JPS6113505B2 - - Google Patents

Info

Publication number
JPS6113505B2
JPS6113505B2 JP53140263A JP14026378A JPS6113505B2 JP S6113505 B2 JPS6113505 B2 JP S6113505B2 JP 53140263 A JP53140263 A JP 53140263A JP 14026378 A JP14026378 A JP 14026378A JP S6113505 B2 JPS6113505 B2 JP S6113505B2
Authority
JP
Japan
Prior art keywords
group
paint
aluminum material
oil
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53140263A
Other languages
Japanese (ja)
Other versions
JPS5566961A (en
Inventor
Masao Maki
Yasunori Kaneko
Yutaka Asano
Ikuo Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14026378A priority Critical patent/JPS5566961A/en
Publication of JPS5566961A publication Critical patent/JPS5566961A/en
Publication of JPS6113505B2 publication Critical patent/JPS6113505B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明の目的は広くタール状の炭素質が生成す
ることが懸念される金属表面に対して、タール状
の炭素の生成を抑制する触媒効果を持つたアルミ
ニウム系金属上の特殊表面処理として、ケイ酸塩
系の無機塗料をベースに触媒化合物を加えたコー
テイング層を形成される方法を提供せんとするも
のである。 タール状の炭素質が生成してトラブルを生じさ
せる家電商品としては、例えば、油分、食品残渣
などが飛散し、異臭を発生させたり、ベトベトと
不潔な状態でこびりついたりすることが嫌われて
いる各種オーブン等の調理器具とか、またハード
カーボンを生成して、燃焼量低下や安全にも拘わ
る種々の障害を発生させている石油燃焼器具など
が代表的商品である。 とくに、これ等のタール状物質が生成する場所
は、金属表面上で加熱されている部分であり、熱
伝導率が良好であり、また高温下での耐食性など
が優れていることから、用いられる金属としては
アルミニウムまたは、アルミニウム処理金属が従
来から使用されている場合が多い。 既に本発明者らは、前記の目的を達成するべき
コーテイングとして、金属表面上に、アルカリ金
属シリケート、金属リン酸塩、顔料を含む無機塗
料をベースとしてこれに、 (A) 周期律表A族またはA族の酸化物 (B) それ等を含む化合物で、式(MAx(MBy
(O)zで表わされる化合物でMAはA族また
は、A族の元素、MBはB族、またはB
族の元素、Oは酸素、x,y,zは整数を示
す。 以上(A),(B)の群から選んだ少なくとも1種以上
を添加したコーテイング材が有効であることを見
出した。 しかしこれを発展させて商品に応用する際に、
アルミニウム素材表面に、そのまま上記コーテイ
ングを実施しようとすると、塗料自体が強アルカ
リ(PH:9〜10)であるため、下記の反応で、 2Al+2NaOH+2H2O →2NaAlO2+3H2. 生成する水素が塗膜中でフクレとなつて、発泡
し、実際にコーテイング層をアルミニウム上に形
成させることは極めて困難であつた。 本発明は、これを解決した形で有効に実施でき
る方法を提供しようとするものである。 従来、この種の水ガラス系の塗料自体をアルミ
ニウム、もしくはアルミニウム被覆処理金属上に
塗布することは、前記の発泡現象が障害となつて
非常に困難であり、その必要度の要請から、塗料
自体の改良を中心として種々の開発が試みられて
いたが、技術的に完成したものは知られていなか
つた。 塗料自体の改良としては、Na2O/SiO2比を低
下させ、硬化剤を極力多く加え、充填剤を添加し
て、アルカリとの反応を押さえ、更に、多孔質化
して発泡を抑制しようとする方向のものとか、或
いは、界面活性剤、有機溶剤などを添加して、反
応して生成した水素をうまく塗膜から逃がそうと
する方向のものなどが知られているが、前者の場
合には、多少の発泡抑制効果は確かに発揮され、
一応の塗膜は形成されるが、密着性の点で難点が
あつた。他方、後者の方は、あるレベルでの塗膜
の密着性は得られるものの、塗膜に多数のピンホ
ールが生成し、器具の実用上での耐食性に問題を
残していた。さらに両者とも、塗膜の膜厚を大き
く採つて、塗料層を重ねようとするとどうしても
発泡することが避けられない欠点もあつた。 ケイ酸塩系ののベース塗料に、サラダ油などの
油分の分解気化能力を持つた触媒を添加すると、
これ等の系統の触媒はほとんどが、この系統の塗
料に対しては、粘度を上昇させると共に、硬化促
進剤として作用するため、上記の改良タイプ塗料
をそのままで用いようとすると、粘度が非常に増
大して、実用上の、例えば、エアースプレーによ
る塗布が困難なレベルとなつた。 更に、触媒効果を発揮させるための添加物はア
ルカリ側の化合物が多い訳であるが、塗料のみの
場合と比較して、より発泡の可能性は増大する。 それは下記の反応による。 2Al+K2CO3+3H2O →2KAlO2+CO2+3H2 これ等の防止策としては、単なる塗料の改良の
みでは困難であつた。 以下本発明の実施例について詳述する。 油分の分解に関して、有効に作用する触媒活性
物質を探索するため、ガスクロマトグラフと熱分
解装置を用いて、サラダ油(大豆油)を空気中で
種々の金属酸化物と接触させた状態で熱分解さ
せ、生成したガスをガスクロマトグラフで分析
し、とくに熱分解の能力の優れた金属酸化物系を
評価した。分解生成ガスとして、一酸化炭素、ホ
ルムアルデヒドなどは同定したが、更に、サラダ
油自体に含まれる成分とは異なる分解炭化水素を
検出した。 試験条件は約2mgの金属酸化物に対して、マイ
クロシリンジを用いて1.0μのサラダ油を混合
させた条件下で、密閉ガラス容器内で300℃で10
分分解させたのち、生成ガスをガスクロマトグラ
フに導入して分析した。 分析条件としては、N2キヤリアを用い(60
ml/分)F.I.D検出器で(H2流量:60ml/分、空
気流量0.5/分)カラム条件としては、3mmφ
×3mのステンレスカラムでシリコンGE.SE−305
%液相(シマライトW担体)を用いて、150℃で
5分保持したのち、5℃/分の昇温速度で250℃
まで昇温分析を行なつて、分解生成ガスを検出し
た。 以上の条件に於いて、同定まではいつていない
が保持時間、100,106,139,173の
位置に分解生成物を検出した。代表的な金属酸化
物についての面積の積分結果(デジタルインテグ
レータを用いて積分した数値、上記4つの分解生
成物の計数値の総和)を第1表に示す。 第1表より、サラダ油(大豆油)の空気共存下
での分解に関して良好な触媒活性を示す金属酸化
物または化合物としては、周期律表の族から
族の金属の酸化物、なかでも族A、族Aのア
ルカリ、アルカリ土類金属の酸化物が挙げられ
る。これは、これ等の物質は、弱い部分酸化能力
を有することが知られ、サラダ油の主成分である
不飽和脂肪酸の熱分解に関して、それが部分酸化
化合物の中間体を径て分解する様な分解機構が推
定されるが、これ等の弱い部分酸化能力を持つて
いることが知られている触媒は、この反応を活性
化して、並列的に進行する水素引抜き重合化反応
よりも先に、油分を分解し蒸発させてしまうため
に、結果としては、油分のタール化を抑制し、い
わばセルフクリーニング的な効果を発揮するだろ
うという考え方が発明者らの基本的な思想であつ
たが、後述の様に正しいことが明らかになつた。
The purpose of the present invention is to use silicon as a special surface treatment on aluminum-based metals that has a catalytic effect to suppress the formation of tar-like carbon. The present invention aims to provide a method for forming a coating layer based on an acid-based inorganic paint and a catalyst compound added thereto. Home appliances that generate tar-like carbon and cause problems include, for example, oil, food residue, etc. that scatter, generate strange odors, or become sticky and filthy, and are disliked. Typical products include cooking utensils such as various ovens, and oil-burning appliances that generate hard carbon, resulting in reduced combustion and various safety-related problems. In particular, the places where these tar-like substances are generated are heated parts of the metal surface, and are used because they have good thermal conductivity and excellent corrosion resistance at high temperatures. Aluminum or aluminized metal is often used as the metal. The present inventors have already discovered that as a coating to achieve the above object, on a metal surface, an inorganic paint containing an alkali metal silicate, a metal phosphate, and a pigment is used as a coating based on (A) group A of the periodic table. or A group oxide (B) or a compound containing them, with the formula (M A ) x (M B ) y
(O) In the compound represented by z , M A is a group A or an element of the A group, M B is a group B or an element of the A group, and M B is a group B or an element of the A group.
A group element, O represents oxygen, and x, y, and z represent integers. It has been found that a coating material containing at least one selected from the above groups (A) and (B) is effective. However, when developing this and applying it to products,
If you try to apply the above coating directly to the surface of an aluminum material, since the paint itself is a strong alkaline (PH: 9-10), the following reaction will occur: 2Al + 2NaOH + 2H 2 O → 2NaAlO 2 + 3H 2 . The hydrogen generated will form a coating film. It blistered and foamed inside, making it extremely difficult to actually form a coating layer on aluminum. The present invention aims to provide a method that can effectively solve this problem. Conventionally, it has been extremely difficult to apply this type of water glass paint itself onto aluminum or aluminum-coated metal due to the above-mentioned bubbling phenomenon. Various developments were attempted, mainly to improve the system, but nothing technically completed was known. In order to improve the paint itself, attempts were made to lower the Na 2 O / SiO 2 ratio, add as much curing agent as possible, add fillers to suppress reaction with alkali, and make it porous to suppress foaming. In the former case, there are methods that add surfactants, organic solvents, etc. to effectively release the hydrogen generated by the reaction from the coating film. It certainly has some foaming suppression effect,
Although a certain coating film was formed, there was a problem in terms of adhesion. On the other hand, in the latter case, although a certain level of paint film adhesion was obtained, a large number of pinholes were formed in the paint film, leaving problems with the corrosion resistance of the equipment in practical use. Furthermore, both had the disadvantage that foaming was inevitable when trying to increase the thickness of the coating and stacking the coating layers. When a catalyst that has the ability to decompose and vaporize oils such as salad oil is added to a silicate-based paint,
Most of these types of catalysts increase the viscosity of paints of this type and also act as curing accelerators, so if you try to use the above improved type paints as they are, the viscosity will be very high. This has increased to the point where it is difficult to apply it practically, for example, by air spraying. Furthermore, although many of the additives used to exhibit the catalytic effect are alkaline compounds, the possibility of foaming increases compared to the case where only the paint is used. It depends on the reaction below. 2Al+K 2 CO 3 +3H 2 O →2KAlO 2 +CO 2 +3H 2It has been difficult to prevent these problems by simply improving the paint. Examples of the present invention will be described in detail below. In order to search for catalytically active substances that effectively decompose oil, we used a gas chromatograph and a pyrolysis device to pyrolyze salad oil (soybean oil) in the air while it was in contact with various metal oxides. The generated gas was analyzed using a gas chromatograph, and metal oxide systems with particularly excellent thermal decomposition ability were evaluated. Although carbon monoxide and formaldehyde were identified as decomposition gases, they also detected decomposed hydrocarbons that are different from the components contained in salad oil itself. The test conditions were approximately 2mg of metal oxide mixed with 1.0μ of salad oil using a microsyringe, and heated at 300℃ for 10 minutes in a sealed glass container.
After decomposition, the resulting gas was introduced into a gas chromatograph and analyzed. The analysis conditions were as follows: N2 carrier was used (60
ml/min) With the FID detector ( H2 flow rate: 60ml/min, air flow rate 0.5/min), the column conditions are 3 mmφ.
Silicon GE.SE−305 with ×3m stainless steel column
% liquid phase (Simalite W carrier) and held at 150°C for 5 minutes, then heated to 250°C at a heating rate of 5°C/min.
Decomposition gas was detected by temperature-rising analysis. Under the above conditions, decomposition products were detected at retention time positions of 100, 106, 139, and 173, although they have not yet been identified. Table 1 shows the area integration results for typical metal oxides (values integrated using a digital integrator, sum of counts of the above four decomposition products). From Table 1, metal oxides or compounds that exhibit good catalytic activity for the decomposition of salad oil (soybean oil) in the presence of air include oxides of metals from groups to groups of the periodic table, especially group A, Examples include oxides of Group A alkali and alkaline earth metals. This is because these substances are known to have a weak partial oxidation ability, and when it comes to thermal decomposition of unsaturated fatty acids, which are the main components of salad oil, they decompose through intermediates of partially oxidized compounds. Although the mechanism is presumed, these catalysts, which are known to have a weak partial oxidation ability, activate this reaction and release the oil before the hydrogen abstraction polymerization reaction that proceeds in parallel. The basic idea of the inventors was that as a result of decomposing and evaporating the oil, it would suppress the oil from turning into tar and exert a so-called self-cleaning effect. It became clear that this was correct.

【表】 第1表において、更に優秀な化合物としては、
(MAx(MBy(O)zの形で表わされる化合物
で、MAがA族またはA族の元素、MBがB
族またはB族の元素が良好であることがわか
る。 とくに、MAはNa,K,Ca,Mgより成り、MB
がC,Si,Alより成る化合物を用いる時には最良
であることが分る。 以上より抽出した触媒をベースとして、この触
媒を、アルカリ金属シリケート、硬化剤、顔料な
どから成る無機耐熱塗料に、前記の触媒活性物質
を添加して、ブレンドした塗料を調合して、実際
にアルミニウム処理鋼板上に塗装して、その物性
およびそのセルフクリーニング効果を試験した。
アルミニウム処理鋼板に関して、種々の処理を実
施して、その塗装性、塗膜物性を先づ調べた。 一連の試験は、四国化研工業(株)の「セラミタイ
ト“キング”」(市販品)〔黒色タイプ〕を用いて
実施した。 実験結果を第2表に示す。 第2表に見られる様に各種前処理法に関して比
較試験を実施した結果、化成処理の関係はいずれ
もアルミニウムメツキ膜がエツチングされてしま
い発泡の対策としては、ほとんど有効でないこと
を確認した。他方、アルミニウム表面に、酸化膜
を形成する前処理法が極めて有効であつた。
[Table] In Table 1, the more excellent compounds are:
A compound expressed in the form (M A ) x (M B ) y (O) z , where M A is a group A or group A element, and M B is a B
It can be seen that group or B group elements are good. In particular, M A consists of Na, K, Ca, and Mg, and M B
It turns out that this is the best when using a compound consisting of C, Si, and Al. Based on the catalyst extracted above, this catalyst is added to an inorganic heat-resistant paint consisting of an alkali metal silicate, a hardening agent, a pigment, etc., and the above-mentioned catalytically active substance is added to form a blended paint. It was painted on a treated steel plate and its physical properties and self-cleaning effect were tested.
Aluminized steel sheets were subjected to various treatments, and the paintability and physical properties of the coating films were investigated. A series of tests were conducted using Shikoku Kaken Kogyo Co., Ltd.'s "Ceramitite 'King'" (commercial product) [black type]. The experimental results are shown in Table 2. As shown in Table 2, as a result of conducting comparative tests on various pretreatment methods, it was confirmed that chemical conversion treatment etched the aluminum plating film and was hardly effective as a countermeasure against foaming. On the other hand, a pretreatment method of forming an oxide film on the aluminum surface was extremely effective.

【表】 ベーマイト処理、加熱酸化処理を実施したもの
について、酸化膜の膜厚を評価したが、ベーマイ
ト層で、0.5μ程度、加熱酸化膜は、加熱温度と
時間との関係で変化するが、高々5μ程度で、5
μ以上実施すると、被膜が割れたり、酸化膜の色
調が、灰色化する傾向があることを確認した。 酸化処理膜に関しては、5μ以下が望ましく、
他方、アルマイトが有効でなかつたが、現実には
アルマイト層はほとんど形成されていなかつた為
である。 加熱処理条件に関して、温度と時間との関係に
ついて評価した結果を図に示し、加熱処理は400
℃以上、20分以上の条件下において有効であるこ
とがわかる。なお図中〇は有効、×は発泡を示
す。 次に、触媒として、ケイ酸カルシウム:1wt
%、アルミナセメント:4wt%を、先の塗料に添
加して、同時に、8ml/100g塗料の割合でグリ
セリンを添加して同様の試験を実施したが、上と
同様の結果が得られることを確認した。 次にサラダ油を添加して、浄化能力を評価した
が、10分間の試験期間で1μづつ、30点油分を
摘下したのであるが、完全に痕跡も消失して、有
効な浄化能力が保持されていることを確認した。 各種の密着性の評価試験の結果も良好で、むし
ろ鉄板の場合と比べて性能が向上することを確認
した。更に、当表面処理方法の優れた点としては
塗膜のピンホールを介して、アルミニウムが、そ
のままの状態であれば、腐食することが懸念され
るが、この処理によつて著しく耐食性を改善する
効果が得られる点が挙げられる。 以上の様に本発明は工業上極めて優れた効果を
もたらす表面処理方法を提供するものである。
[Table] The film thickness of the oxide film was evaluated for those subjected to boehmite treatment and thermal oxidation treatment. About 5 μ at most, 5
It has been confirmed that if the test is carried out in excess of μ, the coating tends to crack and the color of the oxide film tends to turn gray. Regarding the oxidized film, it is desirable that the thickness is 5μ or less.
On the other hand, alumite was not effective because in reality, almost no alumite layer was formed. Regarding the heat treatment conditions, the results of evaluating the relationship between temperature and time are shown in the figure.
It can be seen that it is effective under conditions of 20 minutes or more at temperatures above ℃. In the figure, ○ indicates effectiveness, and × indicates foaming. Next, as a catalyst, calcium silicate: 1wt
%, alumina cement: 4wt% was added to the previous paint, and at the same time, a similar test was conducted by adding glycerin at a rate of 8ml/100g paint, but it was confirmed that the same results as above were obtained. did. Next, salad oil was added to evaluate the purification ability, and 30 points of oil were removed by 1μ in a 10-minute test period, but all traces disappeared and effective purification ability was maintained. I confirmed that The results of various adhesion evaluation tests were also good, and it was confirmed that the performance was actually improved compared to the case of iron plates. Furthermore, the advantage of this surface treatment method is that there is a concern that aluminum may corrode through pinholes in the paint film if left as is, but this treatment significantly improves corrosion resistance. There are some points where it can be effective. As described above, the present invention provides a surface treatment method that brings about extremely excellent industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図は加熱処理条件線図である。 The figure is a diagram of heat treatment conditions.

Claims (1)

【特許請求の範囲】 1 アルミニウム素材上に加熱処理によつて5μ
以下の酸化被膜層を形成させたのち、ケイ酸塩、
硬化剤、および顔料を含む無機系塗料をベースと
し、これに下記の(A),(B)の群から選ばれた少なく
とも1種以上の化合物を含有させた塗料を被覆さ
せたアルミニウム素材の表面処理方法。 (A) 周期律表A族またはA族の酸化物。 (B) それ等を含む化合物で、式(MAx(MBy
(O)zで表わされる化合物。 たゞし、MAはA族またはA族の元素、
BはB族またはB族の元素、Oは酸素、
x,y,zは整数を示す。 2 400℃以上、20分以上ろ熱処理によつて、酸
化被膜層を形成させた特許請求の範囲第1項記載
のアルミニウム素材の表面処理方法。 3 (A)群として、Na2O,K2O,CaO,MgO,(B)
群として、MAがNa,K,Ca,Mgより成り、MB
がC,Si,Alより成る化合物を用いた特許請求の
範囲第1項記載のアルミニウム素材の表面処理方
法。
[Claims] 1. 5μ by heat treatment on aluminum material
After forming the following oxide film layer, silicate,
The surface of an aluminum material coated with a paint based on an inorganic paint containing a curing agent and a pigment, and containing at least one compound selected from the following groups (A) and (B). Processing method. (A) Oxide of group A or group A of the periodic table. (B) Compounds containing these, having the formula (M A ) x (M B ) y
(O) A compound represented by z . However, M A is an element of group A or group A,
M B is group B or an element of group B, O is oxygen,
x, y, z represent integers. 2. The method for surface treatment of an aluminum material according to claim 1, wherein an oxide film layer is formed by filter heat treatment at 400° C. or higher for 20 minutes or longer. 3 (A) group: Na 2 O, K 2 O, CaO, MgO, (B)
As a group, M A consists of Na, K, Ca, Mg, and M B
A method for surface treatment of an aluminum material according to claim 1, using a compound consisting of C, Si, and Al.
JP14026378A 1978-11-13 1978-11-13 Surface treatment of aluminum material Granted JPS5566961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14026378A JPS5566961A (en) 1978-11-13 1978-11-13 Surface treatment of aluminum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14026378A JPS5566961A (en) 1978-11-13 1978-11-13 Surface treatment of aluminum material

Publications (2)

Publication Number Publication Date
JPS5566961A JPS5566961A (en) 1980-05-20
JPS6113505B2 true JPS6113505B2 (en) 1986-04-14

Family

ID=15264702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14026378A Granted JPS5566961A (en) 1978-11-13 1978-11-13 Surface treatment of aluminum material

Country Status (1)

Country Link
JP (1) JPS5566961A (en)

Also Published As

Publication number Publication date
JPS5566961A (en) 1980-05-20

Similar Documents

Publication Publication Date Title
US4636264A (en) Autodeposition post-bath rinse process
US2777785A (en) Composition for and method of treating metals as well as the treated product
JPS5924184B2 (en) protective coating
US5704995A (en) Method for forming a black, adherent coating on a metal substrate
JPS55155738A (en) Film for self-cleaning and its production
JPS6113505B2 (en)
EP0074211B1 (en) Coated metal substrate and method of coating a metal substrate
JPS5848217B2 (en) Oil-degradable coating film
JP2002363539A (en) Pore sealing agent
JPS5915016B2 (en) Coating material with catalytic action
JPH02434B2 (en)
JPS6351194B2 (en)
JP2005132944A (en) Coating agent for fixing photocatalyst particles, photocatalyst particle fixing method and photocatalyst carrying member
US3449144A (en) Method of aluminum plating with diethylaluminum hydride
JPS5830372A (en) Production of aluminum plated steel plate coated with blister resistant paint
US1932156A (en) Process of coating
JPS57162760A (en) Coating composition for forming self-cleaning coating film
JPS6338830A (en) Self-cleaning coating compound for electronic range
JPH0338254A (en) Heat-resisting film
JP3412696B2 (en) Method for coating a structural member with a corrosion inhibiting heterogeneous oxide layer and a structural member covered with such a layer
JPH0146541B2 (en)
JPS6212265B2 (en)
KR930008465A (en) Pigment for gas leak detection and its manufacturing method
RU2770158C1 (en) Method for thermochemical restoration of corroded surfaces of steel articles
JPS61133145A (en) Coating composition having catalytic action