 9 were provided outside the arithmetic processing unit 8.
A microprocessor having a built-in /D converter 7 or a D/A converter may be used, and in this case, the same effects as in the above embodiment can be achieved with a compact and inexpensive configuration.

〔発明の効果〕〔Effect of the invention〕

以上のようKこの発明の知能内蔵形感熱式流量検出装置
によれば、フイード・バツク給電制御ルーブ内発電素子
へのフイード・バツク給1!電力量を演算し、流動流体
の流速範囲、温度に応じたフイード・バツク給電制御信
号を出力する演算処理部を具備して構成したので、広い
流量範囲および温度範囲に亘って高いP′II度を有す
る感熱式流量検出装置を安価に得られる効果がある。
As described above, according to the heat-sensitive flow rate detection device with built-in intelligence of the present invention, the feed back supply to the power generating element in the feed back power supply control loop is 1! The structure is equipped with a calculation processing unit that calculates the amount of electric power and outputs a feed back power supply control signal according to the flow rate range and temperature of the flowing fluid, so it can maintain a high P'II degree over a wide flow rate range and temperature range. There is an effect that a thermal flow rate detection device having the following can be obtained at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による知能内蔵形感熱式流
量検出装置の構成を示すブロック図、第2図はその制御
動作を示すフローチャート、第3図は従来の感熱式流量
検出装置の構成を示すブロック図である。 1a・・・発熱集子、2a・・・温度補償素子、4a・
・・kit制t1部、7・・・AID変換部、8・−・
演算処理部、9・・・D/A変換部。 代理人   大  岩  増  雄 第2図 手続補正書(自発) l、事件の表示   特願昭59−259742号2、
発明の名称 知能内蔵形感熱式流電検出装置 3、補正をする者 5、 補正の対象 明細書の発明の詳細な説明の欄。 6、 補正の内容 (1)明細書3頁6行の「白熱」を「白金」と訂正する
。 (2)同5頁9行のrI2s」をrIs2」と訂正する
。 (3)同6頁4行の「リニア・ライザ」を「リニアライ
ザ」と訂正する。
FIG. 1 is a block diagram showing the configuration of a thermal flow rate detection device with built-in intelligence according to an embodiment of the present invention, FIG. 2 is a flowchart showing its control operation, and FIG. 3 is the configuration of a conventional thermal flow rate detection device. FIG. 1a... Heat generating collector, 2a... Temperature compensation element, 4a...
...Kit system t part 1, 7...AID conversion part, 8...
Arithmetic processing unit, 9...D/A conversion unit. Agent Masuo Oiwa Diagram 2 procedural amendment (voluntary) l, Indication of the case Patent application No. 1982-259742 2,
Title of the invention: Intelligent thermal current detection device 3, person making the amendment 5, detailed description of the invention in the specification to be amended. 6. Contents of the amendment (1) "Incandescent" on page 3, line 6 of the specification is corrected to "platinum." (2) "rI2s" on page 5, line 9 is corrected to "rIs2". (3) On page 6, line 4, "linear riser" is corrected to "linearizer."

Claims (1)

【特許請求の範囲】[Claims]  白金等の感温性物質からなる発熱素子と、白金,サー
ミスタ等の感温性物質からなり流動流体の温度を検出す
る温度補償素子と、上記発熱素子および温度補償素子の
抵抗値に相当するアナログ電圧値をデジタル信号に変換
するA/D変換部と、このA/D変換部のデジタル信号
出力を取り込み、流動流体の温度に応じて上記発熱素子
へのフイード・バツク給電電力量を演算し、フイードバ
ツク給電制御信号を出力するマイクロプロセツサからな
る演算処理部と、この演算処理部のフイードバツク給電
制御信号をアナログ信号に変換するD/A変換部と、こ
のD/A変換部の出力に応じて上記発熱素子への給電電
力量を制御する給電制御部とを備え、発熱体と流動流体
間の熱伝達量から流速流量等の流動流体の流動量を検出
することを特徴とする知能内蔵形感熱式流量検出装置。
A heating element made of a temperature-sensitive material such as platinum, a temperature compensation element made of a temperature-sensitive material such as platinum or a thermistor to detect the temperature of a flowing fluid, and an analog corresponding to the resistance value of the heating element and temperature compensation element. an A/D converter that converts a voltage value into a digital signal, and a digital signal output of the A/D converter that calculates a feedback power amount to be fed to the heating element according to the temperature of the flowing fluid; An arithmetic processing section consisting of a microprocessor that outputs a feedback power supply control signal, a D/A conversion section that converts the feedback power supply control signal of this arithmetic processing section into an analog signal, and a a power supply control section that controls the amount of power supplied to the heat generating element, and detects the flow rate of the flowing fluid, such as the flow rate, from the amount of heat transfer between the heat generating element and the flowing fluid. type flow rate detection device.
JP59259742A 1984-12-07 1984-12-07 Mental capacity built-in type thermal flow amount detector Pending JPS61137017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59259742A JPS61137017A (en) 1984-12-07 1984-12-07 Mental capacity built-in type thermal flow amount detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59259742A JPS61137017A (en) 1984-12-07 1984-12-07 Mental capacity built-in type thermal flow amount detector

Publications (1)

Publication Number Publication Date
JPS61137017A true JPS61137017A (en) 1986-06-24

Family

ID=17338313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59259742A Pending JPS61137017A (en) 1984-12-07 1984-12-07 Mental capacity built-in type thermal flow amount detector

Country Status (1)

Country Link
JP (1) JPS61137017A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4011950A1 (en) * 1989-04-14 1990-10-25 Hitachi Ltd THERMAL INTAKE AIR FLOW MEASURING DEVICE AND COMBUSTION ENGINE CONTROL DEVICE USING THIS MEASURING DEVICE
JP2006502392A (en) * 2002-10-07 2006-01-19 ワグナー アラーム− ウント ジッヒャルンクスシャテム ゲゼルシャフト ミット ベシュレンクテル ハフツング Fluid flow parameter determination apparatus and operation method thereof
JP2007163411A (en) * 2005-12-16 2007-06-28 Mitsubishi Electric Corp Thermal flow-rate sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4011950A1 (en) * 1989-04-14 1990-10-25 Hitachi Ltd THERMAL INTAKE AIR FLOW MEASURING DEVICE AND COMBUSTION ENGINE CONTROL DEVICE USING THIS MEASURING DEVICE
US5107812A (en) * 1989-04-14 1992-04-28 Hitachi, Ltd. Thermal type intake air flow measuring instrument and internal combustion engine control apparatus using this measuring instrument
JP2006502392A (en) * 2002-10-07 2006-01-19 ワグナー アラーム− ウント ジッヒャルンクスシャテム ゲゼルシャフト ミット ベシュレンクテル ハフツング Fluid flow parameter determination apparatus and operation method thereof
JP2007163411A (en) * 2005-12-16 2007-06-28 Mitsubishi Electric Corp Thermal flow-rate sensor

Similar Documents

Publication Publication Date Title
JP2918062B2 (en) Current meter
US5137370A (en) Thermoresistive sensor system
US10330513B2 (en) Multi-dynamic-range sensor
US5461913A (en) Differential current thermal mass flow transducer
JPS6027936B2 (en) temperature sensor
JPS6116026B2 (en)
JPS6144242B2 (en)
CA2847783A1 (en) Flow sensor with improved linear output
US3838248A (en) Temperature control device for thermostatic oven
JPS61137017A (en) Mental capacity built-in type thermal flow amount detector
JPH0577931B2 (en)
US4070908A (en) Anemometer compensator linearizer
US3632985A (en) Thermocouple bridge temperature control
JPH03273121A (en) Radiation thermometer
US7249516B2 (en) Method of operating a resistive heat-loss pressure sensor
JP3706283B2 (en) Flow sensor circuit
JP4050813B2 (en) Transmitter
JPS61259134A (en) Semiconductive pressure sensor
JPH02120620A (en) Heater temperature control circuit
US4122722A (en) Anemometer compensator linearizer
GB2283328A (en) Fluid speed monitor
JPH1164063A (en) Flow rate sensor
EP1771711B1 (en) Method of operating a resistive heat-loss pressure sensor
JPS62182670A (en) Flow velocity measuring instrument
JPH0751618Y2 (en) Heater control circuit