JPS61134817A - Temperature controlling device - Google Patents

Temperature controlling device

Info

Publication number
JPS61134817A
JPS61134817A JP59255689A JP25568984A JPS61134817A JP S61134817 A JPS61134817 A JP S61134817A JP 59255689 A JP59255689 A JP 59255689A JP 25568984 A JP25568984 A JP 25568984A JP S61134817 A JPS61134817 A JP S61134817A
Authority
JP
Japan
Prior art keywords
temperature
heater
voltage
tank
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59255689A
Other languages
Japanese (ja)
Inventor
Soichiro Oe
大江 壮一郎
Fusao Suzuki
房夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP59255689A priority Critical patent/JPS61134817A/en
Publication of JPS61134817A publication Critical patent/JPS61134817A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1906Control of temperature characterised by the use of electric means using an analogue comparing device
    • G05D23/1913Control of temperature characterised by the use of electric means using an analogue comparing device delivering a series of pulses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To reduce an overshoot phenomenon of a heating means by obtaining a saw tooth reference voltage by an oscillating circuit. CONSTITUTION:A temperature controlling device is constituted of a transistor (TR) Q1 connected to a constant-voltage power source E through a switch 1, a heater 2 a thermister 4 for detecting a temperature in a tank 3, a conparator 5, and an oscillating circuit 6 for generating saw tooth reference voltage. In this state, when the switch 1 is turned on, the conparator 5 compares a reference voltage from the oscillating circuit 6 with a temperature detecting voltage from the thermistor 4,and controls conduction to the heater by bringing the TR Q1 to on-and-off control. Said referecne voltage has a saw tooth waveform, therefore, even after having reached a set temperature, the heater 2 executes turning-on and turning-off frequency, and the temperature in the tank 3 is kept constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば槽内にヒータを配置し、このヒータ
を制御することにより槽内の温度を所定の温度に保つ温
度制御装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a temperature control device that maintains the temperature inside the tank at a predetermined temperature by, for example, disposing a heater in the tank and controlling the heater. be.

〔従来の技術〕[Conventional technology]

従来この種の温度制御装置としてけ、例えば第6図に示
すようなものがある。これは、一つの槽の中の空気の温
度を制御する場合を示したもので、図においてEFi定
電圧電源で、これと直列にスイッチ1及びトランジスタ
Q、を介してヒータ2が接続されている。このヒータ2
を配置した槽3内には、空気の温度を検出するサーミス
タ4が取り付けられている。サーミスタ4の一方の端子
は電源εの負端子と接続され、他方の端子はコンパレー
タ5の反転(ハ)入力端子と接続されている。また、上
記電源Eと並列に抵抗R1とR3の直列回路が接続され
ており、その抵抗R,、R,の互いの接続点がコンパレ
ータ5の非反転(イ)入力端子に接続されている。フン
パレータ5の出力端子は抵抗R島を介して上記トランジ
スタQ、のペースに接続され、ヒータ2の制御(QN−
OFF)が行われる。R,In2はそれぞれコンパレー
タ5の反転入力端子及び出力端子と電源Eの正側との間
に接続された抵抗である。
A conventional temperature control device of this type is one shown in FIG. 6, for example. This shows a case where the temperature of the air in one tank is controlled. In the figure, an EFi constant voltage power supply is connected in series with a heater 2 via a switch 1 and a transistor Q. . This heater 2
A thermistor 4 for detecting the temperature of the air is installed in the tank 3 in which the air is placed. One terminal of the thermistor 4 is connected to the negative terminal of the power source ε, and the other terminal is connected to the inverting (c) input terminal of the comparator 5. Further, a series circuit of resistors R1 and R3 is connected in parallel with the power supply E, and the connection point of the resistors R, , R, is connected to the non-inverting (A) input terminal of the comparator 5. The output terminal of the heater 5 is connected to the pace of the transistor Q through the resistor R, and controls the heater 2 (QN-
OFF) is performed. R and In2 are resistors connected between the inverting input terminal and output terminal of the comparator 5 and the positive side of the power supply E, respectively.

上記のような回路構成の温度制御装置においては、ヒー
タ2により槽3内の空気の温度が上昇し、この温度Lサ
ーミスタ4により検出されてフィードバック制御が行わ
れる。先ず、スイッチ1を入れると、コンパレータ5の
非反転入力端子には、電*Eの電圧を抵抗R,とR7に
よって分圧した電圧が印加される。この電圧は一定の基
準電圧となり、被制御体である槽3内の空気の温度の設
定値となる。一方、槽3内の空気の温度はサーミスタ4
により検出され、この時その温度に応じてサーミスタ4
の抵抗値が変化する。これにより、コンパレータ5の反
転入力端子には、槽3内の空気の温度に対応した検出電
圧が印加される。
In the temperature control device having the circuit configuration as described above, the temperature of the air in the tank 3 is increased by the heater 2, and this temperature is detected by the L thermistor 4, and feedback control is performed. First, when the switch 1 is turned on, a voltage obtained by dividing the voltage of the electric current *E by the resistors R and R7 is applied to the non-inverting input terminal of the comparator 5. This voltage becomes a constant reference voltage and becomes a set value for the temperature of the air in the tank 3, which is the controlled object. On the other hand, the temperature of the air in tank 3 is determined by thermistor 4.
At this time, the thermistor 4 is detected according to the temperature.
resistance value changes. As a result, a detection voltage corresponding to the temperature of the air in the tank 3 is applied to the inverting input terminal of the comparator 5.

ここで、コンパレータ5は上記基準電圧と検出電圧を比
較してヒータ2の制御を行う。すなわち、コンパレータ
5の反転入力端子の電圧が非反転入力端子の電圧より高
い時、つまり槽3内の空気の温度の設定値より実際の空
気の温度の方が低い時、コンパレータ5のmカバ”L”
(ローレベル)トナってトランジスタQ1がONL、ヒ
ータ2がONとなる。このヒータ2がONとなって槽3
内の空気の温度が上昇すると、サーミスタ4の抵抗値が
小さくなり、コンパレータ5の反転入力端子の電圧が下
降する。そして、温度の設定値の電圧(非反転入力端子
の電圧)より低くなると、コンパレータ5の出力は’H
”(ハイレベル)となってトランジスタQ、が0FFL
、、ヒータ2はOFFとなる。
Here, the comparator 5 controls the heater 2 by comparing the reference voltage and the detected voltage. That is, when the voltage at the inverting input terminal of the comparator 5 is higher than the voltage at the non-inverting input terminal, that is, when the actual temperature of the air in the tank 3 is lower than the set temperature of the air, the m cover of the comparator 5 is L”
(Low level) Toner transistor Q1 is ONL and heater 2 is ON. This heater 2 is turned on and the tank 3
When the temperature of the air inside increases, the resistance value of the thermistor 4 decreases, and the voltage at the inverting input terminal of the comparator 5 decreases. Then, when the voltage becomes lower than the temperature set value (voltage at the non-inverting input terminal), the output of the comparator 5 becomes 'H.
” (high level) and transistor Q becomes 0FFL.
,, the heater 2 is turned off.

次に、槽3内の空気の温度が槽3の周囲の空気の温度に
同化されて次第に低下し、再び設定温度より低くなると
ヒータ2がONとなり、槽3内の空気の温度は再び上昇
する。このように、設定温度付近でヒータ2は0N−O
FFを繰り返し、槽3内の空気の温度が一定に保たれる
。第7図は、槽3内の空気の温度ff)と時間(1)と
の関係及びヒータ2のON、OFFのタイミングをグラ
フで示したものである。上述したように、時間t1にお
いてスイッチ1が投入されるとヒータ2がONとなり、
槽3内の空気の温度は設定値T、まで上昇する。この設
定温度に達した時間t、でヒータ2はOFFとなるが、
ヒータ2自身の温度は急激には下がらないため、目 槽3内の空気はしばらくの間加熱され更に温度が上昇す
る。このオーバーシュート現象があるため、槽3内の空
気の温度はヒータ2をOFFにしても急には設定値以下
にはならず、時間t、経過後に設定値より低くなる。こ
のようにして、ヒータ2はON。
Next, the temperature of the air in the tank 3 is assimilated with the temperature of the air around the tank 3 and gradually decreases, and when it becomes lower than the set temperature again, the heater 2 is turned on and the temperature of the air in the tank 3 rises again. . In this way, the heater 2 is 0N-O near the set temperature.
By repeating FF, the temperature of the air in the tank 3 is kept constant. FIG. 7 is a graph showing the relationship between the temperature ff) of the air in the tank 3 and time (1) and the timing of turning on and off the heater 2. As mentioned above, when switch 1 is turned on at time t1, heater 2 is turned on,
The temperature of the air in the tank 3 rises to the set value T. At the time t when this set temperature is reached, the heater 2 is turned off.
Since the temperature of the heater 2 itself does not drop rapidly, the air in the eye tank 3 is heated for a while and the temperature further rises. Because of this overshoot phenomenon, the temperature of the air in the tank 3 does not suddenly fall below the set value even when the heater 2 is turned off, but becomes lower than the set value after time t has elapsed. In this way, heater 2 is turned on.

OFFを繰り返し、槽3内の空気の温度は設定値に保た
れる。
By repeating OFF, the temperature of the air in the tank 3 is maintained at the set value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような温度制御装置にあっては、実際の温度に対
応した検出電圧を一定の基準電圧と比較してヒータ2を
制御しているため、ヒータ2の余熱によるオーバーシュ
ートが大きく、安定した温度制御ができないという問題
点があった。
In the above-mentioned temperature control device, since the heater 2 is controlled by comparing the detected voltage corresponding to the actual temperature with a fixed reference voltage, there is a large overshoot due to residual heat of the heater 2, and the stable There was a problem that temperature control was not possible.

この発明は、このような従来のものの問題点に着目して
なされたもので、オーバーシュートを小さくすることが
でき、安定した温度制御が可能な温度制御装置を提供す
るものである。
The present invention has been made by focusing on the problems of the conventional devices, and aims to provide a temperature control device that can reduce overshoot and perform stable temperature control.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の温度制御装置には、被制御体の温度を検出し
て電圧に変換する手段と、のこぎり波状の基準電圧を発
生する発振回路と、上記変換された検出電圧と基準電圧
を比較して加熱する手段を制御する比較器とが備えられ
ている。
The temperature control device of the present invention includes a means for detecting the temperature of a controlled object and converting it into a voltage, an oscillation circuit for generating a sawtooth reference voltage, and a means for comparing the converted detected voltage and the reference voltage. A comparator for controlling the means for heating is provided.

〔作 用〕[For production]

比較器は検出電圧と基準電圧を比較して加熱手段の制御
を行う。この時、基準電圧はのこぎり波状であるため、
徐々に設定温度に近づき、設定温岸到達後も加熱手段の
ON、OFFが頻繁に切換られ、オーバーシュート現象
を小さくすることができる。
The comparator compares the detected voltage with the reference voltage to control the heating means. At this time, since the reference voltage has a sawtooth waveform,
The temperature gradually approaches the set temperature, and even after reaching the set temperature limit, the heating means is frequently turned on and off, thereby making it possible to reduce the overshoot phenomenon.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図ないし第5図に基づ
いて説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.

第1図は回路構成を示す図であり、前述した従来の第5
図と相当する部分については同一符号を付して重複する
詳細説明は省略する。図において、Qlはスイッチ1を
介して定電圧電源Eと接続されたトランジスタ、2は加
熱手段としてのヒータ、4は槽3内の空気(被制御体)
の温度を検出して電圧に変換する変換手段としてのサー
ミスタ、5は変換された検出電圧と後述するのこぎり波
状の基準電圧を比較してヒータ2を制御するフンパレー
タ(比較器)で、出力端子は抵抗R1を介してトランジ
スタQ、のペースに接続されている。6は前述したのこ
ぎり波状の基準電圧を発生する発振回路で、出力端子は
コンパレータ5の非反転入力端子と接続されている。
FIG. 1 is a diagram showing the circuit configuration, and is a diagram showing the circuit configuration of the conventional fifth
Portions corresponding to those in the figures are denoted by the same reference numerals and redundant detailed explanations will be omitted. In the figure, Ql is a transistor connected to a constant voltage power supply E via switch 1, 2 is a heater as a heating means, and 4 is air in tank 3 (controlled object).
Thermistor 5 serves as a conversion means for detecting the temperature of It is connected to the pace of transistor Q through resistor R1. Reference numeral 6 denotes an oscillation circuit that generates the aforementioned sawtooth waveform reference voltage, and its output terminal is connected to the non-inverting input terminal of the comparator 5.

次に動作を説明する。Next, the operation will be explained.

スイッチ1を入れるとコンパレータ5の非反転入力端子
に発振回路6からのこぎり波状の基準電圧が与えられる
。また、槽3内の空気の温度に応じてサーミスタ4の抵
抗値が変化し、コンパレータ5の反転入力端子には槽3
内の空気の温度に応じた検出!IEが与えられる。そし
て、コンパレータ5は上記基準電圧と検出電圧を比較し
てヒータ2の制御を行う。
When the switch 1 is turned on, a sawtooth reference voltage from the oscillation circuit 6 is applied to the non-inverting input terminal of the comparator 5. In addition, the resistance value of the thermistor 4 changes depending on the temperature of the air in the tank 3, and the inverting input terminal of the comparator 5 is connected to the tank 3.
Detection according to the temperature of the air inside! IE is given. The comparator 5 then controls the heater 2 by comparing the reference voltage and the detected voltage.

スイッチ1を入れた時点では、槽3内の空気の温度は設
定値よりも低くなっているので、フン、<レータ5の反
転入力端子の検出電圧は非反転入力端子の基準電圧より
高くなっており、コンパレータ5の出力は°L“となっ
ている。従って、トランジスタQ、はベース電流が流れ
てONとなり、ヒータ2が通電される。
When switch 1 is turned on, the temperature of the air in tank 3 is lower than the set value, so the detection voltage at the inverting input terminal of regulator 5 is higher than the reference voltage at the non-inverting input terminal. Therefore, the output of the comparator 5 is "L". Therefore, the base current flows through the transistor Q, turning it on, and the heater 2 is energized.

ヒータ2に電流が流れて槽3内の空気の温度が上昇する
と、サーミスタ4の抵抗値が減少し、コンパレータ5の
反転入力端子の検出電圧が下降す石。この検出電圧が非
反転入力端子に入力されているのこぎり波状の基準電圧
より低くなると、コンパレータ5の出力はIH″となり
、トランジスタQ1がOFFしてヒータ2の通電が遮断
される。そして、再び槽3内の空気の温度が設定値より
低くなるとヒータ2が通電され、槽3内の空気の温度が
再び上昇する。
When current flows through the heater 2 and the temperature of the air in the tank 3 increases, the resistance value of the thermistor 4 decreases, and the detected voltage at the inverting input terminal of the comparator 5 decreases. When this detection voltage becomes lower than the sawtooth reference voltage input to the non-inverting input terminal, the output of the comparator 5 becomes IH'', the transistor Q1 is turned off, and the power supply to the heater 2 is cut off. When the temperature of the air in the tank 3 becomes lower than the set value, the heater 2 is energized and the temperature of the air in the tank 3 rises again.

このようにして、ヒータ2はON、OFFを繰り返し、
槽3内の空気の温度が一定に保たれる。このとき、温度
の設定値となる発振回路6からの基準電圧はのこぎり波
状となっているため、槽3内の空気の温度を上昇させる
際、ヒータ2はOFFの時間が少しずつ長くなりながら
ON、OFFを繰り返す。
In this way, the heater 2 is repeatedly turned on and off,
The temperature of the air inside tank 3 is kept constant. At this time, the reference voltage from the oscillation circuit 6, which serves as the temperature set value, has a sawtooth waveform, so when raising the temperature of the air in the tank 3, the heater 2 is turned on while the off time is gradually increasing. , OFF is repeated.

これにより、槽3内の空気の温度が徐々に上昇し、設定
温度に近づいていく。また、設定温度に達してからもヒ
ータ2はON、OFFの切換えを頻繁に行い、槽3内の
空気の温度を一定に保つ。第2図は、上記のヒータ2の
ON、OFFのタイミングと、コンパレータ5の両入力
端子の電圧波形との関係を示したものである。図中、げ
)が反転入力端子の検出電圧波形、←)が非反転入力端
子の基準電圧波形である。上述したように、時間t1に
おいてスイッチ1が投入されると、ヒータ2がONとな
り検出電圧が低下する。そして、時間t、で設定温度に
達するとヒータ2がOF’Fとなり、以下このON。
As a result, the temperature of the air in the tank 3 gradually increases and approaches the set temperature. Further, even after the set temperature is reached, the heater 2 is frequently switched on and off to keep the temperature of the air in the tank 3 constant. FIG. 2 shows the relationship between the ON/OFF timing of the heater 2 and the voltage waveforms at both input terminals of the comparator 5. In FIG. In the figure, ←) is the detected voltage waveform of the inverting input terminal, and ←) is the reference voltage waveform of the non-inverting input terminal. As described above, when switch 1 is turned on at time t1, heater 2 is turned on and the detected voltage is reduced. Then, when the set temperature is reached at time t, the heater 2 is turned OFF'F, and is thereafter turned ON.

OFFを繰り返す。ここで、基準電圧をのこぎり波状と
しであるので、ヒータ2はOFF時間が長くなりながら
ON、OFFを繰り返し、設定温度に達してからもON
、OFFの切換えが頻繁に行われる。このため、オーバ
ーシュートが小さくなり、第3図に示すように、槽3内
の空気の温度を設定値T、により近づけることができ、
安定した温度制御を行うことができる。
Repeat OFF. Here, since the reference voltage is in a sawtooth waveform, the heater 2 is repeatedly turned on and off while the off time becomes longer, and is turned on even after reaching the set temperature.
, OFF switching is performed frequently. Therefore, the overshoot is reduced, and as shown in FIG. 3, the temperature of the air in the tank 3 can be brought closer to the set value T.
Stable temperature control can be performed.

第4図は、上記のこぎり波状の電圧を発生する発振回路
6の具体例を示す回路図である。この回路は、コンデン
サCの充放電によりのこぎり波状の出力電圧を得るよう
にしたもので、電源Eと並列に抵抗6.7の直列回路が
接続され、抵抗Tと並列にNPN)ランジスタQ、が接
続されている。
FIG. 4 is a circuit diagram showing a specific example of the oscillation circuit 6 that generates the above-mentioned sawtooth wave voltage. This circuit is designed to obtain a sawtooth output voltage by charging and discharging a capacitor C.A series circuit of a resistor 6.7 is connected in parallel with a power supply E, and a transistor Q (NPN) is connected in parallel with a resistor T. It is connected.

抵抗6.7の接続点(PI)はPNP )ランジスタQ
、のベースに接続され、このトランジスタQ。
The connection point (PI) of resistor 6.7 is PNP) transistor Q
, this transistor Q.

のコレクタはトランジスタQtのベースに接続されてい
る。コンデンサCは、電源Eと抵抗8 、9゜10の直
列回路と接続されており、抵抗9と10の接続点(Pg
)はトランジスタQ、のエミッタに接続されている。ま
た、抵抗R3とR9の接続点は、電源Eに接続されたN
PN )ランジスタQ4のベースと接続されており、こ
のトランジスタQ。
The collector of is connected to the base of transistor Qt. Capacitor C is connected to a power supply E and a series circuit of resistors 8, 9 and 10, and the connection point of resistors 9 and 10 (Pg
) is connected to the emitter of transistor Q. Also, the connection point between resistors R3 and R9 is connected to the N
PN) is connected to the base of transistor Q4, and this transistor Q.

のエミッタが抵抗R11を介して出力端子P、に接続さ
れ、抵抗R11と直列に抵抗Rttが接続されている。
The emitter of is connected to the output terminal P via a resistor R11, and a resistor Rtt is connected in series with the resistor R11.

なお、上記抵抗7の値は抵抗10の値より大きくしであ
る。
Note that the value of the resistor 7 is greater than the value of the resistor 10.

スイッチ1を入れるとトランジスタQ、がONしく抵抗
7の値〉抵抗10の値とするとP、の電位>ptの電位
となるため)、コンデンサCが充電される。トランジス
タQ3のコレクタ電流が流れると、このコレクタ電流は
トランジスタQ、のベース電流であるため、トランジス
タQ! はONしてコレクタ電流が流れる。
When the switch 1 is turned on, the transistor Q is turned on and the capacitor C is charged (because if the value of the resistor 7>the value of the resistor 10, the potential of P>pt). When the collector current of transistor Q3 flows, this collector current is the base current of transistor Q, so transistor Q! is turned on and collector current flows.

P、の電位がP、の電位より高い間は上記のような動作
をするが、コンデンサCが十分充電されてP2の電位が
P、の電位と同じになるとトランジスタQ。
While the potential of P is higher than the potential of P, the operation is as described above, but when capacitor C is sufficiently charged and the potential of P2 becomes the same as the potential of P, transistor Q.

とQ、は共にOFFとなり、コンデンサCに充電された
電荷は放電する。そして、コンデンサCが放電すると再
びP、の電位がP、の電位より高くなるため、トランジ
ス々Q、がONし、コンデンサCが充電される。
and Q are both turned off, and the charge stored in capacitor C is discharged. Then, when the capacitor C is discharged, the potential of P becomes higher than the potential of P again, so the transistors Q are turned on and the capacitor C is charged.

第5図はPlの電圧波形(ハ)とP、の電圧波形に)を
示す図である。このように、コンデンサCが充放電を繰
り返すため、トランジスタQ4がONI、て出力される
電圧は抵抗R11とR1!で分割されたのこぎり波状と
なり、基準電圧としてコンパレータ5に入力される。
FIG. 5 is a diagram showing the voltage waveform (c) of Pl and the voltage waveform of P. In this way, since the capacitor C repeats charging and discharging, the voltage output from the transistor Q4 is ONI, and the voltage output from the resistor R11 and R1! It has a sawtooth wave shape divided by , and is input to the comparator 5 as a reference voltage.

以上、この発明の一実施例を述べたが、この発明は他の
電気コタツ、パネルヒータ、ヘヤドライヤー等、特に温
度を常温より高い値に設定して制御する装置に適用する
ことができる。
Although one embodiment of the present invention has been described above, the present invention can be applied to other devices such as electric kotatsu, panel heaters, hair dryers, etc., which particularly control the temperature by setting it to a value higher than room temperature.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、発振回路によ
りのこぎり波状の基準電圧を得ているため、加熱手段の
オーバーシュートが小さくなり、また設定温度到達後も
加熱手段の制御が頻繁に行われるので、安定した温度制
御ができるという効果がある。
As explained above, according to the present invention, the sawtooth wave-like reference voltage is obtained by the oscillation circuit, so the overshoot of the heating means is reduced, and the heating means is frequently controlled even after the set temperature is reached. Therefore, there is an effect that stable temperature control is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す回路構成図、第2図
は第1図に示すヒータの制御タイミングとコンパレータ
の大入力端子の電圧波形を示す図、第3図は槽内の空気
の温度と時間の関係を示す図、第4図は第1図に示す発
振回路の具体例を示す回路図、第5図は第4図のPi及
びP、の電圧波形を示す図、第6図は従来例を示す回路
構成図、第7図は第6図に示すヒータの制御タイミング
と槽内の空気の温度状況を示す図である。 2・・・・・・・・・ヒータ            
          1゜4・・・・・・・・・サーミ
スタ 5・・・・・−・・・比較器 6・・・・・・・・・発振回路 第1図 第2図 第3図 第4図 第5図
Fig. 1 is a circuit configuration diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing the control timing of the heater shown in Fig. 1 and the voltage waveform of the large input terminal of the comparator, and Fig. 3 is a diagram showing the air in the tank. 4 is a circuit diagram showing a specific example of the oscillation circuit shown in FIG. 1. FIG. 5 is a diagram showing the voltage waveforms of Pi and P in FIG. 4. The figure is a circuit configuration diagram showing a conventional example, and FIG. 7 is a diagram showing the control timing of the heater shown in FIG. 6 and the temperature status of the air in the tank. 2・・・・・・・・・Heater
1゜4...Thermistor 5...Comparator 6...Oscillation circuit Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 被制御体の温度を検出して電圧に変換する変換手段と、
のこぎり波状の基準電圧を発生する発振回路と、前記変
換された電圧及び基準電圧の電圧値を比較して被制御体
の加熱手段を制御する比較器とを備えたことを特徴とす
る温度制御装置。
a conversion means that detects the temperature of the controlled object and converts it into voltage;
A temperature control device comprising: an oscillation circuit that generates a sawtooth wave-like reference voltage; and a comparator that compares the voltage values of the converted voltage and the reference voltage to control a heating means for a controlled object. .
JP59255689A 1984-12-05 1984-12-05 Temperature controlling device Pending JPS61134817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59255689A JPS61134817A (en) 1984-12-05 1984-12-05 Temperature controlling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59255689A JPS61134817A (en) 1984-12-05 1984-12-05 Temperature controlling device

Publications (1)

Publication Number Publication Date
JPS61134817A true JPS61134817A (en) 1986-06-21

Family

ID=17282257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59255689A Pending JPS61134817A (en) 1984-12-05 1984-12-05 Temperature controlling device

Country Status (1)

Country Link
JP (1) JPS61134817A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010054592A1 (en) * 2008-11-15 2010-05-20 漳州灿坤实业有限公司 Control circuit for electronic temperature probe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102003A (en) * 1979-01-30 1980-08-04 Noboru Okamoto Ratio control circuit
JPS57127213A (en) * 1981-01-30 1982-08-07 Matsushita Electric Ind Co Ltd Temperature controlling device
JPS57212502A (en) * 1981-06-25 1982-12-27 Oki Electric Ind Co Ltd Pulse width modulation type temperature controlling circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102003A (en) * 1979-01-30 1980-08-04 Noboru Okamoto Ratio control circuit
JPS57127213A (en) * 1981-01-30 1982-08-07 Matsushita Electric Ind Co Ltd Temperature controlling device
JPS57212502A (en) * 1981-06-25 1982-12-27 Oki Electric Ind Co Ltd Pulse width modulation type temperature controlling circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010054592A1 (en) * 2008-11-15 2010-05-20 漳州灿坤实业有限公司 Control circuit for electronic temperature probe

Similar Documents

Publication Publication Date Title
JPH09180888A (en) Discharge lamp lighting device
JPS61134817A (en) Temperature controlling device
JPS58192117A (en) Temperature controller
US4574230A (en) Phase-regulated switching circuit
JPS6131509Y2 (en)
JPH0323804Y2 (en)
JPS5824815U (en) Temperature control circuit for electric heating equipment
JPH0124353B2 (en)
JPH08297429A (en) Ac load applying controlling device
KR0164751B1 (en) Circuit for stabilizing effective voltage in electric apparatus
KR960010711B1 (en) Fluorescent lamp control circuit
JP2563875Y2 (en) Load power control circuit
JPS5934435A (en) Glow plug controller
JPH0330281A (en) Induction heating cooker
JPH0216145Y2 (en)
KR890000910Y1 (en) Output control circuit of microwave oven
JPS5966720A (en) Variable timer type thermostat
JP2840310B2 (en) DC motor drive circuit
JPH0313600Y2 (en)
JP3505933B2 (en) Electronics
JPS58181121A (en) Temperature controlling circuit provided with timer
SU997004A1 (en) Temperature regulating device
JPS63271884A (en) High-frequency heating device
JPS5838409Y2 (en) Switching regulator overheat protection circuit
JPH0620171Y2 (en) Power control device