JPS61136747A - Surface treatment of cutting-tool holding part - Google Patents

Surface treatment of cutting-tool holding part

Info

Publication number
JPS61136747A
JPS61136747A JP25723684A JP25723684A JPS61136747A JP S61136747 A JPS61136747 A JP S61136747A JP 25723684 A JP25723684 A JP 25723684A JP 25723684 A JP25723684 A JP 25723684A JP S61136747 A JPS61136747 A JP S61136747A
Authority
JP
Japan
Prior art keywords
evaporation
titanium
main shaft
tool holder
spindle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25723684A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kurokawa
黒河 喜昭
Masahiro Kunimi
国見 正博
Motohiro Takeguchi
竹口 素弘
Yuji Honda
祐二 本多
Takahiro Yamaguchi
隆洋 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OUA TSUUKI KK
Nippei Toyama Corp
Original Assignee
OUA TSUUKI KK
Nippei Toyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OUA TSUUKI KK, Nippei Toyama Corp filed Critical OUA TSUUKI KK
Priority to JP25723684A priority Critical patent/JPS61136747A/en
Publication of JPS61136747A publication Critical patent/JPS61136747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gripping On Spindles (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a uniform thickness of a covered layer in the part far from an equal distance by carrying-out evaporation-deposition treatment in the state where the evaporation center of the metal such as titanium as evaporated substance and the center line of a treated article, i.e., the main shaft are allowed to coincide with each other. CONSTITUTION:Inside a vacuum container 10, glow electric discharge (plasma) is generated between an evaporation container 12 on a positive-electrode side and a holding tool 16 on a negative-electrode side thermion beams 15 vaporize titanium. Titanium atoms after evaporation are inonized together with nitrogen 11 during the passing through the glow electric-discharge region. Then, the atoms are accelerated by the negative voltage of the main shaft 1 on the negative electrode side, and collide with the main shaft 1 as treated article by the high kinetic energy, and evaporation-deposited as titanium nitride onto the surface of the main shaft 1. At this time, the treated article simultaneously collides with argon ions, and sputter etching state is formed, and an avaporation- deposited film, i.e., covered layer is formed with a strong adhesion force onto the surface of the treated article, in particular on a tapered hole 4 in purification.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、工作機械の主軸および工具ホルダーの工具保
持部表面に耐摩耗性および耐蝕性の超硬金属化合物の被
aWgをイオンプレーティング処理により形成する方法
に関する。
Detailed Description of the Invention Technical Field of the Invention The present invention is directed to forming a wear-resistant and corrosion-resistant cemented carbide metal compound coating aWg on the surface of the main spindle of a machine tool and the tool holding part of a tool holder by ion plating. Regarding the method.

従来技術 従来の工作機械の主軸は、特殊鋼を使用し、それの先端
にテーパ孔を加工し、その表面を焼入れし、かつ焼戻し
をした後に、その外径および内径を研削加工によって仕
上げられる。この主軸のテーパ孔に、エンドミルなどを
把持した工具ホルダーを装着し、切削加工を行うと、工
具ホルダーの円錐面、または主軸の保持面にフレノチン
グ(微動)摩耗、およびそのときの酸化による赤錆が発
生する。工作機械の使用時間が長期に及ぶと、上記フレ
ッチング摩耗が進行し、主軸と工具ホルダーとのはまり
合い部分の形状が悪化するため、切削時の加工精度が低
下することになる。
Prior Art The main spindle of a conventional machine tool is made of special steel, a tapered hole is machined at its tip, the surface is hardened and tempered, and the outer and inner diameters are finished by grinding. When a tool holder holding an end mill or the like is attached to the taper hole of this spindle and cutting is performed, frenoting (fine movement) wear and red rust due to oxidation occur on the conical surface of the tool holder or the holding surface of the spindle. Occur. When a machine tool is used for a long period of time, the fretting wear progresses and the shape of the fitting portion between the spindle and the tool holder deteriorates, resulting in a decrease in machining accuracy during cutting.

このようなフレッチング現象は、それらの表面に硬質金
属化合物の被膜層を形成し1、その表面に耐摩耗性およ
び耐蝕性を持たせることによっである程度防止できる。
Such a fretting phenomenon can be prevented to some extent by forming a coating layer of a hard metal compound on the surface 1 to impart wear resistance and corrosion resistance to the surface.

しかし、このような硬質金属化合物の被膜層の形成時に
、工具ホルダーや主軸に高い温度の熱が加えられるため
、それらの工具ホルダーや主軸の材料に熱的な変形が発
生し、それが部品の加工精度を逆に低下させる原因とな
っている。
However, when forming such a hard metal compound coating layer, high-temperature heat is applied to the tool holder and spindle, resulting in thermal deformation of the material of the tool holder and spindle, which causes damage to the parts. On the contrary, this causes a decrease in machining accuracy.

例えばプラズマ溶射による形成方法では、溶射金属が融
点まで加熱されるため、工具ホルダーまたは主軸の表面
の金属層が焼き戻されてしまう。
For example, in a forming method using plasma spraying, the sprayed metal is heated to its melting point, so that the metal layer on the surface of the tool holder or spindle is tempered.

またこのプラズマ溶射法では、適切な厚みでの均一な被
膜層の形成が困難であるため、50μm以上の蒸着層を
形成した後、再び1〜10μmの膜厚にするための研削
作業が必要となる他、蒸着前に工具ホルダーまたは主軸
の表面に機械的なエツチングが必要となる。
In addition, with this plasma spraying method, it is difficult to form a uniform coating layer with an appropriate thickness, so after forming a deposited layer of 50 μm or more, grinding work is required to reduce the film thickness to 1 to 10 μm again. In addition, mechanical etching of the surface of the tool holder or spindle is required before deposition.

一方、上記のようなフレッチング現象は、発明者の実験
によると、主軸のテーパ孔の開口端側およびそれと対応
する工具ホルダーの外周面で局部的に生じやすい。この
原因は、主軸の開口端側での剛性が相対的に低く、工具
ホルダーの装着時に主軸の開口端側に隙間が形成される
からと推測される。
On the other hand, according to the inventor's experiments, the fretting phenomenon described above tends to occur locally on the open end side of the taper hole of the spindle and the corresponding outer peripheral surface of the tool holder. The reason for this is presumed to be that the rigidity at the open end side of the spindle is relatively low, and a gap is formed at the open end side of the spindle when the tool holder is attached.

すなわち、第1図に示すように、主軸Iに工具ホルダー
2が装着されたとき、その軸線方向の保持力および切削
時における軸線方向の変動荷重の和の作用力Fによって
、主軸1の開口端側で、主軸1が拡径方向に変形し、そ
の結果その部分に隙間が形成される。このため、切削加
工時の微少振動によって、主軸1と工具ホルダー2との
間に接線方向の振動荷重が作用すると、第2図のように
、主軸1と工具ホルダー2との接触面に固着域Aと滑り
域Bとが発生する。そして、この滑り域Bは、主軸1と
工具ホルダー2との接触圧の低い部分であり、粗い表面
で相対的な漬りを起こすため、これがフレソチング現象
の主要な原因となっている。
That is, as shown in FIG. 1, when the tool holder 2 is attached to the spindle I, the open end of the spindle 1 is fixed by the acting force F, which is the sum of the holding force in the axial direction and the fluctuating load in the axial direction during cutting. At the side, the main shaft 1 is deformed in the direction of radial expansion, and as a result, a gap is formed at that part. Therefore, when a vibration load in the tangential direction is applied between the spindle 1 and the tool holder 2 due to minute vibrations during cutting, a stuck area will appear on the contact surface between the spindle 1 and the tool holder 2, as shown in Figure 2. A and a slip area B occur. This slip area B is a part where the contact pressure between the spindle 1 and the tool holder 2 is low, and the rough surface causes relative soaking, which is the main cause of the flexo-ch phenomenon.

したがって、フレッチング現象は、この滑り域Bでの隙
間の発生を防止し、相対滑り部分の耐摩耗性および耐蝕
性を高めることによって有効に防止できる。
Therefore, the fretting phenomenon can be effectively prevented by preventing the generation of gaps in this sliding region B and increasing the wear resistance and corrosion resistance of the relative sliding portion.

発明の目的 ここに本発明の目的は主軸、または工具ホルダーの表面
に熱的な変形を与えない状態で、フレソチングの防止に
有効な金属としての窒化チタンあるいは炭化チタン、お
よびクロム、けい素、ジルコニウム、ハフニウムの窒化
物または炭化物(以  ・下チタン化合物等という)被
覆層を形成することである。
OBJECT OF THE INVENTION The object of the present invention is to use titanium nitride or titanium carbide as metals, and chromium, silicon, and zirconium, which are effective in preventing fresotting without causing thermal deformation to the surface of the spindle or tool holder. , forming a hafnium nitride or carbide (hereinafter referred to as titanium compound, etc.) coating layer.

発明の概要 そこで、本発明は、工作機械の主軸の保持面あるいは工
具ホルダーの円錐面、またはそれらの両方の保持面およ
び円錐面に、物理的蒸着処理すなわちイオンプレーティ
ング処理を利用し、金属化合物すなわちチタン化合物等
の被覆膜を主軸の開口端側で厚く形成し、これによって
フレッチング現象の発生しやすい部分に耐摩耗性および
耐蝕性を持たせ、フレッチング現象を有効に防止するよ
うにしている。このイオンプレーティング処理では、被
加工物の温度が高速度鋼焼戻し温度以下例えば500℃
以下で蒸着できるから、その加工処理後においても、材
料の熱的変形が現れず、したがって加工精度が高められ
る。
SUMMARY OF THE INVENTION Therefore, the present invention utilizes a physical vapor deposition process, that is, an ion plating process, to coat the holding surface of the main shaft of a machine tool, the conical surface of a tool holder, or both of the holding surface and the conical surface of the tool holder, thereby forming a metallic compound. In other words, a coating film made of a titanium compound or the like is formed thickly on the open end side of the spindle, thereby imparting wear resistance and corrosion resistance to areas where fretting is likely to occur, thereby effectively preventing fretting. . In this ion plating process, the temperature of the workpiece is below the high-speed steel tempering temperature, for example 500°C.
Since the material can be vapor-deposited in the following manner, thermal deformation of the material does not occur even after the processing, and therefore processing accuracy is improved.

処理対象の構成 以下、処理対象の構成を図面に基づいて具体的に説明す
る。
Configuration of Processing Target The configuration of the processing target will be specifically explained below based on the drawings.

まず、第3図は、主軸1を示しており、また第4図は、
工具ホルダー2を示している。上記工具ホルダー2は、
先端で切削工具3を保持している。
First, Fig. 3 shows the main shaft 1, and Fig. 4 shows the main shaft 1.
A tool holder 2 is shown. The tool holder 2 is
The cutting tool 3 is held at the tip.

この切削工具3が主軸lのテーパ孔4に装着され、その
キー9から主軸1の回転を受けて、被加工物に切削加工
を行うとき、主軸1のテーパ孔4の保持面5と工具ホル
ダー2の円錐面6との間に微少振動の交番荷重が発生す
る。この結果、既述のように、円錐面状の保持面5と円
錐面6との接触面に固着域Aと滑り域Bとが発生し、そ
の滑り域Bの部分すなわら主軸1のテーパ孔4の開口端
側にフレッチング現象が発生し、またそれによる酸化現
象によって赤錆が発生する。
When this cutting tool 3 is installed in the tapered hole 4 of the main spindle 1 and receives rotation of the main spindle 1 from the key 9 to cut the workpiece, the holding surface 5 of the tapered hole 4 of the main spindle 1 and the tool holder An alternating load of minute vibrations is generated between the conical surface 6 of No. 2 and the conical surface 6 of No. 2. As a result, as described above, a sticking region A and a slipping region B are generated on the contact surface between the conical holding surface 5 and the conical surface 6, and the portion of the slipping region B, that is, the taper of the main shaft 1, is generated. A fretting phenomenon occurs on the open end side of the hole 4, and red rust occurs due to the resulting oxidation phenomenon.

そこで、本発明は、第3図および第4図に示すように、
前加工の段階で、工具保持部としての保持面5の円錐の
頂角θ1を最終の頂角θよりも大きく、また、工具保持
部としての円錐面6の頂角θ2を最終の頂角θよりも小
さく設定することにより、主軸1のテーパ孔4に工具ホ
ルダー2を装着したとき、主軸1の開口端側で大きな隙
間を形成し、この隙間を埋める厚さのチタン化合物の被
覆層7.8を保持面5および円錐面6に形成している。
Therefore, the present invention, as shown in FIGS. 3 and 4,
At the stage of pre-machining, the apex angle θ1 of the cone of the holding surface 5 as a tool holder is set to be larger than the final apex angle θ, and the apex angle θ2 of the conical surface 6 as a tool holder is set to be larger than the final apex angle θ. When the tool holder 2 is installed in the taper hole 4 of the spindle 1, a large gap is formed on the open end side of the spindle 1 by setting the titanium compound coating layer 7 to be smaller than 7. 8 is formed on the holding surface 5 and the conical surface 6.

したがって、このチタン化合物の被覆層7.8は、主軸
1の開口端側で厚く、換言すると、工具ホルダー2のテ
ーパの裾部分、つまり滑り域Bで厚くなっている。この
ようにして、フレフチング現象の起きやすい部分での面
がチタン化合物等の被覆層7.8によって強化される。
Therefore, the titanium compound coating layer 7.8 is thicker on the open end side of the spindle 1, in other words, it is thicker on the tapered bottom portion of the tool holder 2, that is, in the sliding region B. In this way, the surface in areas where flefting is likely to occur is strengthened by the coating layer 7.8 made of a titanium compound or the like.

本発明の表面処理方法 次に、第5図は、イオンプレーティング処理による本発
明の表面処理方法を示している。
Surface Treatment Method of the Present Invention Next, FIG. 5 shows the surface treatment method of the present invention using ion plating treatment.

真空容器10の内部に窒素11が送り込まれる。Nitrogen 11 is fed into the vacuum container 10 .

そして陽極側の蒸発容器12の内部に蒸着物質としての
チタン13が置かれている。一方、カソードガン14に
よって、熱電子ビーム15がチタン13に向けて発射さ
れる。
Titanium 13 as a vapor deposition material is placed inside the evaporation container 12 on the anode side. On the other hand, a thermionic beam 15 is emitted toward the titanium 13 by the cathode gun 14 .

そして、陰極側の保持具16に被処理物として例えば主
軸lがテーパ孔4を下向きにして、しかもその軸線を蒸
発容器10の中心線、つまりチタン13の蒸発中心と一
致した状態で保持具16で保持されている。そして、こ
の保持具16と上記蒸発容器12との間に高い電圧が電
源17により印加される。なお、カソードガン14に別
に電源18が接続されている。
Then, hold the holder 16 on the cathode side as an object to be treated, for example, with the main axis 1 facing downward with the taper hole 4 and with the axis aligned with the center line of the evaporation container 10, that is, the evaporation center of the titanium 13. is held in A high voltage is applied between this holder 16 and the evaporation container 12 by a power source 17. Note that a power source 18 is separately connected to the cathode gun 14.

真空容器10の内部で陽極側の蒸発容器12と、陰極側
の保持具16との間でグロー放電(プラズマ)が発生し
、熱電子ビーム15がチタン13を蒸発させる。蒸発後
のチタン13の原子は、このグロー放電領域を通過する
間に窒素11とともにイオン化され、陰極側の主軸1の
負の電圧によって加速され、高い運動エネルギーで被処
理物としての主軸lに衝突し、その表面に窒化チタンと
して蒸着する。このとき、被処理物は、アルゴンイオン
の衝突を同時に受けてスパッタエツチングの状態となる
ので、その表面時にテーパ孔4では、清浄化されながら
強い密着力で蒸着膜、つまり被覆層7が形成される。
A glow discharge (plasma) is generated inside the vacuum container 10 between the evaporation container 12 on the anode side and the holder 16 on the cathode side, and the thermionic electron beam 15 evaporates the titanium 13. The atoms of titanium 13 after evaporation are ionized together with nitrogen 11 while passing through this glow discharge region, are accelerated by the negative voltage of the main axis 1 on the cathode side, and collide with the main axis l as the object to be processed with high kinetic energy. Then, titanium nitride is deposited on the surface. At this time, the object to be processed is simultaneously bombarded with argon ions and enters a state of sputter etching, so that a vapor deposited film, that is, a coating layer 7, is formed on the surface of the object with strong adhesion while being cleaned in the taper hole 4. Ru.

特に、蒸着容器12と被処理物としての主軸1が同一軸
線上に位置しており、かつ保持面5の開口端側か蒸着物
質のチタン13に最も近い位置に配置されているため、
その部分での蒸着層の厚みが厚く、遠ざかるにしたがっ
て次第に薄くなっている。この結果、被膜層7は、1〜
10μmの範囲で、前記隙間を埋める厚さに形成される
。このようなイオンプレーティング処理では、いわゆる
低温処理であるから、この処理後において被処理物に熱
的な変形や歪が発生せず、したがって熱的に安定化して
いる。
In particular, since the vapor deposition container 12 and the main shaft 1 as the object to be processed are located on the same axis, and the opening end side of the holding surface 5 is located closest to the titanium 13 of the vapor deposition material,
The thickness of the deposited layer is thick at that part, and gradually becomes thinner as it moves away from the area. As a result, the coating layer 7 has 1 to
It is formed to a thickness in the range of 10 μm to fill the gap. Since such an ion plating process is a so-called low-temperature process, the object to be processed does not undergo thermal deformation or strain after the process, and is therefore thermally stabilized.

なお、工具ホルダー2についても、同様な処理が行われ
る。
Note that similar processing is performed for the tool holder 2 as well.

また、このような被覆層7.8は、主軸1および工具ホ
ルダー2の少な(とも一方のみ形成してあれば、十分効
果を発揮する。
Moreover, such a coating layer 7.8 is sufficiently effective if it is formed only on one of the spindle 1 and the tool holder 2.

発明の効果 本発明では、下記の効果が得られる。Effect of the invention The present invention provides the following effects.

まず、イオンプレーティング処理が低い処理温度で実施
できるから、処理後の主軸や工具ホルダーに熱的変形や
熱的応力歪などが残らず、熱的変形が最小に抑えられる
First, since the ion plating process can be performed at a low processing temperature, no thermal deformation or thermal stress strain remains on the spindle or tool holder after the process, and thermal deformation can be minimized.

また、このイオンプレーティング処理では、蒸着物質の
運動エネルギーが他の蒸着手段に比較して、高いため、
耐摩耗性および耐蝕性に優れた安定な硬質被5!、層が
強い結合力のちとに形成できる。
In addition, in this ion plating process, the kinetic energy of the vapor deposition material is higher than that of other vapor deposition methods, so
Stable hard coating with excellent wear and corrosion resistance! , a layer can be formed after strong bonding force.

特に、蒸発物質としてのチタン等の金属の蒸発中心と被
処理物すなわち主軸または工具ホルダーの中心線とが一
致した状態で、蒸着処理が行われるため、同じ距離の部
分で被覆層が均一な厚さとなり、また蒸着物質に最も近
い部分、すなわちフレッチング現象の起きやすい部分で
厚い被膜が形成され、距離が離れるにしたがって反比例
的に薄く形成されるため、フレッチング現象の最大の原
°因となる微少振動による滑り部分がより一層強化され
る。
In particular, since the evaporation process is performed with the evaporation center of the metal such as titanium as the evaporation substance and the center line of the workpiece, ie, the main axis or tool holder, the coating layer has a uniform thickness at the same distance. Furthermore, a thick film is formed at the part closest to the deposited material, that is, a part where fretting is likely to occur, and becomes thinner inversely as the distance increases. The sliding part due to vibration is further strengthened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の主軸と工具ホルダーとのはまり合い部分
を示す一部の断面図、第2図は主軸と工具ホルダーとの
はまり合い面を示す拡大断面図、第3図は本発明の処理
方法による主軸の断面図、第4図は同じく本発明の処理
方法による工具ホルダーの一部破断側断面図、第5図は
イオンプレーティング処理用の装置の概略的断面図であ
る。 ■・・主軸、2・・工具ホルダー3・・切削工具、4・
・テーパ孔、5・・保持面、6・・円錐面、7.8・・
被5を層。
Fig. 1 is a partial sectional view showing the fitting surface between the conventional spindle and tool holder, Fig. 2 is an enlarged sectional view showing the fitting surface between the main spindle and the tool holder, and Fig. 3 is the process of the present invention. FIG. 4 is a partially broken side sectional view of a tool holder also according to the processing method of the present invention, and FIG. 5 is a schematic sectional view of an apparatus for ion plating processing. ■・・Spindle, 2・・Tool holder 3・・Cutting tool, 4・・
・Tapered hole, 5... Holding surface, 6... Conical surface, 7.8...
Layer 5.

Claims (1)

【特許請求の範囲】[Claims] 真空内で被処理物としての主軸または工具ホルダーの軸
線を蒸着物質としてのチタン等の蒸発中心と一致させた
状態で、イオンプレーティング処理により上記被処理物
の切削工具保持部の表面にチタン化合物等の金属被覆層
を蒸着させることを特徴とする切削工具保持部の表面処
理方法。
A titanium compound is applied to the surface of the cutting tool holder of the workpiece by ion plating, with the axis of the main shaft or tool holder as the workpiece aligned with the evaporation center of titanium, etc. as the vapor deposition material, in a vacuum. A method for surface treatment of a cutting tool holder, characterized by depositing a metal coating layer such as .
JP25723684A 1984-12-04 1984-12-04 Surface treatment of cutting-tool holding part Pending JPS61136747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25723684A JPS61136747A (en) 1984-12-04 1984-12-04 Surface treatment of cutting-tool holding part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25723684A JPS61136747A (en) 1984-12-04 1984-12-04 Surface treatment of cutting-tool holding part

Publications (1)

Publication Number Publication Date
JPS61136747A true JPS61136747A (en) 1986-06-24

Family

ID=17303571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25723684A Pending JPS61136747A (en) 1984-12-04 1984-12-04 Surface treatment of cutting-tool holding part

Country Status (1)

Country Link
JP (1) JPS61136747A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992021468A1 (en) * 1991-05-03 1992-12-10 Daniels Edward J Tool holder
JP2008509864A (en) * 2004-08-19 2008-04-03 ファーマケミー ビー ヴイ Protective vial and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992021468A1 (en) * 1991-05-03 1992-12-10 Daniels Edward J Tool holder
JP2008509864A (en) * 2004-08-19 2008-04-03 ファーマケミー ビー ヴイ Protective vial and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4401719A (en) Highly hard material coated articles
Matthews Titanium nitride PVD coating technology
CN104862652B (en) Method for manufacturing TiAlSiN super-hard gradient coating
RU2618292C2 (en) Coated drill
CN108165925B (en) Low negative bias high energy Ar+Method for improving performance of AlTiSiN coating by etching and cleaning
JP4300762B2 (en) Carbon film-coated article and method for producing the same
US6419997B1 (en) Guide bush and method of forming hard carbon film over the inner surface of the guide bush
Sharipov et al. Increasing the resistance of the cutting tool during heat treatment and coating
US6517688B2 (en) Method of smoothing diamond coating, and method of manufacturing diamond-coated body
JPH07171706A (en) Coating tool and cutting process
JP3706156B2 (en) Tool and tool manufacturing method
CA1330775C (en) Method of increasing useful life of tool steel cutting tools
US3575433A (en) Piston ring for an internal-combustion engine and method for making same
CN112708852B (en) Method for improving performance of AlCrN coating cutter through in-situ high-energy Ar + etching post-treatment
JPS61136747A (en) Surface treatment of cutting-tool holding part
JPH0474125B2 (en)
CN105385992A (en) Method for preparing nitrogen-aluminum-titanium coating on surface of tool
JPH05116003A (en) Tool member excellent in chipping resistance
GB2247693A (en) Peeling tool process involving machining prior to coating
US20220040769A1 (en) Coated cutting tool
JPH06293954A (en) Slide material and its production
JP2003175406A (en) Hard anodic oxide coating coated machining tool
JP7410385B2 (en) coated cutting tools
JP2003145309A (en) Diamond-coated machining tool
Gainieva PERSPECTIVES AND VARIETIES OF PVD CUTTING TOOL COATING