JPS61137000A - Method for forming single domain in lithium tantalate single crystal - Google Patents

Method for forming single domain in lithium tantalate single crystal

Info

Publication number
JPS61137000A
JPS61137000A JP25683984A JP25683984A JPS61137000A JP S61137000 A JPS61137000 A JP S61137000A JP 25683984 A JP25683984 A JP 25683984A JP 25683984 A JP25683984 A JP 25683984A JP S61137000 A JPS61137000 A JP S61137000A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
positive
axis direction
lithium tantalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25683984A
Other languages
Japanese (ja)
Other versions
JPH0416438B2 (en
Inventor
Arata Sakaguchi
阪口 新
Masataka Watanabe
政孝 渡辺
Akifumi Yoshida
吉田 紀史
Kunihiro Ito
邦宏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP25683984A priority Critical patent/JPS61137000A/en
Publication of JPS61137000A publication Critical patent/JPS61137000A/en
Publication of JPH0416438B2 publication Critical patent/JPH0416438B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To form a uniform single domain by turning a single crystal lifted in the X-axis direction sideways, keeping the Z-axis in the horizontal direction, providing a positive and a negative strip electrode both of which are long in the X-axis direction to the side surface of the crystal, and impressing a voltage on the crystal. CONSTITUTION:Lithium tantalate single crystal lifted in the X-axis direction is turned sideways, the Z-axis is kept in the horizontal direction, and a positive and a negative electrode both of which are long in the X-axis direction are provided to the side surface of the crystal. Besides, the relation of the angle alphabetween the lines connecting the central point O and the respective upper edges of the positive and the negative electrode which are provided to the side surfaces of the single crystal to the angle beta between the lines connecting the central point O and the respective lower edges of the electrodes is regulated as shown by equation I. The ratio of strip widths l1 of the positive and negative electrodes to the diameter l2 of the single crystal is regulated as shown by equation II. A voltage is impressed on the single crystal by the positive and negative electrodes to form a single domain.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はタンタル酸リチウム単結晶の改良された単一分
域化方法に関し、特には該単結晶の自重によりもたらさ
れる不均一な単一分域化を単結晶の設置状態と電極設置
形状の改良によりなくすることを目的とするものである
。 (従来の技術) タンタル酸リチウム等の強誘電体結晶の単一分域化方法
としては、従来、引上げ法により育成した単結晶の側面
に面対称に引上げ方向に長い帯状の正負電極を形成し、
電圧を印加して結晶を単一分域化する方法において、結
晶の側面に形成される帯状の正負両電極の各帯幅を結晶
の引上げ方向に対して垂直に切断したときの面の中心点
と該電極の幅方向の両縁とのなす角度が5度〜100度
の範囲となるような大きさとする単一分域化方法が提案
されている(特公昭57−41161号公報参照ン。 しかし、近年タンタル酸リチウム単結晶の生産性を向上
させるために次第に大口径化を目ざすようになってきて
おり、現在では直径が3インチ、4インチ、さらには5
インチの大口径単結晶が生産されるに至っている。この
ように結晶体が大口径のものとするにともない、結晶自
体の重量が大きくなるため、結晶内部での自重による圧
電効果が無視できなくなり、結晶内部において単一分域
化のための印加電界の分布を均一に保持することが困難
となり、結果として単一分域化が結晶内部で不均一とな
る問題があらたに起ってきている。 (発明の構成] 本発明者らはかかる問題点を解決するため、まずX軸方
向に引上げた単結晶を横にした状態で2軸が垂直方向と
なるように維持し、帯状の正負電極を横にした結晶体の
上側と下側に配置して電圧を印加し単一分域化を行なっ
てみた。しかしこの場合には結晶体中の下部に自重によ
る圧電効果がその2軸方向に生じているため(結晶体が
大口径のものになるにしたがいこの圧電効果は大きく現
われる]、印加電界の分布がこの自重による応力集中部
と上部とでは大幅に不均一となり、未単−分域化部分が
生じるなどし、結晶内全体を均一に単一分域化すること
はできなかった。 そこでさらに、単結晶の設置状態、正負電極幅の大きさ
、電極の設置状態等について詳細に検討した結果、X軸
方向に引上げた単結晶を横にした状態でZ軸が実質的に
水平方向となるように維持し、X軸方向と垂直で切断し
た面でみた場合の左右両側面に帯状の正負電極を配設し
て電圧を印加することにより単一分域化を行うとすぐれ
た結果が得られること、さらに望ましくは、結晶の側面
に配設する帯状の正負電極を上寄りに偏らせて設置し、
かつ正負電極の帯幅な充分大きなものとすることにより
、結晶内の下部応力集中部における圧電効果が良好に補
正され、結果として結晶全体の単一分域化が均一に行わ
れることを見出し、本発明を完成した。 以下本発明を図面に基づいて詳細に説明する。 第1因りは単結晶を横とした状態で2軸が水平方向とな
るように維持し、側面の上寄りに帯状電極を配設した状
態を示したものである。同図中の単結晶断面において、
角αは中心点0と帯状の正負両電極のそれぞれ上縁との
なす角度、また角βは中心点Oと両電極のそれぞれ下縁
とのなす角度であり、さらに角度θは中心点と電極の帯
幅とのなす角度である。Im は単結晶の直径を示す。 第1図(+2は帯状電極の平面■を示したものであり、
ム は帯幅な示す。 単結晶を第1因に示すように維持することにより、自重
により結晶内に生じる圧電効果の方向(水平方向)と側
面に配設された帯状電極により印加される電界の方向と
が等しい方向となる。本発明者らはこの状態において、
自重による圧電効果が結晶内の下部において大きくあら
れれることによりもたらされる結晶内の電界分布の不均
一さが側面に設置する帯状電極を上寄りに偏らせること
  □により容易に補正され、均一な電界分布が結晶内
全体に形成されることを究明した。そして上寄りに偏ら
せる程度について詳細に検討した結果、第1図イ:に示
した断面で角度α、βが、β−α=2〜35°(より好
ましくは10〜30°」の範囲となるようにすることが
最も望ましいことが判明した。 他方また上記において帯状電極の帯幅の大きさについて
検討した結果、本発明においては結晶の自重による圧電
効果の方向が電極による印加電界の方向と同じであるの
で、結晶全体に均一で充分な電界が加わるように電極の
帯幅な充分大きなものとすることができること、そして
その望ましい大きさは帯幅j1 が単結晶の直径Is 
に対しlr/l鵞 ;0.8〜1.2  の比となる範
囲であることが判明した。 本発明のように特に大口径単結晶が対象である場合には
、本発明の構成にしたがって帯幅をム/ Is  = 
0.8〜1.2となる大きさくθの角度、とじてはおお
むね92〜138’に相当する)とすることが望ましく
、これによれば効果的に均一な単一分域化が達成される
。 つぎに具体的実施例をあげて説明する。 実施例 X軸引上げで育成させた、直径約3インチ、長さ約15
0顛のタンタル酸リチウム単結晶を第1図イνに示すよ
うに2軸が水平方向となるように設置し、側面に帯状の
正負[極を配設して加熱下に電界を印加し単一分域化処
理を行った。 〔使用した帯状電極〕 長さがいずれも約150mであり、帯幅石 と単結晶の
直径!! との比II/Im が0.7.0.8.0.
9.1.0,1.1.1.2または1.3である白金製
のものを使用した。 〔帯状電極の設置形状〕 第1図(イ)の断面図において、β−αの値が00.2
°、20°、300または40°となるように帯状電極
を配設した。 〔加熱温度条件〕 約4時間かけて室温より約630℃まで昇温し、0.5
時間630℃を保持したのち徐冷する。 〔電圧印加条件〕 630℃、0.5時間保持したのちに120v印加し、
徐冷中約500℃以下になった時点、電圧印加時より約
2.5時間後、印加電圧なOvとする。 なお、上記加熱および電圧印加条件を図示すると第2図
のとおりである。 以上の各条件で結晶の単一分域化処理を行い、偏光を用
いた歪検査およびHe−Haレーザー光を用いた光散乱
検査の方法で結晶内部を調べることにより単一分域化が
良好に行われているかどうかを判定した。結果は第1!
Iに示すとおりであった。 IJt表 (判定基準) O印 :単一分域化100%完全、きわめて良好 Δ印 :単一分域化90%完全 xa印:結晶体の上部に未単−分域化部分があり、きわ
めて悪い xb印:結晶体の左右側部
(Industrial Application Field) The present invention relates to an improved method for single-segmenting lithium tantalate single crystals, and in particular, to improve the method of single-segmenting lithium tantalate single crystals, and in particular, to eliminate the uneven single-sectoring caused by the self-weight of the single crystal. The aim is to eliminate this problem by improving the condition and electrode installation shape. (Prior art) Conventionally, as a method for forming a ferroelectric crystal such as lithium tantalate into a single domain, long strip-shaped positive and negative electrodes are formed in plane symmetry on the side surfaces of a single crystal grown by a pulling method in the pulling direction. ,
In the method of dividing a crystal into a single region by applying a voltage, the center point of the plane when the band widths of both positive and negative band-shaped electrodes formed on the side of the crystal are cut perpendicular to the direction in which the crystal is pulled. A single segmentation method has been proposed in which the angle between the electrode and both widthwise edges of the electrode is in the range of 5 degrees to 100 degrees (see Japanese Patent Publication No. 57-41161). However, in recent years, efforts have been made to gradually increase the diameter of lithium tantalate single crystals in order to improve their productivity, and currently the diameter is 3 inches, 4 inches, and even 5 inches.
Large-diameter single crystals of inch size have now been produced. In this way, as the diameter of the crystal increases, the weight of the crystal itself increases, and the piezoelectric effect due to its own weight inside the crystal cannot be ignored. It has become difficult to maintain a uniform distribution of crystals, and as a result, a new problem has arisen in which single domain distribution becomes non-uniform within the crystal. (Structure of the Invention) In order to solve this problem, the present inventors first placed a single crystal pulled in the X-axis direction on its side and maintained the two axes in the vertical direction, and attached strip-shaped positive and negative electrodes. We attempted to achieve a single domain by applying a voltage to the upper and lower sides of a horizontal crystal.However, in this case, a piezoelectric effect due to its own weight was generated in the lower part of the crystal in its two axes. (This piezoelectric effect becomes more pronounced as the diameter of the crystal increases), the distribution of the applied electric field becomes significantly uneven between the stress concentration area due to its own weight and the upper part, resulting in non-singularization. It was not possible to homogeneously divide the entire crystal into a single domain due to the formation of small areas.Therefore, we further examined in detail the installation conditions of the single crystal, the width of the positive and negative electrodes, and the installation conditions of the electrodes. As a result, when the single crystal pulled in the X-axis direction is kept horizontally so that the Z-axis is substantially horizontal, band-shaped strips are formed on both left and right sides when viewed from a plane cut perpendicular to the X-axis direction. Excellent results can be obtained by performing single segmentation by arranging positive and negative electrodes and applying voltage, and more preferably, by biasing the band-shaped positive and negative electrodes arranged on the sides of the crystal toward the top. and install it,
We also discovered that by making the band width of the positive and negative electrodes sufficiently large, the piezoelectric effect in the lower stress concentration part within the crystal can be well corrected, and as a result, the entire crystal can be uniformly divided into a single domain. The invention has been completed. The present invention will be explained in detail below based on the drawings. The first reason shows a state in which the single crystal is kept horizontally so that its two axes are in the horizontal direction, and a band-shaped electrode is disposed on the upper side of the side surface. In the single crystal cross section in the same figure,
The angle α is the angle between the center point 0 and the upper edges of the positive and negative strip electrodes, the angle β is the angle between the center point O and the lower edges of the electrodes, and the angle θ is the angle between the center point and the electrodes. It is the angle formed with the band width. Im indicates the diameter of the single crystal. Figure 1 (+2 shows the plane ■ of the strip electrode,
The frame indicates the band width. By maintaining the single crystal as shown in the first factor, the direction of the piezoelectric effect (horizontal direction) generated within the crystal due to its own weight is equal to the direction of the electric field applied by the strip-shaped electrodes arranged on the side. Become. In this state, the inventors
The unevenness of the electric field distribution within the crystal caused by the piezoelectric effect caused by its own weight being large in the lower part of the crystal can be easily corrected by biasing the strip electrodes installed on the sides upwards, resulting in a uniform electric field. It was determined that the distribution was formed throughout the crystal. As a result of a detailed study of the degree of upward bias, the angles α and β in the cross section shown in Figure 1A were found to be in the range β - α = 2 to 35 degrees (more preferably 10 to 30 degrees). On the other hand, as a result of studying the band width of the band-shaped electrode above, it was found that in the present invention, the direction of the piezoelectric effect due to the weight of the crystal is the same as the direction of the electric field applied by the electrode. Therefore, the band width of the electrode can be made sufficiently large so that a uniform and sufficient electric field is applied to the entire crystal, and the desired size is such that the band width j1 is equal to the diameter Is of the single crystal.
It was found that the ratio was in the range of 0.8 to 1.2. When a large-diameter single crystal is a target as in the present invention, the band width is determined according to the configuration of the present invention as M/Is =
It is desirable to set the angle of θ to a value of 0.8 to 1.2 (which corresponds to approximately 92 to 138'), thereby effectively achieving uniform single domainization. Ru. Next, specific examples will be given and explained. Example: Approximately 3 inches in diameter and approximately 15 cm in length, grown by X-axis pulling
A zero-length lithium tantalate single crystal is placed so that its two axes are in the horizontal direction as shown in Fig. A single area processing was performed. [Strip electrodes used] The length is approximately 150 m, and the diameter of the band width stone and single crystal! ! The ratio II/Im is 0.7.0.8.0.
9.1.0, 1.1.1.2 or 1.3 made of platinum were used. [Installation shape of strip electrode] In the cross-sectional view of Fig. 1 (a), the value of β-α is 00.2.
The strip electrodes were arranged so as to have an angle of 20°, 300°, or 40°. [Heating temperature conditions] The temperature was raised from room temperature to about 630°C over about 4 hours, and the temperature was 0.5
After maintaining the temperature at 630°C for an hour, it is gradually cooled. [Voltage application conditions] After holding at 630°C for 0.5 hours, 120V was applied.
When the temperature dropped to about 500° C. or lower during slow cooling, about 2.5 hours after the voltage was applied, the applied voltage was set to Ov. The heating and voltage application conditions described above are illustrated in FIG. 2. The crystal is single-segmented under each of the above conditions, and the inside of the crystal is investigated using strain inspection using polarized light and light scattering inspection using He-Ha laser light, resulting in good single-segmentation. It was determined whether this was done. The result is first!
It was as shown in I. IJt table (judgment criteria) O mark: 100% single segmentation, very good Bad xb mark: left and right side of crystal

【電極部中央部】に未単−分
城化部分があり、きわめ て悪い 第1!lの結果から11 /ノ寞の比が0.8〜1.2
の範囲であり、かつβ−αの値が2〜35の範囲である
ときにすぐれた結果が得られる。
[Central part of the electrode part] has an unconsolidated part, which is extremely bad! From the results of l, the ratio of 11/nobu is 0.8 to 1.2.
Excellent results are obtained when the value of β-α is in the range of 2 to 35.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ暴は単結晶をそのZ軸が水平方向となるように
設置し、側面土寄りに帯状電極を配設した状態を示した
ものであり、また同図11は帯状電極の平面図を示した
ものである。。 第2図は、実施例での単一分域化にお(する加熱・↑h
圧印加条件を図示したものである。
Figure 1A shows a state in which a single crystal is installed so that its Z axis is horizontal, and a strip electrode is placed near the side surface, and Figure 11 is a plan view of the strip electrode. This is what is shown. . Figure 2 shows the heating and ↑h
The pressure application conditions are illustrated.

Claims (1)

【特許請求の範囲】 1、X軸方向に引上げたタンタル酸リチウム単結晶を、
横にした状態でZ軸が実質的に水平方向となるように維
持し、この側面にX軸方向に長い帯状の正負電極を配設
し、電圧を印加して単一分域化することを特徴とするタ
ンタル酸リチウム単結晶の単一分域化方法。 2、単結晶のX軸方向に対して垂直の切断面において、
その中心点と単結晶の側面に配設される帯状の正負電極
のそれぞれ上縁とのなす角度αと、該中心点と正負電極
のそれぞれ下縁とのなす角度βが β−α=2〜35° である特許請求の範囲第1項記載の単一分域化方法。 3、単結晶の側面に配設される正負電極の帯幅l_1が
単結晶の直径j_2に対して l_1/l_2=0.8〜1.2 の比となる大きさである特許請求の範囲第1項記載の単
一分域化方法。
[Claims] 1. Lithium tantalate single crystal pulled in the X-axis direction,
The Z-axis is maintained in the horizontal direction in a horizontal position, and long strip-shaped positive and negative electrodes are arranged in the X-axis direction on this side, and a voltage is applied to create a single domain. Features a single domainization method for lithium tantalate single crystals. 2. In the cut plane perpendicular to the X-axis direction of the single crystal,
The angle α between the center point and the upper edge of the strip-shaped positive and negative electrodes arranged on the side surface of the single crystal, and the angle β between the center point and the lower edge of the positive and negative electrodes are β − α = 2 ~ 35°. A single segmentation method according to claim 1. 3. The band width l_1 of the positive and negative electrodes disposed on the side surfaces of the single crystal is such that the ratio of l_1/l_2=0.8 to 1.2 is obtained with respect to the diameter j_2 of the single crystal. 1. Single segmentation method according to item 1.
JP25683984A 1984-12-05 1984-12-05 Method for forming single domain in lithium tantalate single crystal Granted JPS61137000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25683984A JPS61137000A (en) 1984-12-05 1984-12-05 Method for forming single domain in lithium tantalate single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25683984A JPS61137000A (en) 1984-12-05 1984-12-05 Method for forming single domain in lithium tantalate single crystal

Publications (2)

Publication Number Publication Date
JPS61137000A true JPS61137000A (en) 1986-06-24
JPH0416438B2 JPH0416438B2 (en) 1992-03-24

Family

ID=17298131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25683984A Granted JPS61137000A (en) 1984-12-05 1984-12-05 Method for forming single domain in lithium tantalate single crystal

Country Status (1)

Country Link
JP (1) JPS61137000A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364699A (en) * 1976-11-22 1978-06-09 Toshiba Corp Extending method for single orientation zone of single crystal
JPS5365299A (en) * 1976-11-25 1978-06-10 Toshiba Corp Production of single crystal of lithium tantalate extended singleorientation zone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364699A (en) * 1976-11-22 1978-06-09 Toshiba Corp Extending method for single orientation zone of single crystal
JPS5365299A (en) * 1976-11-25 1978-06-10 Toshiba Corp Production of single crystal of lithium tantalate extended singleorientation zone

Also Published As

Publication number Publication date
JPH0416438B2 (en) 1992-03-24

Similar Documents

Publication Publication Date Title
DE112015001512T5 (en) A silicon carbide single crystal substrate, a silicon carbide epitaxial substrate, and a process for producing the same
DE202012013577U1 (en) Substrate and semiconductor device
DE112015003559B4 (en) Epitaxial wafer
US20080261059A1 (en) Clad textured metal substrate for forming epitaxial thin film thereon and method for manufacturing the same
DE112015003168T5 (en) Method for producing a silicon carbide single crystal and silicon carbide substrate
JPS61137000A (en) Method for forming single domain in lithium tantalate single crystal
EP0005744B1 (en) Process for producing epitaxial layers on selectively doped silicon substrates with high impurity concentration
DE69418119T2 (en) Process for producing a single crystal of potassium niobate
Zaccaro et al. Crystal growth of hybrid nonlinear optical materials: 2-amino-5-nitropyridinium dihydrogenphosphate and dihydrogenarsenate
DE112017005226T5 (en) A method of polishing a silicon wafer, a method of producing a silicon wafer, and silicon wafers
JPS5895690A (en) Preparation of single crystal
Lucy et al. Cell fusion without viruses.
Craker et al. Plastic deformation of gypsum
US4255228A (en) Method of growing quartz
JP3849996B2 (en) Method for manufacturing single crystal optical element
Manghi et al. Hydrogen uranyl arsenate hydrate single crystals: H2 (UO2) 2 (AsO4) 2· 8H2O; gel growth and characterization
DE19654717A1 (en) ZnO thin film electrode structure using a polycrystalline thin film layer densely packed with oxygen, and their manufacturing method
DE3934140A1 (en) METHOD FOR THE TRAINING OF LOCKABLE CENTERS INDUCING SURFACE TREATMENT OF SEMICONDUCTOR DISC AND THEREFORE AVAILABLE WASHER POLISHED
US10711371B2 (en) Lithium niobate single crystal substrate and method of producing the same
DE112019004418T5 (en) METHOD FOR EVALUATING THE CARBON CONCENTRATION OF A SILICON SAMPLE, METHOD FOR EVALUATING A SILICON WAFER MANUFACTURING PROCESS, METHOD FOR MANUFACTURING A SILICON WAFER, AND METHOD FOR MANUFACTURING A SILICON SOUND
JPH11302100A (en) Production of lithium niobate single crystal
JP7443808B2 (en) Method for manufacturing piezoelectric oxide single crystal substrate
JPS63185900A (en) Heat-treating method of single crystal of composite oxide ferroelectrics
JPH0333099A (en) Treatment of arsenic compound semiconductor crystal
JPS61168600A (en) Method of single domain formation of single crystal of lithium tantalate