JPS61135163A - Charge coupled device - Google Patents

Charge coupled device

Info

Publication number
JPS61135163A
JPS61135163A JP59257933A JP25793384A JPS61135163A JP S61135163 A JPS61135163 A JP S61135163A JP 59257933 A JP59257933 A JP 59257933A JP 25793384 A JP25793384 A JP 25793384A JP S61135163 A JPS61135163 A JP S61135163A
Authority
JP
Japan
Prior art keywords
charge
transfer
channel
charges
coupled device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59257933A
Other languages
Japanese (ja)
Inventor
Tetsuo Yamada
哲生 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59257933A priority Critical patent/JPS61135163A/en
Priority to DE8585115404T priority patent/DE3581793D1/en
Priority to EP85115404A priority patent/EP0185990B1/en
Publication of JPS61135163A publication Critical patent/JPS61135163A/en
Priority to US07/231,645 priority patent/US4901125A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • H01L29/76833Buried channel CCD
    • H01L29/76841Two-Phase CCD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • H01L29/76833Buried channel CCD
    • H01L29/76858Four-Phase CCD

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To prevent the reduction of a transfer rate on the transfer of a small quantity of charges and improve the deterioration in characteristics by selectively making the electrostatic potential of the surface of a transfer channel having a conduction type reverse to a semiconductor substrate or a section in the vicinity of said surface to differ along the direction orthogonal to the direction of charge transfer. CONSTITUTION:An N type impurity layer 22 is formed to the surface of a substrate 21, and an impurity layer 23 having relatively high concentration is shaped to the transfer channel 22 so as to be projected to the substrate 21. P<+> type channel stopper layers 24, 24 are formed on both sides along the longitudinal direction of the transfer channel 22. A charge transfer electrode 26 is shaped onto the substrate 21 in the direction orthogonal to the longitudinal direction of the transfer channel 22 through an insulating film 25. In a change coupled device having such structure, charges are transferred in the direction vertical to a paper surface by applying peripheral clock pulses to the predetermined electrode 26, a small quantity of charges 27 are localized to the localizing channel 23 on a small quantity of charges, and charges are transferred while using only the localizing channel 23 as a transfer path. Accordingly, the reduction of a transfer rate on the transfer of a small quantity of charges can be prevented and the deterioration in characteristics due to defects improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電荷結合装置に関し、特に固体イメージセンナ
の信号読出し手段に適するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a charge-coupled device, and is particularly suitable as a signal readout means for a solid-state image sensor.

〔発明の技術的背景〕[Technical background of the invention]

従来、電荷結合装置としては、第5図及び第6図に示す
ものが知られている。ここで、第6図は第5図のX−X
線に沿う断面図である。
Conventionally, as charge coupled devices, those shown in FIGS. 5 and 6 are known. Here, Figure 6 is X-X in Figure 5.
It is a sectional view along a line.

図中の1は、pWの半導体基板である。この基板10表
面には、転送チャネルとなるn型不純物層2が設げられ
ている。同基板10表面には、不純物層2の長手方向の
両側に沿ってp+厘のチャネルストツノ臂層3,3が設
けられている。前記基板1上には、絶縁膜4を介して複
数の電荷転送電極5が不純物層2の長手方向と直交する
方向に設けられている。
1 in the figure is a pW semiconductor substrate. On the surface of this substrate 10, an n-type impurity layer 2 serving as a transfer channel is provided. On the surface of the substrate 10, p+channel channel strut layers 3, 3 are provided along both sides of the impurity layer 2 in the longitudinal direction. A plurality of charge transfer electrodes 5 are provided on the substrate 1 with an insulating film 4 interposed therebetween in a direction perpendicular to the longitudinal direction of the impurity layer 2 .

こうした構造の電荷結合装置において、所定の電圧を前
記電極5に加えた状態の不純物層2内のポテンシャル分
布は、第7図に示す通シとなる。なお、第7図において
、6は不純物層2の可動キャリアが全て排除された状態
のポテンシャルを、7はチャネルスト72層3のポテン
シャル(基板電位に相当する)を、8は不純物層2に蓄
積され紙面の垂直方向に転送される電荷を、9は不純物
層2内に存在する欠陥等の不良モードを夫々示す。
In a charge-coupled device having such a structure, the potential distribution within the impurity layer 2 when a predetermined voltage is applied to the electrode 5 is as shown in FIG. In addition, in FIG. 7, 6 is the potential in the state where all the mobile carriers in the impurity layer 2 are removed, 7 is the potential of the channel strike 72 layer 3 (corresponding to the substrate potential), and 8 is the potential accumulated in the impurity layer 2. 9 indicates the charge transferred in the direction perpendicular to the plane of the paper, and 9 indicates a failure mode such as a defect existing in the impurity layer 2.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、従来の電荷結合装置によれば、次に示す
欠陥を有する。
However, conventional charge-coupled devices have the following drawbacks.

■ 電荷がn型不純物層2の転送方向(矢印人)に直交
するチャネル幅(不純物層幅)全体に亘って蓄積される
ため、少量の電荷を転送する場合、チャネル電位の変化
が小さいので電荷転送の物理的メカニズムである自己誘
起ドリフト電界が小さくなシ、熱拡散による遅い移動が
支配的となって転送速度が低下する。
■ Charge is accumulated over the entire channel width (impurity layer width) perpendicular to the transfer direction (arrow) of n-type impurity layer 2, so when transferring a small amount of charge, the change in channel potential is small, so the charge is When the self-induced drift electric field, which is the physical mechanism of transfer, is small, slow movement due to thermal diffusion becomes dominant and the transfer rate decreases.

■ 例えば、一定の電荷量をトラップする欠陥が不純物
層2内に極在化する場合、電荷は必ず欠陥にトラップさ
れ、転送損失をもたらす。
(2) For example, if a defect that traps a certain amount of charge is localized in the impurity layer 2, the charge will definitely be trapped in the defect, resulting in transfer loss.

つまシ、トラップされる電荷量t−Qtとすれば、転送
電荷量Q3に対して非転送効率εは!=Qt/Qsとな
シ、Qtに比例して大きくなる。従って、信号電荷を転
送すると著しい劣化をもたらす。
If the amount of trapped charge is t-Qt, then the non-transfer efficiency ε is for the amount of transferred charge Q3! =Qt/Qs, which increases in proportion to Qt. Therefore, transferring signal charges causes significant deterioration.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、少量の電荷
を転送する時の転送速度の低下及び欠陥による特性劣化
を改善し得る電荷結合装置を提供することを目的とする
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a charge coupled device that can improve the reduction in transfer speed when transferring a small amount of charge and the deterioration of characteristics due to defects.

〔発明の概要〕[Summary of the invention]

本発明は、半導体基板と逆導電型の転送チャネルの表面
あるいはその近傍の静電ポテンシャルを電荷転送方向と
直交する方向に沿って選択的に異ならせることによって
、少量電荷転送時の転送速度の低下及び欠陥による特性
劣化を改善しようとしたものである。
The present invention reduces the transfer rate during small charge transfer by selectively varying the electrostatic potential at or near the surface of a transfer channel of conductivity type opposite to that of the semiconductor substrate along a direction perpendicular to the charge transfer direction. This is an attempt to improve the deterioration of characteristics due to defects.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図及び第2図を用いて説明する。ここで、第2図は
第1図のX−X線に沿う断面図である。
Example 1 This will be explained using FIGS. 1 and 2. Here, FIG. 2 is a sectional view taken along the line XX in FIG. 1.

図中の21は、p型のシリコン基板である。この基板2
1の表面にはn型不純物層(転送チャネル)22が形成
され、この転送チャネル22には相対的に高濃度の(n
+型)不純物層(局在チャネル)23が基板21Vc突
出するように形成されている。前記転送チャネル22の
長手方向に沿う両側には1.p+型のチャネルストツ・
9層(以下、pW層と称す)24,24が設けられてい
る。前記基板21上には、絶縁膜25を介して電荷転送
電極26が転・送チャネル22の長手方向と直交する方
向に設けられている。なお、第2図において、toは全
チャネルの幅を、t□は局在チャネル230幅を夫々示
す。
21 in the figure is a p-type silicon substrate. This board 2
An n-type impurity layer (transfer channel) 22 is formed on the surface of 1, and this transfer channel 22 has a relatively high concentration (n
A + type) impurity layer (localized channel) 23 is formed to protrude from the substrate 21Vc. 1 on both sides along the longitudinal direction of the transfer channel 22. p+ type channel stock
Nine layers (hereinafter referred to as pW layers) 24, 24 are provided. A charge transfer electrode 26 is provided on the substrate 21 with an insulating film 25 interposed therebetween in a direction perpendicular to the longitudinal direction of the transfer channel 22 . In addition, in FIG. 2, to indicates the width of the entire channel, and t□ indicates the width of the localized channel 230, respectively.

こうした構造の電荷結合装置において、所定の電極26
に周辺のクロックパルス(例えば、4相クロツクパルス
)を印加することによシ、電荷を紙面に垂直な方向へ転
送する。即ち、少量の電荷の場合は、第3図のポテンシ
ャル分布図に示す如く少量電荷27を局在チャネル23
に局在化させ、局在チャネル23だけを転送路として電
荷を転送する。なお、第3図中の28゜29は夫々転送
キャリア22の多数キャリアである電子を所定の電圧を
電極、26に印加した状態で排除した時の静電ポテンシ
ャルで、28は局在チャネル23に形成される静電ポテ
ンシャルをかつ29は転送チャネル22に形成される静
電ポテンシャルを示す。ΔVは、電位の変化を示す。一
方、多量電荷30の場合は、転送チャネル22内全体に
広がって転送される(第4図図示)。
In a charge coupled device having such a structure, a predetermined electrode 26
By applying peripheral clock pulses (eg, 4-phase clock pulses) to , charges are transferred in a direction perpendicular to the plane of the paper. That is, in the case of a small amount of charge, the small amount of charge 27 is transferred to the localized channel 23 as shown in the potential distribution diagram of FIG.
The charge is localized and the charge is transferred using only the localized channel 23 as a transfer path. In addition, 28° and 29 in FIG. 3 are the electrostatic potentials when electrons, which are the majority carriers of the transfer carriers 22, are removed with a predetermined voltage applied to the electrodes 26, respectively, and 28 is the electrostatic potential in the localized channel 23. 29 represents the electrostatic potential formed in the transfer channel 22. ΔV indicates a change in potential. On the other hand, in the case of a large amount of charge 30, it spreads throughout the transfer channel 22 and is transferred (as shown in FIG. 4).

しかして、実施例1によれば、転送チャネル22に局在
チャネル23を設けた構造となっているため、少量電荷
を転送する場合、少量電荷を局在チャネル23に局在化
させ、この状態で電荷転送電極25に周辺のクロックi
4ルスを印加することによシ局在チャネル23内だけを
転送路として電荷を紙面に垂直な方向へ転送できる。従
って、少量電荷であっても第3図における電位の変化Δ
Vが大きいため、自己誘起ドリフトによる速い転送が可
能となる。また、第3図において欠陥(X印)が図の位
置に存在した場合、少量電荷は欠陥に触れることがない
ためその影響を受けない。一方、多量電荷の場合は、第
4図く示す如く転送チャネル22内全体に広がって転送
されるが、電荷量Qsが大きいため非転送効率Qオ/Q
 sは小さい。
According to the first embodiment, since the transfer channel 22 has a structure in which the localized channel 23 is provided, when transferring a small amount of charge, the small amount of charge is localized in the localized channel 23, and this state , the peripheral clock i is applied to the charge transfer electrode 25.
By applying four pulses, charges can be transferred in a direction perpendicular to the plane of the paper using only the inside of the localized channel 23 as a transfer path. Therefore, even if there is a small amount of charge, the change in potential Δ in FIG.
Since V is large, fast transfer due to self-induced drift is possible. Further, in FIG. 3, if a defect (X mark) exists at the position shown in the figure, the small amount of charge does not touch the defect and is therefore not affected by it. On the other hand, in the case of a large amount of charge, the charge is spread throughout the transfer channel 22 and transferred as shown in FIG. 4, but since the charge amount Qs is large, the transfer efficiency is
s is small.

実施例2 本発明を固体撮像装置の信号電荷読出しレジスタとして
使用した場合について、第8図〜第10図を参照して説
明する。なお、第9図は第8図のX−X線に沿5断面図
を、第10図は第9図の静電ポテンシャル分布図を示す
Embodiment 2 A case where the present invention is used as a signal charge readout register of a solid-state imaging device will be described with reference to FIGS. 8 to 10. Note that FIG. 9 shows a cross-sectional view taken along the line X--X in FIG. 8, and FIG. 10 shows an electrostatic potential distribution diagram in FIG. 9.

図中の31は、信号電荷を紙面に対して水平方向に転送
するための水平転送CCDのn型の転送チャネルである
。この転送チャネル31内には、相対的に静電ポテンシ
ャルが高い(深い)n”llの局在チャネル32が設け
られている。これら転送チャネル31、局在チャネル3
2上には、絶縁膜24を介して2相駆動形CODの電荷
転送電極の一対をなす蓄積電極33と障壁電極34が夫
々設けられている。こうした電極対には、位相が180
°異なる2相転送/4’ルスφ1 。
31 in the figure is an n-type transfer channel of a horizontal transfer CCD for transferring signal charges in the horizontal direction with respect to the paper surface. In this transfer channel 31, a localized channel 32 of n''ll with a relatively high (deep) electrostatic potential is provided.These transfer channels 31, localized channels 3
A storage electrode 33 and a barrier electrode 34, which form a pair of charge transfer electrodes of a two-phase drive type COD, are provided on the storage electrode 33 and the barrier electrode 34, respectively, with an insulating film 24 interposed therebetween. These electrode pairs have a phase of 180
°Different two-phase transfer/4'rus φ1.

φzfr、供給するための配線3.5,36が接続され
ている。前記電極対群の近くには、転送された電荷を電
圧に変換して出力する出力回路37が設げられている。
Wirings 3.5 and 36 for supplying φzfr are connected. An output circuit 37 is provided near the electrode pair group to convert the transferred charges into voltage and output it.

また図中の38は光電変換素子である。この光電変換素
子38の近く和は、該光電変換素子38で得られた電荷
を受は取って水平読出しCODレジスタに転送するため
の垂直転送COD (電荷蓄積部)39が設げられてい
る。この垂直転送CCD 39には、該CCD 39へ
異なる転送パルスを供給するための配線40゜41が接
続されている。前記COD J 9の近くには、該CO
D 39から水平転送CODの転送チャネル31、局在
チャネル32への電荷転送を制御する制御電極42が前
記蓄積電極33の一部上に延在して設けられている。な
お、第9図において、toは全チャネルの幅を、t□は
局在チャネル320幅を、t2は制御電極42と蓄積電
極33の距離を夫々示す。また、第10図において、4
3は局在チャネル32に対応した深い静電ポテンシャル
を、44は転送チャネル31に対応した浅い静電ポテン
シャルを、45は少量電荷を、46は多量電荷を夫々示
す。この場合、電荷は制御電極42の下を通って紙面左
から流入する。従って、距離t□はできるだけ短かくし
、小電荷が触れるチャネル領域をできるだけ小さくする
ことが好ましい。
Further, 38 in the figure is a photoelectric conversion element. A vertical transfer COD (charge accumulation section) 39 is provided near the photoelectric conversion element 38 for receiving and transferring the charge obtained by the photoelectric conversion element 38 to a horizontal readout COD register. This vertical transfer CCD 39 is connected to wires 40.degree. 41 for supplying different transfer pulses to the CCD 39. Near the COD J 9, the COD
A control electrode 42 for controlling charge transfer from D 39 to the horizontal transfer COD transfer channel 31 and localized channel 32 is provided extending over a portion of the storage electrode 33 . In FIG. 9, to indicates the width of the entire channel, t□ indicates the width of the localized channel 320, and t2 indicates the distance between the control electrode 42 and the storage electrode 33. Also, in Figure 10, 4
3 indicates a deep electrostatic potential corresponding to the localized channel 32, 44 indicates a shallow electrostatic potential corresponding to the transfer channel 31, 45 indicates a small amount of charge, and 46 indicates a large amount of charge. In this case, the charge passes under the control electrode 42 and flows from the left in the drawing. Therefore, it is preferable to make the distance t□ as short as possible and to minimize the channel region that small charges come into contact with.

こうした構造の固体撮像装置において、制御電極42に
所定電圧を印加゛して垂直転送CCD39から転送チャ
ネル31へ電荷を転送する際、電荷量が小さい場合には
転送された電荷は転送チャネル31にわたって広がるこ
となく静電ポテンシャルが高い局在チャネル32だけに
蓄積され、局在チャネル32の中を通って出力回路31
に順次転送される。ここで、小電荷が局在チャネル32
の中に局在し転送される様子を第11図に示す。なお、
同図において、511〜514は電極対(蓄積電極33
、障壁電極34)の異なる位相のパルスが印加される相
隣り合う2対電極下のポテンシャルを、521〜524
は深い静電ポテンシャル38を含む相対的に深いポテン
シャルを夫々示す。
In a solid-state imaging device having such a structure, when a predetermined voltage is applied to the control electrode 42 to transfer charges from the vertical transfer CCD 39 to the transfer channel 31, if the amount of charge is small, the transferred charges spread across the transfer channel 31. The electrostatic potential is accumulated only in the localized channel 32 with high electrostatic potential, and passes through the localized channel 32 to the output circuit 31.
are sequentially transferred to Here, a small charge is localized in the channel 32
FIG. 11 shows how the information is localized and transferred within the . In addition,
In the figure, 511 to 514 are electrode pairs (storage electrodes 33
, the potential under two adjacent pairs of electrodes to which pulses of different phases are applied to the barrier electrode 34) is expressed as 521 to 524.
represent relatively deep potentials, including deep electrostatic potential 38, respectively.

しかして、実施例2によれば、局在チャネル32の存在
によシ実流側1と同様な効果を得ることができる。
Therefore, according to the second embodiment, the same effect as the actual flow side 1 can be obtained due to the presence of the localized channel 32.

なお、実施例1及び実施例2において、本発明の効果を
顕著に得るためには全チャネルの幅t0に対し局在チャ
ネルの幅t1を172以下にすることが好ましい。
In addition, in Examples 1 and 2, in order to significantly obtain the effects of the present invention, it is preferable that the width t1 of the localized channel is 172 or less with respect to the width t0 of all channels.

また、実施例1及び実施例2では、局在チャネルを1つ
形成した場合について述べたが、これに限らず、複数個
形成しても同様な効果を得ることができるとともに、各
々の局在チャネルの電位を夫々異ならしめてもその効果
は失われない。
Further, in Examples 1 and 2, the case where one localized channel was formed was described, but this is not limited to this, and the same effect can be obtained even if multiple localized channels are formed, and each localized channel is Even if the potentials of the channels are made different, the effect is not lost.

更に、実施例2では、垂直転送CCD (電荷蓄積部)
及び光電変換素子を設けた場合について述べたが、これ
らの代シに光電変換機能を備えた電荷蓄積素子を用いて
もよい。
Furthermore, in the second embodiment, a vertical transfer CCD (charge storage section)
Although the case where a photoelectric conversion element and a photoelectric conversion element are provided has been described, a charge storage element having a photoelectric conversion function may be used in place of these.

実施例3 第12図を用いて説明する。Example 3 This will be explained using FIG. 12.

本実施例の固体撮像装置は、相対的化法いポテンシャル
を形成するための手段として、基板21上の絶縁膜61
t−蓄積電極62を転送電極63のオーバラッグ付近で
相対的に厚くしたことを特徴とする。
The solid-state imaging device of this embodiment uses an insulating film 61 on a substrate 21 as a means for forming a relativized potential.
A feature is that the t-storage electrode 62 is made relatively thick near the overlap of the transfer electrode 63.

しかして、実施例3によれば、部分的に厚い絶縁膜61
の存在によシ実流側1と同様な効果を得る他、転送チャ
ネル64は全体にわたって一様な不純物濃度と接合の深
さを有することができる。
According to the third embodiment, the partially thick insulating film 61
In addition to obtaining an effect similar to that of the actual flow side 1 due to the presence of the transfer channel 64, the transfer channel 64 can have a uniform impurity concentration and junction depth throughout.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、少量電荷転送時の転
送速度の低下及び欠陥による特性劣化を改善し得る電荷
結合装置を提供できる。
As described in detail above, according to the present invention, it is possible to provide a charge-coupled device that can improve the reduction in transfer speed when transferring a small amount of charge and the deterioration of characteristics due to defects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1に係る電荷結合装置の平面図
、第2図は第1図のX−X線に沿う断面図、第3図は第
2図の小電荷蓄積時の静電ポテンシャル分布図、第4図
は第2図の大電荷蓄積時の静電ポテンシャル分布図、第
5図は従来の電荷結合装置の平面図、第6図は第5図の
X−X線に沿う断面図、第7図は第6図の静電ポテンシ
ャル分布図、第8図は本発明の実施例2に係る固体撮像
装置の平面図、第9図は第8図のX−X線に沿う断面図
、第10図は第9図の静電ポテンシャル分布図、第11
図は第8図の小電荷の流れを説明するための図、第12
図は本発明の実施例3に係る固体撮像装置の断面図であ
る。 21・・・p型のシリコン基板、22,31゜64・・
・転送チャネル、23,32・・・局在チャネル、24
・・・チャネルストツ/4層、25.61・・・絶縁膜
、26・・・電荷転送電極、30・・・電位の変化、3
3,62・・・蓄積電極、34・・・障壁電極、35.
36.40.41・・・配線、37・・・出力回路、3
8・・・光電変換素子、39・・・垂直転送CCD、4
2・・・制御電極。
FIG. 1 is a plan view of a charge-coupled device according to Embodiment 1 of the present invention, FIG. 2 is a sectional view taken along the line X-X in FIG. 1, and FIG. Figure 4 is a diagram of the electrostatic potential distribution during large charge accumulation in Figure 2, Figure 5 is a plan view of the conventional charge coupled device, Figure 6 is the diagram of the X-X line in Figure 5. 7 is an electrostatic potential distribution diagram of FIG. 6, FIG. 8 is a plan view of the solid-state imaging device according to the second embodiment of the present invention, and FIG. 9 is a diagram taken along the line X-X of FIG. Figure 10 is the electrostatic potential distribution diagram of Figure 9, Figure 11 is a cross-sectional view along
The figure is a diagram for explaining the flow of small charges in Figure 8, and Figure 12.
The figure is a sectional view of a solid-state imaging device according to Example 3 of the present invention. 21...p-type silicon substrate, 22,31°64...
・Transfer channel, 23, 32...Local channel, 24
... Channel stock / 4 layers, 25.61 ... Insulating film, 26 ... Charge transfer electrode, 30 ... Potential change, 3
3, 62... Storage electrode, 34... Barrier electrode, 35.
36.40.41...Wiring, 37...Output circuit, 3
8... Photoelectric conversion element, 39... Vertical transfer CCD, 4
2...Control electrode.

Claims (6)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板と、この基板表面に設け
られた第2導電型の転送チャネルと、この転送チャネル
上に絶縁膜を介して設けられた電荷転送電極と、前記転
送チャネルの表面あるいはその近傍の静電ポテンシャル
を電荷転送方向と直交する方向に沿って選択的に異なら
せる手段とを具備することを特徴とする電荷結合装置。
(1) A semiconductor substrate of a first conductivity type, a transfer channel of a second conductivity type provided on the surface of the substrate, a charge transfer electrode provided on the transfer channel via an insulating film, and a transfer channel of the transfer channel. A charge-coupled device comprising: means for selectively varying the electrostatic potential at or near the surface along a direction perpendicular to the charge transfer direction.
(2)選択的に異ならせしめた静電ポテンシャルのエネ
ルギーが電荷に対して相対的に低く、この領域の幅が電
荷転送方向に直交する電荷転送チャネル幅の1/2以下
であることを特徴とする特許請求の範囲第1項記載の電
荷結合装置。
(2) The energy of the electrostatic potential that is selectively made different is relatively low with respect to the charge, and the width of this region is 1/2 or less of the width of the charge transfer channel orthogonal to the charge transfer direction. A charge-coupled device according to claim 1.
(3)第1導電型の半導体基板表面に電荷蓄積部を電荷
転送電極と隣接して設け、かつ電荷を電荷蓄積部から電
荷転送電極へ並列して転送した後、この転送方向と直交
する方向に転送する機能を有することを特徴とする特許
請求の範囲第1項記載の電荷結合装置。
(3) A charge storage section is provided adjacent to a charge transfer electrode on the surface of a semiconductor substrate of the first conductivity type, and after charges are transferred in parallel from the charge storage section to the charge transfer electrode, a direction perpendicular to this transfer direction is provided. 2. The charge-coupled device according to claim 1, wherein the charge-coupled device has a function of transferring data.
(4)選択的に異ならせしめた静電ポテンシャルのエネ
ルギーが電荷に対して相対的に低く、この領域が電荷蓄
積部に近接した部分に電荷転送方向に沿って延在してい
ることを特徴とする特許請求の範囲第3項記載の電荷結
合装置。
(4) The energy of the selectively different electrostatic potential is relatively low with respect to the charge, and this region extends along the charge transfer direction in a portion close to the charge storage section. A charge-coupled device according to claim 3.
(5)電荷蓄積部として電荷蓄積素子を用い、この電荷
蓄積素子に隣接して光電変換子を設けることを特徴とす
る特許請求の範囲第3項記載の電荷結合装置。
(5) The charge coupled device according to claim 3, characterized in that a charge storage element is used as the charge storage section, and a photoelectric converter is provided adjacent to the charge storage element.
(6)電荷蓄積部として光電変換機能を備えた電荷蓄積
素子を用いることを特徴とする特許請求の範囲第3項記
載の電荷結合装置。
(6) The charge coupled device according to claim 3, wherein a charge storage element having a photoelectric conversion function is used as the charge storage section.
JP59257933A 1984-12-06 1984-12-06 Charge coupled device Pending JPS61135163A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59257933A JPS61135163A (en) 1984-12-06 1984-12-06 Charge coupled device
DE8585115404T DE3581793D1 (en) 1984-12-06 1985-12-04 LOAD SHIFTING ARRANGEMENT.
EP85115404A EP0185990B1 (en) 1984-12-06 1985-12-04 Charge coupled device
US07/231,645 US4901125A (en) 1984-12-06 1988-08-10 Charge coupled device capable of efficiently transferring charge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59257933A JPS61135163A (en) 1984-12-06 1984-12-06 Charge coupled device

Publications (1)

Publication Number Publication Date
JPS61135163A true JPS61135163A (en) 1986-06-23

Family

ID=17313211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59257933A Pending JPS61135163A (en) 1984-12-06 1984-12-06 Charge coupled device

Country Status (1)

Country Link
JP (1) JPS61135163A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245069A (en) * 2005-02-28 2006-09-14 Sharp Corp Solid state imaging device and electronic information apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161364A (en) * 1982-03-19 1983-09-24 Hitachi Ltd Charge transfer element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161364A (en) * 1982-03-19 1983-09-24 Hitachi Ltd Charge transfer element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245069A (en) * 2005-02-28 2006-09-14 Sharp Corp Solid state imaging device and electronic information apparatus

Similar Documents

Publication Publication Date Title
JPH0458700B2 (en)
JPS6230504B2 (en)
KR950026023A (en) Linear solid-state image device
JPS5928110B2 (en) Infrared image sensor circuit layout
US4087832A (en) Two-phase charge coupled device structure
JPS62237761A (en) Charge coupler
JPS63120465A (en) Charge transfer device
US4757365A (en) CCD image sensor with substantially identical integration regions
JPH0458698B2 (en)
JPS61135163A (en) Charge coupled device
EP0185990B1 (en) Charge coupled device
JPS63310172A (en) Charge transfer device
JPH0661469A (en) Ccd imaging element
JPS6312163A (en) Chage coupling image pickup device
JP3060649B2 (en) Semiconductor device and driving method thereof
KR19990001785A (en) Solid-state imaging device
JPS61144874A (en) Charge transfer device
JPS63313862A (en) Charge transfer device
JPH0322755B2 (en)
JPS6062280A (en) Solid-state image pickup device
JP3152920B2 (en) Charge transfer device and method of manufacturing the same
JPS5849066B2 (en) charge transfer device
JPH01300561A (en) Charge-coupled device
JPH0231858B2 (en) DENKATENSOSOCHI
JPS6079773A (en) Solid-state image pickup device