JPS61136913A - Purifying method of salt water for electrolysis - Google Patents

Purifying method of salt water for electrolysis

Info

Publication number
JPS61136913A
JPS61136913A JP25966184A JP25966184A JPS61136913A JP S61136913 A JPS61136913 A JP S61136913A JP 25966184 A JP25966184 A JP 25966184A JP 25966184 A JP25966184 A JP 25966184A JP S61136913 A JPS61136913 A JP S61136913A
Authority
JP
Japan
Prior art keywords
salt water
mercury
chelate resin
electrolysis
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25966184A
Other languages
Japanese (ja)
Inventor
Chuichi Motohashi
忠一 本橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP25966184A priority Critical patent/JPS61136913A/en
Publication of JPS61136913A publication Critical patent/JPS61136913A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To absorb only the hard components such as Ca and Mg without absorbing mercury on a chelate resin by regulating the salt water for electrolysis contg. mercury to the specified pH and thereafter bringing it into contact with the chelate resin. CONSTITUTION:After regulating the pH of salt water for electrolysis contg. mercury to 7-9, it is brought into contact with a chelate resin in the conditions of 2-5 SV flow velocity and 10-80 deg.C temp. to purify the salt water for electrolysis. By this method, the high-degree treatment stable for a long period can be performed without absorbing mercury on the chelate resin and without decreasing the absorption capacity of Ca and Mg or the like.

Description

【発明の詳細な説明】 本発明は電解用特にイオン交換膜法による電解用塩水の
精製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for purifying salt water for electrolysis, particularly by using an ion exchange membrane method.

塩水を電解して塩素とカセイソーダを製造することはよ
く知られているが、原料塩水中には不純物として重金属
類やカルシウム、マグネシウム、ストロンチウム、バリ
ウム等の硬度成分が含まれていることが多い。
It is well known that chlorine and caustic soda are produced by electrolyzing salt water, but raw salt water often contains impurities such as heavy metals and hard components such as calcium, magnesium, strontium, and barium.

従来の水銀法や隔膜法による電解ではこのような不純物
が数−wt/l程度存在していても運転に特に支障とな
るものではなかったが、最近のイオン交換膜を用いる電
解では不純物が多いと電流効率の低下、電解電圧の上昇
あるいは膜のつまシなどによる膜寿命への影響等の種々
のトラブルの原因となシ、原料塩水の厳密な精製が必要
となり、特に硬度成分である力pシウム、マグネシウム
イオンは少なくとも0.05 vq/rnl以下にまで
除去する必要がある。
In conventional electrolysis using the mercury method or diaphragm method, the presence of such impurities on the order of several wt/l did not pose a particular problem to operation, but in recent electrolysis using ion exchange membranes, there are many impurities. This may cause various troubles such as a decrease in current efficiency, an increase in electrolytic voltage, or an effect on the membrane life due to membrane blistering. In addition, strict purification of the raw salt water is required, especially when the hardness component, ie, the force p, Si and magnesium ions must be removed to at least 0.05 vq/rnl or less.

従来、塩水の工業的精製法としては、塩水に戻酸ソーダ
等を添加し、硬度成分を炭酸塩として沈澱除去する方法
が多く採用されていた。しかし、この方法は生成した炭
酸塩の溶解度積が比較的大きいこともあって、硬度成分
の数〜/lの残存は避けられなかった。
Conventionally, as an industrial purification method for salt water, a method has often been adopted in which acid salt is added to the salt water, and hard components are precipitated and removed as carbonates. However, in this method, partly because the solubility product of the carbonate produced is relatively large, it was inevitable that a hardness component of ~/l remained.

そこで硬度成分を極力除去するための方法として、従来
の凝集沈澱法による一次精製に加え、キレート樹脂を用
いる吸着法による二次精製が注目されている。
Therefore, in addition to primary purification using the conventional coagulation-precipitation method, secondary purification using an adsorption method using a chelate resin is attracting attention as a method for removing hardness components as much as possible.

使用される吸着樹脂としては、従来からイミノニ酢酸を
官能基として持つキレート樹脂やアミノ燐酸基を官能基
として持つキレート樹脂などがあり、カルシウムやマグ
ネシウムのリークを0.05 #/l以下にすることが
可能であった。
Adsorption resins that have been used include chelate resins that have iminodiacetic acid as a functional group and chelate resins that have an aminophosphoric acid group as a functional group, and the leakage of calcium and magnesium must be kept below 0.05 #/l. was possible.

しかしながら、従来方法では塩水のpHが9を越える強
アルカリ性のため、水銀を含有する電解用塩水をキレー
ト樹脂層を通過させて処理する場合、水銀もわずかなが
らこれらのキレート樹脂に吸着し、サイクル数を重ねて
いくと通常の再生では水銀がなかなか脱着せず、カルシ
ウム、マグネシウムの吸着容量が徐々に低下していくこ
とが判った。
However, in the conventional method, the pH of salt water is strongly alkaline, exceeding 9, so when electrolytic salt water containing mercury is processed by passing it through a chelate resin layer, a small amount of mercury is also adsorbed on these chelate resins, resulting in a reduction in the number of cycles. It was found that with repeated regeneration, mercury was not easily desorbed during normal regeneration, and the adsorption capacity for calcium and magnesium gradually decreased.

そこで水銀を含有する電解用塩水をキレート樹脂で処理
する場合、水銀がキレート樹脂に吸着しない処理方法を
鋭意検討した結果、電解用塩水のpHを7〜9に調整し
てキレート樹脂に接触させれば、水銀はキレート樹脂に
吸着せず、カルシウム、マグネシウム等の硬度成分のみ
が吸着するという事実を見出し本発明に至った。
Therefore, when treating mercury-containing electrolytic brine with a chelate resin, as a result of intensive study on a treatment method that would prevent mercury from being adsorbed to the chelate resin, we found that the pH of the electrolytic brine was adjusted to 7 to 9 and brought into contact with the chelate resin. For example, we discovered the fact that mercury is not adsorbed to chelate resins, but only hard components such as calcium and magnesium, leading to the present invention.

すなわち本発明は、キレート樹脂を用いて水銀を含有す
る電解用塩水を精製するに際し、塩水のpHを7〜9に
調整してキレート樹脂と接触させることを特徴とする電
解用塩水の精製法である。
That is, the present invention is a method for purifying electrolytic brine containing mercury using a chelate resin, which comprises adjusting the pH of the brine to 7 to 9 and bringing it into contact with the chelate resin. be.

本発明をさらに詳しく説明する。The present invention will be explained in more detail.

本発明に使用するキレート樹脂とは通常の塩水精製用の
キレート樹脂、すなわちイミノニ酢酸を官能基として持
つキレート樹脂、例えばダイヤイオンCR−10(三菱
化成社品)、レバチットoc−1048(パイ二p社品
)、ヌミキレートMC−80(住友化学社品)、アミノ
燐酸を官能基として持つキレート樹脂例えばデュオライ
トgs−467(ダイヤモンドジャムロック社品)など
があげられる。
The chelate resin used in the present invention is a typical chelate resin for salt water purification, that is, a chelate resin having iminoniacetic acid as a functional group, such as Diaion CR-10 (manufactured by Mitsubishi Chemical Corporation), Revacit OC-1048 (Pai Nip), etc. Examples include Numichelate MC-80 (manufactured by Sumitomo Chemical Co., Ltd.), and chelate resins having aminophosphoric acid as a functional group, such as Duolite GS-467 (manufactured by Diamond Jamrock Co., Ltd.).

塩水とキレート樹脂との接触方法は何ら制限されず任意
であシ上向流でも下降流でもさしつかえない。通液する
塩水の流速は5V=2〜50(Hr’)好ましくはS 
V= 10〜40 (Hr−’ )程度が経済的にもま
た力μシウムリークを極めて低くおさえるためにも好ま
しい。
The method of contacting the salt water with the chelate resin is not limited in any way and may be carried out in an upward flow or a downward flow. The flow rate of the salt water is 5V = 2 to 50 (Hr'), preferably S
V=10 to 40 (Hr-') is preferable both economically and in order to keep the force μsium leak extremely low.

通液する塩水のpHは7〜9の範囲が好ましい。The pH of the brine that is passed through is preferably in the range of 7 to 9.

pHが9を越えると塩水中の水銀がキレート樹脂に吸着
していき、通常の再生では水銀がなかなか脱着せず、カ
ルンウム、マグネシウム等の吸着容量が徐々に低下して
いくので好ましくない。
If the pH exceeds 9, mercury in the salt water will be adsorbed to the chelate resin, and mercury will be difficult to desorb during normal regeneration, and the adsorption capacity for carunium, magnesium, etc. will gradually decrease, which is not preferable.

一方pHが7未満では水銀は吸着しないが、肝心なカル
シウム、マグネシウム等の吸着容量が極端に減少するの
で好ましくない。
On the other hand, if the pH is less than 7, mercury will not be adsorbed, but the adsorption capacity for important calcium, magnesium, etc. will be extremely reduced, which is not preferable.

また、通液する塩水の温度は吸着速度および樹脂の劣化
の問題から10〜80℃、好ましくは20〜70℃の範
囲が良い1) 塩水の通液による精製後、キレート樹脂は再生される。
In addition, the temperature of the salt water to be passed is preferably in the range of 10 to 80°C, preferably 20 to 70°C from the viewpoint of adsorption rate and resin deterioration.1) After purification by passing salt water, the chelate resin is regenerated.

キレート樹脂の再生工程におりて、逆洗工程に先立って
行なわれる塩水の置換工程は軟水を使用して、通液と同
方向でも逆方向でもかまわないが、流速はs v = 
1o (ur−1)以下で置換する。流速がS V= 
10 (Hr−’)よシ大きいと樹脂内の塩水が完全に
置換されず、系内にクロレートが存在する状態で再生剤
である塩酸を通すことになり、クロレートが分解し遊離
塩素が発生する。
In the chelate resin regeneration process, the salt water replacement process that is performed prior to the backwashing process uses soft water, and it may be in the same direction or in the opposite direction as the liquid flow, but the flow rate is s v =
Replace with 1o (ur-1) or less. The flow velocity is S V=
If it is larger than 10 (Hr-'), the salt water in the resin will not be completely replaced, and hydrochloric acid, which is a regenerant, will be passed through the system with chlorate present, resulting in decomposition of chlorate and generation of free chlorine. .

また再生工程終了と塩水通液開始の間に塩水を通液して
樹脂塔内を塩水へ置換するが、塩水の流速はS V= 
10 (Hz”)以下で置換する。
In addition, between the end of the regeneration process and the start of brine passage, brine is passed through to replace the inside of the resin column with brine, but the flow rate of brine is S V =
10 (Hz) or less.

流速がS V= 10 (Hr−”)よシ大きいと樹脂
内の軟水が完全に置換されない。また塩水を急速に通液
すると樹脂の急激な収縮が起こり樹脂の破砕につながり
好ましくない。以上の二つの置換工程で発生する希薄塩
水は原塩溶解液として循環使用することができる〇 また、再生工程及びキレート樹脂の官能基をH型からN
a型に変換する工程は、それぞれ塩酸及びカセイソーダ
のようなカセイアルヵリを用イー’C行&い、塩酸、カ
セイアルカリの濃度ハ2〜25チ程度が好ましく、温度
は10〜80℃程度が可能であるが、通常常温で行われ
る。また通薬の方法は下降流でも上昇流でもどちらでも
よい。また薬剤の通液、押し出し、水洗等の流速は通常
5V=2〜7 hr−’程度で行われる。
If the flow rate is higher than SV = 10 (Hr-''), the soft water in the resin will not be completely replaced.Also, if salt water is passed rapidly, the resin will suddenly shrink, which is undesirable as it will lead to the resin being crushed. The dilute brine generated in the two substitution processes can be recycled as a raw salt solution. Also, in the regeneration process, the functional group of the chelate resin can be changed from H type to N type.
The step of converting to type A uses hydrochloric acid and a caustic alkali such as caustic soda, respectively.The concentration of the hydrochloric acid and the caustic alkali is preferably about 2 to 25 degrees Celsius, and the temperature can be about 10 to 80 degrees Celsius. However, it is usually carried out at room temperature. Further, the method of passing the drug may be either downward flow or upward flow. Further, the flow rate of the drug, extrusion, water washing, etc. is usually about 5V=2 to 7 hr-'.

本発明方法により電解用塩水を精製する場合、原料塩水
をその!ま処理してもよいが、あらかじめたとえば前記
の凝集沈殿法等の公知方法で処理したのちの塩水につい
て本発明方法を適用させることは何ら差し支えなく、む
しろこのような・−次処理は精製効果等の点でより好ま
しい。
When purifying brine for electrolysis using the method of the present invention, the raw brine should be purified! However, there is no problem in applying the method of the present invention to salt water that has been previously treated by a known method such as the above-mentioned coagulation-sedimentation method; rather, such subsequent treatment has a purification effect, etc. It is more preferable in this respect.

かくして本発明方法に従えば、水銀を含有する電解用塩
水を精製する場合においても、水銀はキレート樹脂にほ
とんど吸着せず、カルシウム、マグネシウム等の吸着容
量を低下させることなく長時間安定した高度な処理が可
能となった。
Thus, according to the method of the present invention, even when purifying electrolytic brine containing mercury, mercury is hardly adsorbed to the chelate resin, and a highly stable and highly efficient solution can be obtained for a long time without reducing the adsorption capacity of calcium, magnesium, etc. processing is now possible.

以下、本発明を実施例により説明する。The present invention will be explained below using examples.

実施例−1 テ°ニオライトES−467を200 mlガラスカラ
ム(内径25m、高さ10100Oに充填し、7チ塩酸
で再生レベ/l/ 185 ?/l−Rで再生し、水洗
後4チカセイソーダでレベ/l/ 74 ?/J−Rで
Na型へ変換し、水洗後、水銀法電解塩水をpH=7に
調整してから5V=20hr’で通液を行なった。カル
シウムのリークが1−q/lに到達した時点で通液を止
め、前記と同様の再生条件で再生を行ない、この操作を
20回くりかえした。この20回の通液でカルシウムの
常時リークは常に0. Q 5 ・q/l以下であり、
全く問題なかった。
Example-1 Teniolite ES-467 was packed in a 200 ml glass column (inner diameter 25 m, height 10,100 O), regenerated with 7 chloride hydrochloric acid at a regeneration level of 185? Level/L/74?/J-R to convert to Na type, wash with water, adjust mercury method electrolyzed brine to pH = 7, and then pass through at 5V = 20hr'. Calcium leakage was 1. -q/l was reached, the fluid flow was stopped, and regeneration was performed under the same regeneration conditions as above, and this operation was repeated 20 times. During these 20 fluid flows, the constant leakage of calcium was always 0.Q 5・It is less than or equal to q/l,
There were no problems at all.

また20回通液終了後の樹脂中に吸着していた水銀の量
は0.29y/g−Hであった。
Further, the amount of mercury adsorbed in the resin after 20 passes was 0.29 y/g-H.

比較例−1 水銀法電解塩水のpHを11に調整した以外は実施例−
1と全く同条件で通液を行なった。20回の通液でカル
シウムの常時リークは常に0.05〜/J以下で問題な
かったが、カルシウムの吸着容量は20%低下した。ま
た20回通液終了後の樹脂中に吸着していた水銀の量は
11.4 ?/I Bであった。
Comparative Example-1 Example except that the pH of the mercury method electrolyzed brine was adjusted to 11-
The liquid was passed under exactly the same conditions as in 1. After 20 times of liquid passage, the constant leakage of calcium was always 0.05~/J or less and there was no problem, but the calcium adsorption capacity decreased by 20%. Also, the amount of mercury adsorbed in the resin after 20 passes was 11.4? /IB.

Claims (1)

【特許請求の範囲】[Claims] キレート樹脂を用いて水銀を含有する電解用塩水を精製
するに際し、塩水のpHを7〜9に調整したのちキレー
ト樹脂と接触させることを特徴とする電解用塩水の精製
法。
A method for purifying electrolytic brine containing mercury using a chelate resin, which comprises adjusting the pH of the brine to 7 to 9 and then bringing it into contact with the chelate resin.
JP25966184A 1984-12-07 1984-12-07 Purifying method of salt water for electrolysis Pending JPS61136913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25966184A JPS61136913A (en) 1984-12-07 1984-12-07 Purifying method of salt water for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25966184A JPS61136913A (en) 1984-12-07 1984-12-07 Purifying method of salt water for electrolysis

Publications (1)

Publication Number Publication Date
JPS61136913A true JPS61136913A (en) 1986-06-24

Family

ID=17337143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25966184A Pending JPS61136913A (en) 1984-12-07 1984-12-07 Purifying method of salt water for electrolysis

Country Status (1)

Country Link
JP (1) JPS61136913A (en)

Similar Documents

Publication Publication Date Title
US4374711A (en) Process for the electrolysis of an aqueous sodium chloride solution comprising, in combination, a diaphragm process and a cation exchange membrane process
CA1214621A (en) Process for removing aluminum and silica from alkali metal halide brine solutions
KR100727699B1 (en) Method for reducing metal ion concentration in brine solution
SE448636B (en) Sodium chlorate prodn. by electrolysis of sodium chloride
JPH0673588A (en) Method for purifying alkali metal chloride aqueous solution by removing iodine
JP3334142B2 (en) Treatment method for fluorine-containing water
JP2005514313A (en) Brine purification method
JP3723592B2 (en) Purification method and plant for alkali metal chloride aqueous solution
JP2000070933A (en) Production of pure water
JPS61136913A (en) Purifying method of salt water for electrolysis
JP4013646B2 (en) Anion exchange resin, method for producing the same, and method for producing purified hydrogen peroxide water using the same
JPH073485A (en) Method for electrolyzing alkaline metal chloride
JP3203745B2 (en) Fluorine-containing water treatment method
JPS60133602A (en) Process for refining saline water for electrolysis
US5356610A (en) Method for removing impurities from an alkali metal chlorate process
JPS6191014A (en) Method of purifying aqueous solution of potassium chloride for electrolysis
JP3364308B2 (en) Wastewater treatment method and apparatus
JP3363762B2 (en) Electrolysis method
JP2000229289A (en) Treatment of fluorine-containing water
JPS6054886B2 (en) Method for purifying aqueous alkali chloride solution
JPH0449485B2 (en)
US6132591A (en) Method for removal of sulfate groups and chlorate groups from brine
JPS59217602A (en) Method for purifying electrolytic brine
JPS6356173B2 (en)
JPS6210927B2 (en)