JPS6113547A - Incandescent bulb - Google Patents

Incandescent bulb

Info

Publication number
JPS6113547A
JPS6113547A JP13200084A JP13200084A JPS6113547A JP S6113547 A JPS6113547 A JP S6113547A JP 13200084 A JP13200084 A JP 13200084A JP 13200084 A JP13200084 A JP 13200084A JP S6113547 A JPS6113547 A JP S6113547A
Authority
JP
Japan
Prior art keywords
bulb
filament
infrared
refractive index
reflective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13200084A
Other languages
Japanese (ja)
Inventor
晃 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13200084A priority Critical patent/JPS6113547A/en
Publication of JPS6113547A publication Critical patent/JPS6113547A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高効率(二するとともC1赤外線放射を減らし
た白熱電球に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to an incandescent lamp with high efficiency (and also reduced C1 infrared radiation).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

本件出願人は先4;管形バルブの内外いずれかの面(二
可視元透過赤外線反射膜な設け、かつバルブの中心線近
傍C二直劇状タングステンフィラメントを封装した白熱
電球を提案した。この電球はフィラメントから発した光
のうち、可視光は赤外線反射膜を透過して外部(二反射
され、赤外線は赤外線反射膜で皮殻されてフィラメント
(−帰還してこれを加熱し、この結果、消費電力の割り
(二大量の可逆C二対しフィラメントの長さを成る程度
大きくすることによって電球の効率をよシ一層向上でき
・ることを発見し、特願昭54−5572号(特願昭5
5−98459号公報参照) として提案した。
The applicant previously proposed an incandescent light bulb in which a tube-shaped bulb is provided with a visible-transmitting infrared reflective coating on either the inner or outer surface, and a C-shaped tungsten filament is enclosed near the center line of the bulb. Of the light emitted from the filament of a light bulb, visible light passes through an infrared reflective film and is reflected to the outside (2), while infrared light is shelled by an infrared reflective film and returns to the filament (-), heating it. He discovered that the efficiency of light bulbs could be further improved by increasing the length of the filament to a certain extent in relation to the large amount of reversible C2 consumed. 5
5-98459)).

しかして、この種の白熱電球C二おいて、赤外線反射率
を同上させるためC二は赤外線反射膜を構成する高屈折
率層と低屈折率層とを交互重層した層数を多くすれば良
いことが知られている。しかし、その反面、層数な多く
すれば製造(=多くの工程と労力とを必要とし、高価に
なることは避けられず、さらに層数があまシ多くなると
赤外線反射膜が剥離しやすくなる欠点が生じる。この対
策として、本件出願人はバルブ用ガラス管を有愼金層化
合物溶液(二浸漬血布し、酸化雰囲気中で焼成して酸化
物j―を形成する手段痒よって、バルブの内外両面に同
時1=高屈折率層あるいは低屈折率層を形成し、これを
繰返して両層を交互重層させて2Mの赤外線反射膜を形
成する方法を開発し、特願昭55−150636号(特
開昭57−74963号公報参照)として提案した。こ
の方法(−よれば、同じ工a数と労力で2重の赤外線反
射膜換言すれば2倍の層数の反射膜を形成できるので、
赤外線反射率の充分(二高い反射膜を容易(1短時間で
形成でき、しかも−面C二形成された反射膜の層数はそ
れほど大きくないので剥離などのおそれがない利点もあ
る。
Therefore, in order to increase the infrared reflectance of this type of incandescent light bulb C2, it is sufficient to increase the number of layers in which high refractive index layers and low refractive index layers constituting the infrared reflective film are alternately laminated. It is known. However, on the other hand, as the number of layers increases, manufacturing (=many processes and labor is required, and it is unavoidable that it will be expensive).Furthermore, as the number of layers increases, the infrared reflective film tends to peel off easily. As a countermeasure against this, the applicant proposed a method of dipping the glass tube for the bulb in a gold layer compound solution (two cloths) and firing it in an oxidizing atmosphere to form an oxide. A method was developed to form a 2M infrared reflective film by simultaneously forming a high refractive index layer or a low refractive index layer on both sides, and repeating this process to form a 2M infrared reflective film. According to this method, it is possible to form a double infrared reflective film, or in other words, twice the number of layers, with the same number of man-hours and effort.
It has the advantage that a reflective film with sufficient infrared reflectivity can be easily formed in a short time, and since the number of layers of the formed reflective film is not so large, there is no risk of peeling.

しかしながら、このよう(=バルブの内外両面に赤外線
反射膜を形成すると、両反射膜がガラスを隔てて対向し
ているため、両反射膜の相互汗渉(二よって、可視光の
透過率が着く低下し、場合(二よっては赤外線反射膜を
設けない場合よりも効率が低下することがある。
However, when infrared reflective films are formed on both the inner and outer surfaces of the bulb, the two reflective films face each other with the glass in between, so the visible light transmittance increases. In some cases, the efficiency may be lower than when no infrared reflective film is provided.

〔発明の目的〕[Purpose of the invention]

本発明はバルブの内外両面(二赤外−反射膜を設けたも
の(二おいて、赤外線反射膜を設けない場合よpも効率
の高い白熱電球を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an incandescent light bulb having an incandescent light bulb provided with an infrared-reflecting coating on both the inner and outer surfaces of the bulb (in which the bulb is provided with an infrared-reflecting coating) and which is more efficient than a case without an infrared-reflecting coating.

〔発明の概要〕[Summary of the invention]

フィラメントの長さをバルブ内径の2倍以上にするとと
C二よって、フィラメントから斜め方向すなわち径方向
と管端方向との中間(二回って発した赤外線を有効にフ
ィラメント(二帰還させて効率を向上し、2重の赤外線
反射膜に起因する可視光透過率の低下を補償したもので
ある。
If the length of the filament is made to be more than twice the inner diameter of the bulb, the infrared rays emitted from the filament in the diagonal direction, i.e. between the radial direction and the tube end direction (twice) will be effectively returned to the filament (two times, increasing the efficiency). This compensates for the decrease in visible light transmittance caused by the double infrared reflecting film.

〔発明の実施例〕[Embodiments of the invention]

本発明の詳細を第1図(=示す複写機用両口金形−ロゲ
ン電球を例じして説明する。(1)は透明石英ガラス製
管形バルブ、(2) 、 (3)はこのバルブ(1)の
内外両面(二それぞれ設けた可視光透過赤外線反射膜、
(4) 、 (4)はバルブ(1)の両端をそれぞれ圧
潰封正してなる封止部、(5)、(5)はこれら封止部
(4)、(4)内(=埋設されたモリブデン導入箔、(
61,(6)はこれら導入箔(5)、(5)l二接続し
、バルブ(1)内C:4人された内導線、(力は内導線
t61.(61間(二装架されてバルブ(1)のほぼ中
心l1M+=位置する直線状のタングステンコイルフィ
ラメント、(8)、+8)はこのフィラメント(7)を
支持するアンカ、(9) 、 (9)は導入箔(5)、
(5)(二接続して封止部(4) 、 (4)の端面(
二装着した口金である。そうして、バルブ(1)内には
アルゴンとともに所要のハロゲンを封入しである。そう
して、バルブ(1)の内径をDmm 、フィラメント(
5)の長さをl mmとする。
The details of the present invention will be explained with reference to FIG. (1) Visible light transmitting and infrared reflective coatings provided on both inner and outer surfaces (2)
(4), (4) are sealing parts formed by crushing and sealing both ends of the valve (1), and (5), (5) are inside these sealing parts (4), (4) (= buried). Molybdenum introduced foil, (
61, (6) connect these two introductory foils (5), (5) l, inside the valve (1) C: 4 inner conductors, (the force is between the inner conductors t61. (61 (two mounted) The linear tungsten coil filament located approximately at the center of the bulb (1), (8), +8) is the anchor that supports this filament (7), (9), (9) is the introduction foil (5),
(5) (Two connected and sealed part (4), end face of (4) (
This is the cap with two attachments. The bulb (1) is then filled with argon and the necessary halogen. Then, the inner diameter of the bulb (1) is Dmm, and the filament (
5) Let the length be l mm.

上記可視光透過赤外線反射膜(2)、(3)は第2図に
拡大して模型的(=示すよう(二、酸化チタン(TiO
2)などからなる高屈折率層(2H) 、 (3H) 
 (左上り一ツチング)とシリカ(SiOz)などから
なる低屈折率層(2L) 、 (3L)  (右上シー
ツチング)とを交互重層して片面合計10層(二なるよ
う(=形成しである。
The visible light transmitting infrared reflecting films (2) and (3) are enlarged in FIG.
2) High refractive index layer (2H), (3H) etc.
(upper left sheeting) and low refractive index layers (2L), (3L) (upper right sheeting) made of silica (SiOz) etc. are alternately layered for a total of 10 layers on one side (two sheets (= formed). .

このような赤外線反射膜(2)、 (3)を得る(二は
つぎの方法による。まず、テトライソプロピルチタネー
トなどの有機゛チタン化合物を酢酸エステルなどの有機
溶剤に溶解して、チタン含有量2〜10%。
Such infrared reflective films (2) and (3) are obtained (the second method is as follows. First, an organic titanium compound such as tetraisopropyl titanate is dissolved in an organic solvent such as acetic acid ester, and the titanium content is 2 to 2. 10%.

粘度約1.Ocpsのチタン液を調整し、また、別に、
エチルシリケートなどの有機シリコン化合物を酢酸エス
テルなどの有機溶剤(二溶解して、シリコン含有量2〜
10チ、粘度約1.Ocpsのシリコン液を調整する。
Viscosity approximately 1. Adjust the Ocps titanium solution, and separately,
Organosilicon compounds such as ethyl silicate are dissolved in organic solvents such as acetate (2 to 20% silicon content).
10 inches, viscosity approximately 1. Adjust the Ocps silicone liquid.

そうして、バルブ用石英ガラス管の内外両面を上述のチ
タン液(=浸漬し、所定速度で引上げて空気などの酸化
性雰囲気中で約5分間焼成して酸化チタンからなる高屈
折率層(2H) 、 (3H)を形成する。ついで、こ
のガラス管の内外両面を上述のシリコン液(=浸漬し、
所定速度で引上げて空気などの酸化性雰囲気中で約5分
間焼成してシリカからなる低屈折率層(2L) 、 (
3L)を形成する。
Then, both the inner and outer surfaces of the quartz glass tube for the bulb are immersed in the above-mentioned titanium solution, pulled up at a predetermined speed, and fired for about 5 minutes in an oxidizing atmosphere such as air to form a high refractive index layer made of titanium oxide. 2H) and (3H) are formed. Next, both the inner and outer surfaces of this glass tube are immersed in the above silicone liquid (= =
A low refractive index layer (2L) made of silica is formed by pulling it up at a predetermined speed and baking it in an oxidizing atmosphere such as air for about 5 minutes.
3L).

このよう(ニして、高屈折率層(2H) 、 (3H)
と低屈折率層(2L) 、 (3L)とを交互(二形成
すればよい。
In this way (2) high refractive index layer (2H), (3H)
The low refractive index layers (2L) and (3L) may be alternately formed.

つぎ(−5このよう(ニして、両面(二赤外線反射膜(
2)、+3>を形成した石英ガラスバルブの走置方向か
らの光透過率スペクトルを第3図(二示す。図は横軸(
二波長なnnnの単位でとシ、縦軸(二元透過率を赤外
線反射膜を全く設けない石英ガラスバルブを100とす
る襲でとったもので、曲線は透過率スペクトルを示す。
Next (-5 like this), both sides (two infrared reflective coatings (
2), the light transmittance spectrum from the traveling direction of the quartz glass bulb formed with +3> is shown in Figure 3 (2).
The vertical axis (dual transmittance is taken with a quartz glass bulb without any infrared reflective film as 100) in units of nnn, which is two wavelengths, and the curve shows the transmittance spectrum.

このスペクトルから明らかなとおり、本実施例のものは
赤外線反射膜が一面だけのもの(二比較して近赤外部も
可視部も透過率が着く低くなっていることが理解できる
As is clear from this spectrum, it can be seen that the transmittance of this example is lower in both the near-infrared and visible regions than the one with only one infrared reflective film (compared to the other).

つぎC二、この電球の作用原理を第4図(=よって説明
する。図1−おいて、(1)はバルブ壁、(力はフィラ
メントとする。いま、フィラメント(力の一端部から0
度(二近い入射角でバルブ壁(1)(二入射した光(A
)のうち近赤外m (AI)は反射してフィラメント(
力(1戻って効率向上(二役立ち、可視光(A2)はバ
ルブ壁(1)を透過して外部に放射される。また、フィ
ラメント(力の同じ部位からなり大きい入射角でバ^ ルプ1(11に入射した光(B)の9ち近赤外g (B
l)が同様に反射されるが、図ボのよう(ニフィラメン
ト(力が短い場合にはこの反射された近赤外緋(B8)
はフィラメント(7)の延艮線(1戻るだけで効率向上
)二は役立たないが、可視光(B、)はバルブ壁を透過
して外部に放射される。したがって、この場合、フィラ
メント(7)が充分長ければ反射された近赤外線(B1
)もフィラメント(力(二帰還して効率向上(二役立つ
はずである。換言すれば、フィラメント(7)が長けれ
ば効率が高いこと(二なる。さらに、フィラメント(力
の同じ部位から53度以上の入射角で〕(ルプ壁(1)
(−人射しだ光(C)は赤外線反射膜t2L(3)の各
層の通過距離が長くなるため、最大反射率の波長域が変
化して、近赤外線(C1)もバルブ壁(1)を透過する
。すなわち、フィラメント(7)が−短以上(=長くな
ると近赤外線の帰還率は頭打ちになってそれ以上向上し
ないばかりか、単位管長当9の負荷が小さくなるだめの
効率低下が大きくなるのでかえって効率が低下する。
Next, the principle of operation of this light bulb is explained in Figure 4 (=Thus, in Figure 1, (1) is the bulb wall, (the force is the filament.
degree (2) At an angle of incidence close to the bulb wall (1) (2) the incident light (A
), near-infrared m (AI) is reflected from the filament (
Visible light (A2) passes through the bulb wall (1) and is emitted to the outside. Also, the filament (consisting of the same part of the force and with a larger angle of incidence) (9th near-infrared g of the light (B) incident on 11 (B
l) is similarly reflected, but as shown in the figure (nifilament (if the force is short, this reflected near-infrared scarlet (B8)
The extension line of the filament (7) (1 returns only increases efficiency) 2 is useless, but the visible light (B,) is transmitted through the bulb wall and emitted to the outside. Therefore, in this case, if the filament (7) is long enough, the reflected near infrared rays (B1
) should also be useful for filament (force (2) feedback and efficiency improvement (2).In other words, the longer the filament (7) is, the higher the efficiency (2). ] (Lup wall (1)
(-The distance that human emitted light (C) passes through each layer of the infrared reflective film t2L (3) becomes longer, so the wavelength range of maximum reflectance changes, and near infrared light (C1) also passes through the bulb wall (1). In other words, if the filament (7) is longer than -short (= longer), the feedback rate of near-infrared rays will reach a plateau and will not improve further, and the efficiency will decrease significantly as the load per unit tube length 9 becomes smaller. As a result, efficiency decreases.

この作用原理は第5図に示す片ロ金形I−ロゲン電球(
二おいても同様である。なお、第5図の電球の同一部分
C″−は同一符号を付して説明を省く。
This principle of operation is based on the single-piece metal I-logen bulb shown in Figure 5.
The same applies to the second case. Incidentally, the same parts C''- of the light bulb in FIG. 5 are given the same reference numerals, and the explanation thereof will be omitted.

つぎ(ユ、上述の第1図および第5図(=示した両実施
例(二ついて、バルブ内径とフィラメント長との比が発
光効率すなわち入力鑞二対する可視光出力(二どのよう
(=影響するか調査し、この結果を第6図(二示した。
Next, in both the embodiments shown in Figs. The results are shown in Figure 6 (2).

図は横軸(ニb勺を無名数でと9、縦で○印は第5図(
=示すバルブ内径13 amの第2の実施例、Δ印は第
1図に示すバルブ内径IQ msの第1の実施例をそれ
ぞれ示し、曲線はこれら実施例の結果を点綴したもので
ある。なお、X印は第1の実施例において早期断線した
ものの結果を示す。
The diagram is on the horizontal axis (Ni b 幺 is an anonymous number and 9, and on the vertical axis, the ○ mark is in Figure 5)
= indicates the second embodiment with a valve inner diameter of 13 am, Δ indicates the first embodiment with a valve inner diameter IQ ms shown in FIG. 1, and the curve is a dotted line of the results of these embodiments. Note that the X mark indicates the result of early disconnection in the first example.

この第6図から明らかなとおり、l/Dと効率向上とは
明らかな相関があり、l=/D < 2.0では効率は
逆:二低下して赤外線反射膜を設けた意味がなく、2.
0≦l/Dでは明らか(二効率が向上し、赤外線反射膜
を設けた効果が見られる。しかし、l/i)があまシ大
きくなると早期断騙が多発し、かつ図では明らかでない
が逆(″−効率が低下することも考えられるのでl/D
は18.0以下C二止めた方が良い。そこで本発明C二
おいてはl/Dを2.0以上C二した。
As is clear from Fig. 6, there is a clear correlation between l/D and efficiency improvement, and when l=/D < 2.0, the efficiency decreases by 2, meaning there is no point in providing an infrared reflective film. 2.
When 0≦l/D, it is obvious (the double efficiency improves, and the effect of providing an infrared reflective film can be seen. However, when l/i) becomes too large, early deception occurs frequently, and although it is not clear in the figure, the opposite effect occurs. (″-Since efficiency may decrease, l/D
It is better to stop at C2 below 18.0. Therefore, in C2 of the present invention, l/D was set to 2.0 or more.

なお、バルブの内径を種々変えて実験したがいずれもほ
ぼ第6図の曲線上C二位置した。さらに、普通形の管形
白熱電球(二ついて実験したが同様な結果を得た。また
、長い管形バルブ内(二複数のフィラメントを短絡線を
介して直列接続して中心線近傍(=配設しかつ、バルブ
の内外両面(二それぞれ赤外線反射膜を形成したものに
おいては単位フィラメントについてl/Dが2.0以上
であればよいことが判明した。また、長いフィラメント
の中間部を短絡線(二よって短絡して複数の発光部を形
成したもの(二あっては発光部が上述の単位フィラメン
ト1′−相当する。
Incidentally, experiments were conducted with various inner diameters of the valves, but all of them were approximately at C2 position on the curve shown in FIG. Furthermore, we experimented with two ordinary tube-type incandescent bulbs and obtained similar results.In addition, in a long tube-type bulb (two or more filaments were connected in series via a short-circuit wire) near the center line (= In addition, it was found that in the case of a bulb in which an infrared reflective film is formed on both the inner and outer surfaces of the bulb, l/D should be 2.0 or more for each unit filament. (The two light emitting parts are short-circuited to form a plurality of light emitting parts (the light emitting parts correspond to the above-mentioned unit filament 1').

なお、可視光透過赤外線反射膜の各層は上述の有機金属
化合物溶液(=浸漬塗布して焼成する方法以外にも、公
知の池の方法で形成してもよい。
It should be noted that each layer of the visible light transmitting infrared reflective film may be formed by a known method other than the above-mentioned method of applying an organic metal compound solution (= dip coating and baking).

〔発明の効果〕〔Effect of the invention〕

本発明の白熱電球は管形バルブの内外両面C二それぞれ
高屈折率層と低屈折率層とを交互重層してなる可視光透
過赤外線反射膜を設けかつノ(ルプの中心線近傍(二面
線状フィラメントを封装した。ものにおいて、フィラメ
ントの長さを〕(ルプ内径の2.0倍以上(二したので
、フィラメントから発した光のうち可視光が赤外線反射
膜を透過して外界に放射され、赤外線は赤外線反射膜で
反射してフィラメント喀二帰還してこれを加熱して効率
が向上する。しかも、フィラメントの−長さを上述のよ
うC二限定したので2重の赤外線反射膜によって可視光
透過率が着く低下している(二もかかわらず、赤外線の
珊還率が大幅(二向上し、この結果赤外線反射膜を設け
ない場合よりも効率を向上できる。
The incandescent light bulb of the present invention is provided with a visible light transmitting infrared reflecting film formed by alternately layering a high refractive index layer and a low refractive index layer on both the inner and outer surfaces of the tube-shaped bulb, and near the center line of the bulb (two surfaces). A linear filament is sealed.In a product, the length of the filament is at least 2.0 times the inner diameter of the loop, so visible light from the filament passes through the infrared reflective film and is emitted to the outside world. The infrared rays are reflected by the infrared reflecting film and returned to the filament, which heats the filament and improves efficiency.Moreover, since the length of the filament is limited to C2 as mentioned above, the double infrared reflecting film Although the visible light transmittance is reduced, the infrared ray conversion rate is significantly improved, and as a result, the efficiency can be improved compared to when no infrared reflective film is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の白熱電球の第1の実施例の断面図、第
2図は第1図の鎖線枠■部分の模型的拡大断面図、第3
図は同じく可視光透過赤外線反射膜の光透過スペクトル
図、第4図は本発明の作用原理を示す説明図、弗5図は
第2の実施例の断面図、第6図は本発明の数値限定の根
拠を示すグラフである。 (1)・・・・・・・・・ バルブ +2)、’ (3)  ・・・・・・ 可視光透過赤外
線反射膜(2H)、 (3H)・・・嶋屈折率層(2L
)、 (3L)・・・低屈折率層(力 ・・・・・・・
・・  フィラメント7 ・・・・・・・−・  フィ
ラメントの長さD ・・・・・・・・・ バルブの内径
代理人 弁理士  井 上 −男 〜         ′つ
FIG. 1 is a sectional view of the first embodiment of the incandescent light bulb of the present invention, FIG. 2 is a schematic enlarged sectional view of the part surrounded by chain lines in FIG.
The figure is a light transmission spectrum diagram of the visible light transmitting infrared reflective film, Figure 4 is an explanatory diagram showing the working principle of the present invention, Figure 5 is a sectional view of the second embodiment, and Figure 6 is a numerical value of the present invention. This is a graph showing the basis of the limitation. (1)...... Bulb +2),' (3)... Visible light transmitting infrared reflective film (2H), (3H)... Shima refractive index layer (2L
), (3L)...Low refractive index layer (power...
・・ Filament 7 ・・・・・・・−・ Length of filament D ・・・・・ Inner diameter of valve Agent Patent attorney Inoue -Male~

Claims (1)

【特許請求の範囲】[Claims] 管形バルブの内外両面にそれぞれ高屈折率層と低屈折率
層とを交互重層してなる可視光透過赤外線反射膜を設け
かつ上記バルブの中心線近傍に直線状フィラメントを封
装したものにおいて、上記フィラメントの長さを上記バ
ルブの内径の2.0倍以上にしたことを特徴とする白熱
電球。
A tube-shaped bulb is provided with a visible light-transmissive infrared reflecting film formed by alternately layering a high refractive index layer and a low refractive index layer on both the inner and outer surfaces, and a linear filament is sealed near the center line of the bulb, wherein the above-mentioned An incandescent light bulb characterized in that the length of the filament is 2.0 times or more the inner diameter of the bulb.
JP13200084A 1984-06-28 1984-06-28 Incandescent bulb Pending JPS6113547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13200084A JPS6113547A (en) 1984-06-28 1984-06-28 Incandescent bulb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13200084A JPS6113547A (en) 1984-06-28 1984-06-28 Incandescent bulb

Publications (1)

Publication Number Publication Date
JPS6113547A true JPS6113547A (en) 1986-01-21

Family

ID=15071210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13200084A Pending JPS6113547A (en) 1984-06-28 1984-06-28 Incandescent bulb

Country Status (1)

Country Link
JP (1) JPS6113547A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598459A (en) * 1979-01-23 1980-07-26 Tokyo Shibaura Electric Co Incandescent bulb
JPS57119454A (en) * 1981-01-16 1982-07-24 Tokyo Shibaura Electric Co Halogen lamp and method of producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598459A (en) * 1979-01-23 1980-07-26 Tokyo Shibaura Electric Co Incandescent bulb
JPS57119454A (en) * 1981-01-16 1982-07-24 Tokyo Shibaura Electric Co Halogen lamp and method of producing same

Similar Documents

Publication Publication Date Title
US4983001A (en) Optical interference film having high and low refractive index layers inter-layer connection of which is strengthened
KR890004639B1 (en) Lamp
EP0328379B1 (en) Halogen lamp
JPH0786568B2 (en) Light source
JPS61500937A (en) selective color filter
JPH0320960A (en) Incandescent lamp
JPS6113547A (en) Incandescent bulb
JPS62131463A (en) High-pressure discharge lamp
JPH0132630B2 (en)
JP3438289B2 (en) Light bulbs and lighting equipment
JP2626062B2 (en) Incandescent light bulb
JPS61250958A (en) Metal halide lamp
JPS5823161A (en) Incandescent bulb
JP3153050B2 (en) Incandescent light bulb
JPH0263003A (en) Light reflecting mirror and its production
JP3496498B2 (en) Incandescent light bulb
JPH0525082B2 (en)
JPH0636748A (en) Halogen bulb
JPS60130049A (en) Bulb
JP3026852B2 (en) Halogen incandescent bulb
JPS609052A (en) Bulb
JPH0338940Y2 (en)
JPS63289755A (en) Incandescent lamp and its manufacture
JPH07153435A (en) Bulb
JPH09265962A (en) Vessel and lighting system