JPS61136997A - Manufacture of p type gallium arsenide single crystal - Google Patents

Manufacture of p type gallium arsenide single crystal

Info

Publication number
JPS61136997A
JPS61136997A JP25912484A JP25912484A JPS61136997A JP S61136997 A JPS61136997 A JP S61136997A JP 25912484 A JP25912484 A JP 25912484A JP 25912484 A JP25912484 A JP 25912484A JP S61136997 A JPS61136997 A JP S61136997A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
type
crucible
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25912484A
Other languages
Japanese (ja)
Inventor
Takashi Fujii
高志 藤井
Tsuguo Fukuda
承生 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP25912484A priority Critical patent/JPS61136997A/en
Publication of JPS61136997A publication Critical patent/JPS61136997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain a single crystal suitable for an optical device substrate, etc. and wherein p type impurities are uniformly dispersed by using a GaAs melt added with p type impurities and In when a p type GaAs single crystal is manufactured by a liq. sealant rotary pulling method. CONSTITUTION:Ga, As, p type impurities (e.g., zinc), and In 0.1-1,000 times the number of the added p type impurity units are packed in a cylindrical heat-resistant crucible, etc., and a sealant (e.g., B2O3) is further added. The crucible is then arranged in a high-pressure vessel which is pressurized by an inert gas, then the crucible is heated, and the crystal material melt and the sealant melt are separated into two layers. Subsequently, a crystal-pulling shaft provided above the crucible is lowered, a seed crystal attached to the leasing end of the shaft is brought into contact with the crystal material melt, and then the crystal-pulling shaft is lifted while being rotated to grow an electrically conductive GaAs crystal wherein p type impurities are uniformly dispersed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はp型ガリウム砒素(GcLA8)単結晶の製
造方法に関し、更に詳しくは半導体レーザ、発光ダイオ
ードなどの光デバイスの基板として好適に用いられるp
型導電性ガリウム砒素単結晶の製造方法に関するもので
ある。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing p-type gallium arsenide (GcLA8) single crystal, and more specifically, it is suitably used as a substrate for optical devices such as semiconductor lasers and light emitting diodes. p
The present invention relates to a method for producing a conductive gallium arsenide single crystal.

(従来の技術) ■−v族化合物半導体の中でも、GcLA8は電子移動
度が大きく、超高速集積回路、電子デバイス、光デバイ
スなどの基板として広く用いられつつある。
(Prior Art) Among the (1)-v group compound semiconductors, GcLA8 has high electron mobility and is being widely used as substrates for ultrahigh-speed integrated circuits, electronic devices, optical devices, etc.

GαA8単結晶を上述のように光デバイスの基板として
用いるには、n型不純物成るいはp型不純物を添加して
導電性としなければならず、p型不純物としては亜鉛<
zn)が一般に用いられている。
In order to use a GαA8 single crystal as a substrate for an optical device as described above, it is necessary to add n-type impurities or p-type impurities to make it conductive, and the p-type impurities include zinc <
zn) is commonly used.

このp型GαA8単結晶を製造する方法としてはLEC
法が用いられている。このLEC法は結晶の成長速度が
速いこと、大口径の結晶が得られることなどの優れた特
徴を有しているが、成長した結晶に転位が多いこと、添
加した不純物が均等に成長する結晶へ分散しないことな
どの問題点を有している。
The method for manufacturing this p-type GαA8 single crystal is LEC.
law is used. This LEC method has excellent features such as a fast crystal growth rate and the ability to obtain large-diameter crystals, but it also has the disadvantage that the grown crystals have many dislocations and that the added impurities do not grow evenly. It has problems such as not being dispersed to other parts of the world.

(発明が解決しようとする問題点) 上述のようにI、EC法によ、り GaAs単結晶を製
造−すれば結晶の成長速度が速く、大口径の円形ウェー
ハが容易に得られるのであるが、光デバイスの基板とし
て用いるためZnなどのp型不純物を結晶原料融液に添
加して結晶の引き上げを行うと、酸化ボロン(Byes
 )  などの封止剤が存在しているため、添加したZ
sなどの添加物がB、0゜にゲッタリングされて、成長
するGaAs単結晶に均等に分散されず、このような状
態で形成した単結晶よシウエーハを切り出し、光デバイ
スの基板として用いてもウェーハの位置によシ導電率が
異なるため、光デバイスの特性も異なり、収率が低く、
デバイスの信頼性も低下する。
(Problems to be Solved by the Invention) As mentioned above, if a GaAs single crystal is manufactured by the IEC method, the crystal growth rate is fast and a circular wafer with a large diameter can be easily obtained. When a p-type impurity such as Zn is added to the crystal raw material melt and the crystal is pulled to be used as a substrate for an optical device, boron oxide (Byes
), the added Z
Additives such as S are gettered at B, 0° and are not evenly dispersed in the growing GaAs single crystal. Because the conductivity varies depending on the location of the wafer, the characteristics of the optical device also vary, resulting in low yields and
Device reliability also decreases.

この発明は上記に鑑みなされたものであって、LEC法
において不純物が均等に分散され、転位を減少させたp
型GαM単結晶を容易に且つ再現性良く製造する方法を
提供することを目的とする。
This invention was made in view of the above, and it is a p
It is an object of the present invention to provide a method for easily producing a type GαM single crystal with good reproducibility.

(問題点を解消するだめの手段) この発明によるp型Gaps単結晶の製造方法は液体封
止回転引き上げ法において結晶原料融液としてp型不純
物とインジウムを添加したGaA。
(Means to Solve the Problems) The method for producing a p-type Gaps single crystal according to the present invention uses GaA to which p-type impurities and indium are added as a crystal raw material melt in a liquid-sealed rotational pulling method.

融液を用いて結晶の引き上げを行うことを特徴とする。It is characterized by pulling the crystal using a melt.

GaAg融液に対するp型不純物とIsの添加量につい
ては、p型不純物としてZ?Sを用い、融液1d轟シz
nの添加量を0.1〜100X10”個の範囲で変え、
玩の添加量を0〜5000 X 10”個の範囲で変え
、上記のkとI?Lの添加されたG、A、融液を用いて
LEC法によシ単結晶を成長させ、それぞれの単結晶よ
り切り出したウェーハを基板として用いて赤外発光ダイ
オードを形成し、発光効率を測定した結果、添付の図面
に示したような結果が得られた。即ち、図面の表に示す
数値は発光効率を示し、数値が表示されていないところ
は、その単結晶を基板としたダイオードが発光しな−か
ったことを意味する。
Regarding the amount of p-type impurity and Is added to the GaAg melt, Z? Using S, melt 1d Todoroki Z
Change the amount of n added in the range of 0.1 to 100 x 10'',
A single crystal was grown by the LEC method using the G, A, and melt to which the above k and I?L were added, varying the amount of crystals added in the range of 0 to 5000 x 10''. As a result of forming an infrared light emitting diode using a wafer cut from a single crystal as a substrate and measuring the luminous efficiency, the results shown in the attached drawing were obtained.In other words, the numerical values shown in the table of the drawing indicate the luminescence efficiency. Efficiency is shown, and where no numerical value is displayed, it means that the diode using the single crystal as a substrate did not emit light.

この表よシ明らかなようにZfiの含有量が0.5〜5
oxio”個/dの範囲の結晶を基板とした発光ダイオ
ードは発光するが、更にIfiを5〜500×101s
個/−の範囲で添加することによりダイオードの発光効
率が向上する。上記よF) Inの添加量はp型不純物
の添加量に対して0.1倍から1000倍程度の範囲が
効果的であることになる。
As is clear from this table, the Zfi content is 0.5 to 5.
A light-emitting diode using a crystal as a substrate in the range of oxio/d emits light;
The light emitting efficiency of the diode is improved by adding in the range of /-. As mentioned above, it is effective that the amount of In added is about 0.1 to 1000 times the amount of p-type impurity added.

この発明に適用するLEC法の結晶引き上げ操作条件は
これまで知られているGaAJの結晶引き上げの一般的
な条件と同じである。即ち、結晶原料融液のAsの含有
率(As/ (Gα十A8))は50チ前後、結晶引き
上げ中の圧力は3〜70気圧、ルツボの加熱温度は12
60°近傍、種結晶の引き上げ速度は2〜10 m 7
時であって、本発明はルツボに結晶原料としてGa、A
s及び封止剤としてB、0.を充填する際に、所定量の
p型不純物znとInを入れ、ルツボを高圧容器内に装
填し、高圧下が加熱してルツボ内の原料が溶融したら、
上記の条件で結晶の引き上げを行う。
The operating conditions for crystal pulling of the LEC method applied to this invention are the same as the general conditions for crystal pulling of GaAJ known so far. That is, the As content (As/(Gα+A8)) of the crystal raw material melt is around 50 cm, the pressure during crystal pulling is 3 to 70 atm, and the heating temperature of the crucible is 12
Near 60°, the pulling speed of the seed crystal is 2 to 10 m 7
At the time, the present invention provides a crucible with Ga and A as crystal raw materials.
s and B as a sealant, 0. When filling the crucible, put in a predetermined amount of p-type impurities zn and In, load the crucible into a high-pressure container, and when the high pressure heats up and the raw materials in the crucible melt,
The crystal is pulled under the above conditions.

(作用) 上述の如く、LEC法によp GaAs単結晶を成長さ
せる際に、結晶原料融液中にp型不純物としてのZnに
I′rLを共存させると、znがウェーハ全面にtlぼ
均等に分散した結晶が成長する。このようにp型不純物
が均等に分散する理由はInとztLを添加して成長し
た結晶基板においては転位が従来と比較して大巾に減少
し、ウェーハ全面に亘って無転位となるために、転位に
伴うznの取り込みが無くなり、そのためにznの分散
が一様になる。なおxnを添加したための影響は見られ
ない。
(Function) As mentioned above, when growing a p-type GaAs single crystal by the LEC method, if I′rL is made to coexist with Zn as a p-type impurity in the crystal raw material melt, zn will be uniformly distributed over the entire surface of the wafer. Dispersed crystals grow. The reason why the p-type impurity is uniformly dispersed in this way is that in the crystal substrate grown by adding In and ztL, the number of dislocations is greatly reduced compared to the conventional one, and there are no dislocations over the entire wafer surface. , the incorporation of zn due to dislocations is eliminated, and therefore the dispersion of zn becomes uniform. Note that no effect was observed due to the addition of xn.

更に、本発明の方法による2、とInを含有するGaA
 $単結晶基板を溶融KOH法にてエツチングし、エッ
チビットを観察した結果、従来のp型GaAs結晶基板
では12当り約10,000個観察されたが、この発明
による結晶基板では0〜1000個/−と大個数−少し
ていて、高品質のp型GaAs単結晶が得られることが
明らかになった。
Furthermore, GaA containing 2 and In according to the method of the present invention
$ When a single crystal substrate was etched using the molten KOH method and the etch bits were observed, approximately 10,000 bits were observed per 12 bits in the conventional p-type GaAs crystal substrate, but 0 to 1000 bits were observed in the crystal substrate according to the present invention. It has been revealed that high quality p-type GaAs single crystals can be obtained even if the number of crystals is small as /-.

このように形成した結晶の基板にp型不純物が均等に分
散していると、導電率はどの位置でもほぼ同じであって
、これを基板として光デバイスを形成すると、特性の同
じ光デバイスが収率よく得られることになり、信頼性も
高い。
If p-type impurities are uniformly dispersed in the crystal substrate formed in this way, the conductivity will be almost the same at any position, and if an optical device is formed using this as a substrate, an optical device with the same characteristics will be produced. This means that it can be obtained at a high rate and is highly reliable.

(実施例) 内径10m、高さ10αの円筒状のPBNルツボ内にG
aを470fXA8を550f、 Inを50?、Zn
を2t、封止剤としてB、O,を200?充填し、この
PBNルツボを高圧容器内に装填し、容器内をアルゴン
ガスで30気圧に加圧した後、ルツボを取シ囲むように
して設けたヒータによりルツボを1265℃で加熱し、
ルツボ内に結晶原料融液と封止剤融液の二層状態となっ
たら、ルツボの上部に設けである結晶引き上げ軸を下降
させ、その先端に取付けた種結晶を封止剤融液を通過さ
せて結晶原料融液・に接触させ、しかる後に結晶引き上
げ軸を回転させなから8鵡膚の速度で引き上げ、直径約
50−1長さ約70簡のZB−In含有< 100> 
GaAs 単結晶を得た。
(Example) G was placed in a cylindrical PBN crucible with an inner diameter of 10 m and a height of 10 α.
A is 470fXA8 is 550f, In is 50? ,Zn
2t, B, O, 200? as a sealant? This PBN crucible was loaded into a high-pressure container, and the inside of the container was pressurized to 30 atmospheres with argon gas, and then the crucible was heated to 1265 ° C. with a heater provided so as to surround the crucible.
When the crucible has two layers of crystal raw material melt and sealant melt, lower the crystal pulling shaft installed at the top of the crucible, and pass the seed crystal attached to its tip through the sealant melt. The crystal was brought into contact with the crystal raw material melt, and then the crystal was pulled up at a speed of about 8 seconds without rotating the crystal pulling shaft.
A GaAs single crystal was obtained.

この結晶からウェーハを切シ出し、ZnとInの含有量
を測定した結果、ウェーハの中心部、周辺部いずれの位
置においても、znは約lX10”個/d、Inは約l
X10’個/crdの割合で分散していた。
A wafer was cut out from this crystal and the contents of Zn and In were measured. As a result, Zn was about 1 x 10"/d and In was about 1 at both the center and the periphery of the wafer.
They were dispersed at a rate of X10' pieces/crd.

この切り出したウェーハをポリッシングした後に基板と
して用いて赤外線半導体レーザを50台作成し、閾値電
流を測定したところ、75′rrLA〜85臥 の狭い
範囲であった。
After polishing this cut wafer, 50 infrared semiconductor lasers were fabricated using it as a substrate, and the threshold current was measured, and it was found to be in a narrow range of 75'rrLA to 85'rrLA.

比較のためにInを含有しないp型Gaps単結晶よシ
ウエーハを切シ出し、上記と同様にして半導体レーザを
作成し、閾値電流を測定した結果、50tnA〜100
?7tAと非常にバラツキが大きかった。
For comparison, a p-type Gaps single crystal wafer not containing In was cut out, a semiconductor laser was fabricated in the same manner as above, and the threshold current was measured.
? There was a very large variation of 7 tA.

またレーザの発振を70℃、5TrLWの条件下で行っ
て比較したところ、本発明の結晶を基板として用いたレ
ーザの発振時間は平均650時間であって、従来の結晶
を基板として用いたレーザの発振平均時間約180時間
の約2倍であった。またレーザの収率も従来の結晶を基
板として用いた場合は0.5〜1.0チ程度であったが
、この発明による結晶を基板として用いたレーザの収率
は約2.5チに向上した。
In addition, when laser oscillation was performed under the conditions of 70°C and 5TrLW, the average oscillation time of the laser using the crystal of the present invention as the substrate was 650 hours, compared to that of the laser using the conventional crystal as the substrate. This was about twice the average oscillation time of about 180 hours. In addition, the laser yield was about 0.5 to 1.0 inches when a conventional crystal was used as a substrate, but the yield of a laser using the crystal according to the present invention as a substrate was about 2.5 inches. Improved.

(発明の効果) これまでLEC法によりp型不純物を均等に分散したG
aps単結晶を製造することは困難であったが、この発
明によれば結晶原料融液にp型不紬物とI?+を共存さ
せることによりp型不純物がほぼ均等に分散した導電性
のGaA3単結晶ウェーハが得られるようになった。そ
の結果、p型Ga55単結晶の成長速度は速くなシ、大
口径の円形ウェーハが得られ、更にその品質も改善され
るので、光集積回路、光デバイスの基板として用いるこ
とにより、信頼性の高いものが得られ、その収率も大巾
に向上し、経済的にも技術的にも大いに貢献することに
なる。
(Effect of the invention) Until now, G
It has been difficult to produce APS single crystals, but according to the present invention, p-type fumugi and I? are added to the crystal raw material melt. By coexisting with +, a conductive GaA3 single crystal wafer in which p-type impurities are almost uniformly dispersed can be obtained. As a result, the growth rate of p-type Ga55 single crystal is fast, large-diameter circular wafers are obtained, and the quality is also improved, so that it can be used as a substrate for optical integrated circuits and optical devices to improve reliability. A high-quality product can be obtained, and the yield will be greatly improved, making a great contribution both economically and technologically.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はznとIsの添加量と形成したGaAs結晶を基
板としてダイオードを製造したときの発光効率の関係を
示す表である。 j−地株や牟(Oム) 手続有口正置(方式) 昭和60年4月鮎田
The drawing is a table showing the relationship between the amounts of zn and Is added and the luminous efficiency when a diode was manufactured using the formed GaAs crystal as a substrate. J-Land stocks and shares (Omu) Procedures and formalities (method) April 1985 Ayuta

Claims (3)

【特許請求の範囲】[Claims] (1)結晶原料融液に種結晶を接触させて引き上げる液
体封止回転引き上げ法によるガリウム砒素単結晶の製造
方法において、該結晶原料融液としてp型不純物とイン
ジウムが存在するガリウム砒素融液を用いて結晶の引き
上げを行うことを特徴とするp型ガリウム砒素単結晶の
製造方法。
(1) In a method for producing a gallium arsenide single crystal by a liquid-sealed rotational pulling method in which a seed crystal is brought into contact with a crystal raw material melt and pulled up, a gallium arsenide melt containing p-type impurities and indium is used as the crystal raw material melt. A method for producing a p-type gallium arsenide single crystal, the method comprising pulling the crystal using a p-type gallium arsenide single crystal.
(2)p型不純物が亜鉛である特許請求の範囲第1項記
載のP型ガリウム砒素単結晶の製造方法。
(2) The method for producing a P-type gallium arsenide single crystal according to claim 1, wherein the p-type impurity is zinc.
(3)インジウムの添加量がp型不純物の添加個数に対
して0.1倍より1000倍の範囲である特許請求の範
囲第1項または第2項記載のp型ガリウム砒素単結晶の
製造方法。
(3) The method for producing a p-type gallium arsenide single crystal according to claim 1 or 2, wherein the amount of indium added is in the range of 0.1 to 1000 times the number of p-type impurities added. .
JP25912484A 1984-12-10 1984-12-10 Manufacture of p type gallium arsenide single crystal Pending JPS61136997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25912484A JPS61136997A (en) 1984-12-10 1984-12-10 Manufacture of p type gallium arsenide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25912484A JPS61136997A (en) 1984-12-10 1984-12-10 Manufacture of p type gallium arsenide single crystal

Publications (1)

Publication Number Publication Date
JPS61136997A true JPS61136997A (en) 1986-06-24

Family

ID=17329648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25912484A Pending JPS61136997A (en) 1984-12-10 1984-12-10 Manufacture of p type gallium arsenide single crystal

Country Status (1)

Country Link
JP (1) JPS61136997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0971052A1 (en) * 1998-07-07 2000-01-12 Mitsubishi Chemical Corporation P-type GaAs single crystal and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131598A (en) * 1983-01-18 1984-07-28 Sumitomo Electric Ind Ltd Production of gaas single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131598A (en) * 1983-01-18 1984-07-28 Sumitomo Electric Ind Ltd Production of gaas single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0971052A1 (en) * 1998-07-07 2000-01-12 Mitsubishi Chemical Corporation P-type GaAs single crystal and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPS6028800B2 (en) Low defect density gallium phosphide single crystal
JPS58105539A (en) Method of producing electric light emitting substance
US3565703A (en) Silicon carbide junction diode
JPWO2018179567A1 (en) Method for producing compound semiconductor and compound semiconductor single crystal
US4299650A (en) Minimization of strain in single crystals
Cockayne et al. The growth and perfection of single crystal indium phosphide produced by the LEC technique
JPS61136997A (en) Manufacture of p type gallium arsenide single crystal
JP2000086398A (en) P type gaas single crystal and its production
EP0332198B1 (en) Method for producing semiconductive single crystal
JPS61136996A (en) Manufacture of n type gallium arsenide single crystal
JP2944410B2 (en) Method for growing SiC single crystal
JP2002255697A (en) GALLIUM-ARSENIC SINGLE CRYSTAL AND GaAs WAFER AND PRODUCTION METHOD FOR GaAs SINGLE CRYSTAL
JPS6385100A (en) Production of gallium arsenide single crystal containing added silicon
JPS5912640B2 (en) Manufacturing method of low dislocation density gallium phosphide single crystal
US5514881A (en) Gap light emitting device having a low carbon content in the substrate
JP2579336B2 (en) Method for manufacturing blue light emitting diode
JPH01290587A (en) Production of single crystal of compound semiconductor
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
JPS6313960B2 (en)
JPS61117198A (en) Melt for growth of inp single crystal and method for using said melt
JPH0124760B2 (en)
JP2002241199A (en) METHOD FOR PRODUCING ZnTe-BASED COMPOUND SEMICONDUCTOR SINGLE CRYSTAL AND ZnTe-BASED COMPOUND SEMICONDUCTOR SINGLE CRYSTAL
JPS61275196A (en) Production of gaas single crystal
JPH03159998A (en) In-doped dislocatioin-free pulled gallium arsenide single crystal
JPS6168399A (en) Production of compound semiconductor single crystal