JPS61134657A - Method for measuring degree of development of texture in steel plate - Google Patents

Method for measuring degree of development of texture in steel plate

Info

Publication number
JPS61134657A
JPS61134657A JP25819284A JP25819284A JPS61134657A JP S61134657 A JPS61134657 A JP S61134657A JP 25819284 A JP25819284 A JP 25819284A JP 25819284 A JP25819284 A JP 25819284A JP S61134657 A JPS61134657 A JP S61134657A
Authority
JP
Japan
Prior art keywords
steel plate
texture
magnetic field
electromotive force
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25819284A
Other languages
Japanese (ja)
Inventor
Ensuke Ishibashi
石橋 延介
Masahiko Morita
正彦 森田
Osamu Hashimoto
修 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25819284A priority Critical patent/JPS61134657A/en
Publication of JPS61134657A publication Critical patent/JPS61134657A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To measure inexpensively and continuously the degree of development of the texture in a steel plate from the relation with the preliminarily corresponded X-ray diffraction intensity value relating to the {222} face by applying an AC magnetic field to the steel plate and measuring the change of the magnetic flux quantity generated from the steel plate. CONSTITUTION:The magnetic flux passing the inside of the steel plate 10 is determined as induced electromotive force by electromagnetic induction with a detector 14 when the AC magnetic field is impressed to the steel plate 10 by an AC magnetic field generator 12. The electromotive force is processed by an arithmetic unit 16 in which both measured values obtd. by measuring the X-ray diffraction intensity relating to the {222} face designated by the Miller indices in the steel plate 10 and the change of the magnetic flux quantity obtd. by applying the AC magnetic field to the steel plate 10 are preliminarily corresponded and stored. The result of the X-ray diffraction intensity measurement corresponding to the electromotive force obtd. by such process is selectively outputted as the information relating to the {222} face. The information on the texture over the entire longitudinal direction of the steel plate is non- destructively obtd. by the above-mentioned constitution without stopping the line.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、鋼板中の集合組織の発達度合測定方法に係り
、特にfAMi製造ラインに適用するのに好適な、鋼板
中の集合組織の発達度合測定方法に関する。
The present invention relates to a method for measuring the degree of development of texture in a steel plate, and particularly to a method for measuring the degree of development of texture in a steel plate, which is suitable for application to an fAMi production line.

【従来の技術】[Conventional technology]

近年、鋼板に対し、加工性・絞り性の要求が高まってお
り、この要求に応えるため、鋼板製造メーカーでは種々
の材質試験を行い、要求に適用するものを製品化してい
る。 ところで、前記材質試験としては、引張試験、成形性試
験等が挙げられ、一般的には「値〈ランクフォード笥)
 、CCV (コニカルカップ試°験値)、EJ2(全
伸び)、YP(降伏点)を測定することで、加工性・絞
り性の指標としている。又、結晶集合組織もこれら材質
値、特にr値と良い相関を承りことが知られており、加
工性・絞り性を評価するため、従来より集合組織とr[
とに関Jる研究が行われている。 この集合組織を調査する方法としては、一般的なX線を
利用した測定方法や、近年では特開昭56−35055
で提案されたように、超音波を用いた測定法が開発され
ている。 しかしながら、鋼板製造ラインを通板する鋼板に、これ
らの44′R試験を行うためには、ラインを一時的に停
止させ、多数のオペレータにより試料採取並びに試験を
行う必要がある。従って、非能率的且つ非生産的であり
、しかも人件費も嵩むという問題点を有する。 そこで、製造ラインを停止させずに、鋼板の集合組織を
調歪する方法として、平行ビーム状の特性X線を用いた
方法が特開昭54−77250等で提案されている。 [発明が解決しようとプる問題点1 しかしながら、前記X線を用い!ご方法は、回折X線を
検出づるので、鋼板表面は平坦でなければならず、又平
坦な表面でも通板時鋼板が撮動する状態では測定が不可
能となる問題点を有する。又、冷却水や圧延油が鋼板に
付着している場合−は、X線の減衰率が大きくなり測定
不可能となる問題点を有−4る。従ってこれらの問題点
により実ラインにおいて、この方法が使用に供される例
は見当らない。
In recent years, demands on steel sheets for workability and drawability have increased, and in order to meet these demands, steel sheet manufacturers conduct various material tests and commercialize products that meet the requirements. By the way, the above-mentioned material tests include tensile tests, formability tests, etc., and generally "value (Lankford)
, CCV (conical cup test value), EJ2 (total elongation), and YP (yield point) are measured as indicators of workability and drawability. In addition, it is known that the crystal texture has a good correlation with these material values, especially the r value, and in order to evaluate workability and drawability, it has been conventionally known that the crystal texture and r [
Research is being conducted regarding this. Methods for investigating this texture include general measurement methods using X-rays, and in recent years,
A measurement method using ultrasound has been developed as proposed in . However, in order to perform these 44'R tests on steel plates passing through a steel plate manufacturing line, it is necessary to temporarily stop the line and perform sample collection and testing by a large number of operators. Therefore, there are problems in that it is inefficient and unproductive, and also increases labor costs. Therefore, as a method of adjusting the texture of a steel sheet without stopping the production line, a method using parallel beam characteristic X-rays has been proposed in Japanese Patent Application Laid-Open No. 77250/1983. [Problem 1 that the invention seeks to solve: However, using the above-mentioned X-rays! Since this method detects diffracted X-rays, the surface of the steel sheet must be flat, and even on a flat surface, there is a problem that measurement is impossible if the steel sheet is being photographed during passing. Furthermore, if cooling water or rolling oil adheres to the steel plate, there is a problem that the attenuation rate of X-rays becomes large and measurement becomes impossible. Therefore, due to these problems, there are no examples of this method being used in actual production.

【発明の目的] 本発明は、前記従来の問題点を解消するべくなされたも
ので、鋼板製造ラインにおいて、ラインを停止すること
なく、鋼板長手方向全体に亘って連続的に、非破壊で且
つ安価に、鋼板中の集合組織に閤Jる情報を得ることの
できる鋼板中の集合組織の発達度合測定方法を提供する
ことを目的と゛りる。 c問題点を解決するための手段】 本発明は、第1図にその要旨を示す如く、鋼板中のミラ
ー指数表示(222)面(以下、単に(222)面と称
する)に関するX線回折強度と、前記鋼板に交流磁界を
与えて得られる鋼板から発生する磁束量の変化とを測定
し、前記(222)而にpi4ツる測定結果と前記磁束
量の変化とを予め対応させてJ5き、J:J、la、前
記鋼板に交流磁界を与え、前記鋼板から発生する磁束量
の変化を測定Vすることにより、前記目的を達成したも
のである。
[Object of the Invention] The present invention has been made to solve the above-mentioned conventional problems, and is capable of continuously, non-destructively and non-destructively extending the entire longitudinal direction of a steel plate without stopping the line in a steel plate manufacturing line. It is an object of the present invention to provide a method for measuring the degree of development of texture in a steel sheet that can obtain information on the texture in the steel sheet at low cost. c. Means for Solving the Problems] As summarized in FIG. 1, the present invention solves the and the change in the amount of magnetic flux generated from the steel plate obtained by applying an alternating magnetic field to the steel plate, and by associating the measurement results obtained in (222) and the change in the amount of magnetic flux in advance with J5. , J: J, la, the above object was achieved by applying an alternating magnetic field to the steel plate and measuring the change in the amount of magnetic flux generated from the steel plate.

【作用】[Effect]

本発明は、鋼板の磁性を電磁銹導法により研究した結果
、鋼板の集合組織が変化することにより、その誘導起電
力が変化することを発見して、創出されたものである。 まず、本発明をなす(至った実験結果について説明する
。本発明者らは、第1表に示すように、種々の均熱温度
で焼鈍した冷延板を用意し、これらの鋼板を第2図に示
す実!11%1irItに設置して、電磁誘導によりそ
の誘導起電力を測定した。 第1表 前記実験装置は、第2図に示すように、証料1の下面か
ら、励磁コイルでなる交流磁界発生1A置2により交流
磁界を試料1に印加した際に試料1内を通る磁束を同試
料1下部にあるコイルでなる検出装置I!3でN磁誘導
により、誘導起電力として求めるものである。 第3図に本実験装鑓を用いて測定した誘導起電力Eと焼
鈍均熱温度Tの関係を、縦軸に誘導起電力Eを、横軸に
焼鈍均熱温度Tをとった線図として示ず。この第3図に
より、均熱温度Tの上昇と共に誘導起電力Eは減少し、
約800℃で極小値をとり、その後は増大することが判
明した。 一方、同試料の集合組織をXWA回折法により調査した
。第4図に、ミラー指数表示(222)面のX線回折強
度Iと均熱温度Tとの関係を、縦軸にxi回折強度1を
、*@に焼鈍均熱温度下をとった線図として示す。この
第4図により、均1!1%温度Tの上昇と共に回折強度
Iは上昇し、この関係も又前記同様的800℃で極大値
を示すことが判明した。 そこで、誘導起NftEと、X線回折強度■との関係を
:l査したところ、第5図に示すように、1対1の対応
関係を示Jことが判明した。このような結果は、[22
2)面の集合組織の発達が、鋼板の磁気特性、特に透磁
率を低下させるため、磁束が通過しにくくなり、その誘
導起電力が下ることに起因するものと考えられる。 従って、鋼板に交am界を印加し、鋼板を通過する磁束
量を検出して、その誘導起電力を測定づることにより、
集合組織の変化を定量化できるものである。
The present invention was created by researching the magnetism of steel sheets using the electromagnetic induction method and discovering that the induced electromotive force changes as the texture of the steel sheet changes. First, the present invention will be explained (experimental results obtained).The present inventors prepared cold rolled sheets annealed at various soaking temperatures as shown in Table 1, and As shown in the figure, the induced electromotive force was measured by electromagnetic induction. When an alternating current magnetic field is applied to the sample 1 by generating an alternating current magnetic field at 1 A and 2, the magnetic flux passing through the sample 1 is determined as an induced electromotive force by N magnetic induction using a detection device I!3 consisting of a coil located at the bottom of the sample 1. Figure 3 shows the relationship between induced electromotive force E and annealing soaking temperature T measured using this experimental equipment, with induced electromotive force E on the vertical axis and annealing soaking temperature T on the horizontal axis. This diagram is not shown as a graph.As shown in Fig. 3, as the soaking temperature T increases, the induced electromotive force E decreases.
It was found that it reaches a minimum value at about 800°C and increases thereafter. On the other hand, the texture of the same sample was investigated by XWA diffraction method. Fig. 4 is a diagram showing the relationship between the X-ray diffraction intensity I of the Miller index display (222) plane and the soaking temperature T, with the xi diffraction intensity 1 on the vertical axis and the lower annealing soaking temperature on the *@. Shown as From FIG. 4, it was found that the diffraction intensity I increased as the temperature T increased by an average of 1.1%, and this relationship also showed a maximum value at 800° C., similar to the above. Therefore, when we investigated the relationship between the induced NftE and the X-ray diffraction intensity, we found that there was a one-to-one correspondence as shown in FIG. Such a result is [22
2) This is thought to be due to the fact that the development of surface texture reduces the magnetic properties of the steel sheet, particularly the magnetic permeability, making it difficult for magnetic flux to pass through and reducing the induced electromotive force. Therefore, by applying an alternating am field to the steel plate, detecting the amount of magnetic flux passing through the steel plate, and measuring the induced electromotive force,
It is possible to quantify changes in texture.

【実施例1 以下1図面を参照して、本発明の実施例を詳細に説明す
る。 本発明の実施例が適用される鋼板製造ラインの    
 jシャーラインは、第6図に示す如く、アンコイラ2
0、プロセッサロール22、トリマ24、スキンバスミ
ル26、レベラ28、シャー30で構成され、鋼板10
は、これら機器を経て形状が矯正された後、所定の寸法
に切断されるものである。 このように構成するシャーラインのレベラ28とシャー
130との間には、鋼板1oに交流磁界を与え鋼板から
発生ずる磁束量の変化を測定する装置、つまり、鋼板の
集合組織発達度測定装置11を配設する。 この集合組織発達度測定装置11は、例えば、第7図に
示す如く、前記実験装置と同様の構成とする。即ち、鋼
板10のパスライン下方に配設した励磁コイルでなる交
流磁界発生装置12により交流磁界を鋼板10に印加し
た際、鋼板10内を通る磁束を鋼板10のパスライン下
方に設けたコイルでなる検出@@14で電磁誘導により
誘導起電ツノとして求め、この起電力を、鋼板10中の
ミラー指数表示(222)而に関するX線回折強度と、
前記鋼板10に交流磁界を与えて得られる鋼板10から
発生ずる磁束量の変化どを測定して前記(222)面に
関する測定結果と前記磁束量の変化とを予め対応記憶し
ておいたコンピュータでなる演算装置16により処理し
て、この起電力と対応するXS+回折強度測定結果を鋼
板の(222)而に関する情報として、選択出力するよ
う構成されている。なお、第7図中13は交流励磁装置
を示り 次に本測定装置11を用いて測定した測定結果をmm8
図に示す。この測定結果は、鋼板10の長手方向全体に
亘る誘導起電力Eの連続した変化として得られたもので
ある。この第8図で誘導起電力Eが高い部分は、ミラー
指数表示(2223面の集合組織が充分に発達せず、加
工性に乏しい部分である。なお、第8図における破線は
製品許容範囲を仕切るものであり、この破1g、下の誘
導起電力Eを示1部分が製品となり得る材質を右する部
分である。 従来にあっては、鋼板10の集合組織を調査する際、製
造ラインをストップさせ、第8図の位置A−Eでサンプ
ル採取を行っていた。次いで、この検出結果を基にして
、製品許容範囲に入らない部分をシャーにより切落して
いた。従って、この従来方法によると、局所的に鋼板の
集合組織を測定Jるため、第8図の位@A及びEについ
ては製品許容範囲外であることが判明するが、反面、本
発明法に:より発見された第8図の位1ffFの製品許
容範囲外部分を検出ジることができない。そのため、従
来方法では、前記位WIF部分も製品化してしまうとい
う不都合を有していた。本発明によれば、鋼板10の長
手方向全体に亘り連続して鋼板中の集合組織の発達度合
情報が得られるから、前記従来の不都合を解消し、鋼板
の製品許容範囲内の部分のみを確実に製品化することが
できるものである。 なお、本実施例においてはシャーラインに採用した場合
を説明したが、これに限定されることなく、ホット冷却
帯やタンデムミル内のように、冷却水や圧延油を使用す
る場所、又は、連続焼鈍炉内のように高温の場所等にお
いても適用が可能である。 又、本実施例においては、誘導起電力の測定装置を、励
磁コイルと検出コイルとの2つのコイルで構成したが、
これに限定されることなく、例えば、誘導起電力はコイ
ルと鋼板との距離に影響されることから、この影響を消
去プるため、1つの励磁」イルと2つの検出コイルとを
、それぞれの」イルの距離を異なるよう配設して、それ
ぞれの検出」イルに誘起される起電力の比を求めること
によって、測定距離の影響を排除するよう構成した測定
装置としてもよい。 【発明の効果】 以上説明した通り、本発明によれば、次のような侵れた
効果が得られるものである。 (1)鋼板の集合組織の情報を非破壊で且つ安価に得る
ことができる。 (2)ts板の集合組織の情報を瞬時にして得ることが
できる。 (3)$1板製造ラインに設置することにより、ライン
を停止させることなく鋼板長手方向全体に亘   1り
連続した集合組織に閣する情報を得ることができる。従
って、鋼板の製品許容範囲外部分を確実に検出すること
ができ、製品許容範囲外部分が製品化されることがなく
、製品に対する信頼性向上を図ることができる。 (4)冷胡水や圧延油を使用する場所や高温の場所にお
いても使用可能であり、汎用性に優れる。
Example 1 An example of the present invention will be described in detail below with reference to one drawing. Steel plate manufacturing line to which the embodiment of the present invention is applied
j Shear line is uncoiler 2 as shown in Figure 6.
0, a processor roll 22, a trimmer 24, a skin bath mill 26, a leveler 28, a shear 30, and a steel plate 10
After the shape is corrected through these devices, it is cut into predetermined dimensions. Between the leveler 28 and shear 130 of the shear line constructed in this way, there is a device 11 that applies an alternating magnetic field to the steel sheet 1o and measures changes in the amount of magnetic flux generated from the steel sheet, that is, a steel sheet texture development degree measuring device 11. to be placed. This texture development degree measuring device 11 has the same configuration as the experimental device described above, as shown in FIG. 7, for example. That is, when an alternating current magnetic field is applied to the steel plate 10 by the alternating current magnetic field generator 12, which is an excitation coil disposed below the pass line of the steel plate 10, the magnetic flux passing through the steel plate 10 is caused by the coil disposed below the pass line of the steel plate 10. The electromotive force is determined as an induced electromotive force by electromagnetic induction in the detection @@14, and this electromotive force is expressed as the X-ray diffraction intensity related to the mirror index display (222) in the steel plate 10.
A computer measures changes in the amount of magnetic flux generated from the steel plate 10 obtained by applying an alternating magnetic field to the steel plate 10, and stores in advance the measurement results regarding the (222) plane and the changes in the amount of magnetic flux. The XS+ diffraction intensity measurement result corresponding to this electromotive force is processed by an arithmetic unit 16, and is selectively outputted as information regarding the (222) shape of the steel plate. In addition, 13 in FIG. 7 indicates an AC excitation device, and the measurement results measured using this measuring device 11 are expressed as mm8.
As shown in the figure. This measurement result was obtained as a continuous change in the induced electromotive force E over the entire longitudinal direction of the steel plate 10. The part where the induced electromotive force E is high in Fig. 8 is the part where the texture of the Miller index (2223 plane) is not sufficiently developed and the workability is poor.The broken line in Fig. 8 indicates the product tolerance range. This fracture 1g indicates the induced electromotive force E and the part 1 determines the material that can be used as a product. Conventionally, when investigating the texture of the steel plate 10, the production line is The conventional method was stopped and a sample was taken at position A-E in Fig. 8.Next, based on this detection result, the part that did not fall within the product tolerance was cut off using a shear.Therefore, this conventional method As a result of locally measuring the texture of the steel sheet, it is found that positions A and E shown in Figure 8 are outside the product tolerance range, but on the other hand, the It is not possible to detect the part outside the product tolerance range of 1ffF as shown in Fig. 8.Therefore, in the conventional method, the above WIF part is also turned into a product.According to the present invention, the steel plate 10 Since information on the degree of development of the texture in the steel sheet can be obtained continuously over the entire longitudinal direction of the steel sheet, the above-mentioned conventional disadvantages can be solved and only the parts of the steel sheet that are within the product tolerance range can be reliably manufactured. Although the present embodiment describes the case where it is adopted in a shear line, it is not limited to this, and it can be used in places where cooling water or rolling oil is used, such as in a hot cooling zone or a tandem mill. Alternatively, it can also be applied in high-temperature locations such as in a continuous annealing furnace.In addition, in this example, the induced electromotive force measuring device was configured with two coils, an excitation coil and a detection coil. but,
For example, without being limited to this, the induced electromotive force is affected by the distance between the coil and the steel plate, so in order to eliminate this effect, one excitation coil and two detection coils are connected to each other. The measurement device may be configured to eliminate the influence of the measurement distance by arranging the distances of the detection tiles to be different and determining the ratio of the electromotive forces induced in the respective detection tiles. [Effects of the Invention] As explained above, according to the present invention, the following effects can be obtained. (1) Information on the texture of a steel plate can be obtained non-destructively and at low cost. (2) Information on the texture of the TS plate can be obtained instantly. (3) By installing it on the $1 plate production line, it is possible to obtain information on the continuous texture of the steel plate throughout the longitudinal direction without stopping the line. Therefore, the portion of the steel plate that is outside the product tolerance range can be reliably detected, the portion outside the product tolerance range will not be made into a product, and the reliability of the product can be improved. (4) It can be used in places where cold pepper water or rolling oil is used, or in places with high temperatures, and is highly versatile.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法の要旨を示す流れ図、第2図は、
本発明の詳細な説明するための、鋼板に交流磁界を与え
て鋼板から発生する磁束量の変化を測定する実験装置の
概略構成を示すブロック線図、第3図は、同じく、焼鈍
均熱濃度と誘導起電ツノとの関係を示す縮図、第4図は
、同じく、焼鈍均熱濃度とx1m回折強度との関係を示
iva図、第5図は、同じく、Xa口折強度と誘導起電
力との関係を示す縮図1M6図は、本発明方法が適用さ
れたシャーラインの実施例の構成を示す断面図、第7図
は、館記実施例で用いられている集合組織発達度合測定
装置の構成を示すブロック線図、第8図は、館記実施例
の測定結果を示す縮図である。 10・・・鋼板、 11・・・集合組織発達度合測定装置、12・・・交流
磁界発生装置、 14・・・検出!!i置、  16・・・演算装置。 代理人  高 矢  論、 松 山 圭 佑第3図 400 5CO6007■ 8ω 9001α迫−)i
、拙)5J熱逼浅T (’C) 第4図 焼鈴yη熱」T(’C) 第5図 (m)x、轢回稍J虱友工
FIG. 1 is a flow chart showing the gist of the method of the present invention, and FIG. 2 is a flow chart showing the gist of the method of the present invention.
In order to explain the present invention in detail, FIG. 3 is a block diagram showing a schematic configuration of an experimental apparatus for applying an alternating magnetic field to a steel plate and measuring changes in the amount of magnetic flux generated from the steel plate. FIG. 4 is a miniature diagram showing the relationship between the annealing soaked concentration and the x1m diffraction intensity, and FIG. Fig. 1M6 is a cross-sectional view showing the structure of an embodiment of the shear line to which the method of the present invention is applied, and Fig. 7 is a diagram showing the structure of the texture development degree measuring device used in the embodiment. FIG. 8, a block diagram showing the configuration, is a microcosm showing the measurement results of the embodiment. 10... Steel plate, 11... Texture development degree measuring device, 12... AC magnetic field generator, 14... Detection! ! Place i, 16... Arithmetic device. Agent Takaya Ron, Matsuyama KeisukeFigure 3 400 5CO6007■ 8ω 9001α Sako-)i
, I) 5J heat shallow T ('C) Fig. 4 Grilled bell yη heat' T ('C) Fig. 5 (m)

Claims (1)

【特許請求の範囲】[Claims] (1)鋼板中の{222}面に関するX線回折強度と、
前記鋼板に交流磁界を与えて得られる鋼板から発生する
磁束量の変化とを測定し、前記{222}面に関する測
定結果と前記磁束量の変化とを予め対応させておき、以
後、前記鋼板に交流磁界を与え、前記鋼板から発生する
磁束量の変化を測定することにより、鋼板の{222}
面に関する情報を得ることを特徴とする鋼板中の集合組
織の発達度合測定方法。
(1) X-ray diffraction intensity regarding the {222} plane in the steel plate,
Changes in the amount of magnetic flux generated from the steel plate obtained by applying an alternating magnetic field to the steel plate are measured, and the measurement results regarding the {222} plane are made to correspond in advance to the changes in the amount of magnetic flux. {222} of the steel plate by applying an alternating magnetic field and measuring the change in the amount of magnetic flux generated from the steel plate.
A method for measuring the degree of development of texture in a steel sheet, characterized by obtaining information about surfaces.
JP25819284A 1984-12-06 1984-12-06 Method for measuring degree of development of texture in steel plate Pending JPS61134657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25819284A JPS61134657A (en) 1984-12-06 1984-12-06 Method for measuring degree of development of texture in steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25819284A JPS61134657A (en) 1984-12-06 1984-12-06 Method for measuring degree of development of texture in steel plate

Publications (1)

Publication Number Publication Date
JPS61134657A true JPS61134657A (en) 1986-06-21

Family

ID=17316789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25819284A Pending JPS61134657A (en) 1984-12-06 1984-12-06 Method for measuring degree of development of texture in steel plate

Country Status (1)

Country Link
JP (1) JPS61134657A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528886A (en) * 1975-07-09 1977-01-24 Kubota Ltd Cast iron pipe structure judging unit
JPS5487286A (en) * 1977-12-22 1979-07-11 Nippon Steel Corp Detection of microstructure of directive electromagnetic steel plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528886A (en) * 1975-07-09 1977-01-24 Kubota Ltd Cast iron pipe structure judging unit
JPS5487286A (en) * 1977-12-22 1979-07-11 Nippon Steel Corp Detection of microstructure of directive electromagnetic steel plate

Similar Documents

Publication Publication Date Title
Grigorescu et al. Cyclic deformation behavior of austenitic Cr–Ni-steels in the VHCF regime: Part I–Experimental study
US4599563A (en) Barkhausen noise method for analyzing the anisotropic properties of ferromagnetic steel
EP0177626A1 (en) System for online-detecting transformation value and/or flatness of steel or magnetic material
Vysochinskiy et al. Experimental detection of forming limit strains on samples with multiple local necks
US2032989A (en) Rail testing method
Arola et al. Digital image correlation and optical strain measuring in bendability assessment of ultra-high strength structural steels
EP4166251A1 (en) Mechanical property measurement device, mechanical property measurement method, material manufacturing facility, material managing method, and material manufacturing method
JPS61134657A (en) Method for measuring degree of development of texture in steel plate
WO1985000058A1 (en) Method and apparatus for measuring transformation rate
JPH0242402B2 (en)
JP4097079B2 (en) Defect inspection method and apparatus
Krebs et al. Quantitative analysis of banded structures in dual-phase steels
JP4586556B2 (en) Surface layer property measurement method, surface layer defect determination method using the same, and metal strip manufacturing method
CN105928784A (en) Method for measuring rupture toughness of hot-rolled carbon steel under plane stress
JPS6257694B2 (en)
Pathak et al. A novel method to nondestructively measure the shear edge properties for edge cracking evaluation with advanced high strength steels
JPH0727535A (en) Shape measuring method for rolled strip and device thereof
JP4517044B2 (en) Defect inspection method and apparatus
RU2525584C1 (en) Flaw control of slabs for production of hot-rolled strip
RU2808619C1 (en) Device for measurement of mechanical properties, method for measurement of mechanical properties, equipment for manufacturing material, method for control of material and method for material manufacturing
RU2808618C1 (en) Device for measurement of mechanical properties, method for measurement of mechanical properties, equipment for material manufacturing, method for control of material and method of manufacturing
Radwański et al. Study on the influence of sheet straightening process on residual stress distribution, mechanical properties and structure of deep-drawing steel sheets
EP3943928B1 (en) Metal structure evaluator for rolled steel sheets, method for evaluating metal structure of rolled steel sheet, production facility of steel product, method for manufacturing steel product, and method of quality management of steel product
Ma et al. Effects of periodic waveform wrinkles on ultrasonic reflection characteristics in press forming
EP4166252A1 (en) Mechanical property measuring device, mechanical property measuring method, substance manufacturing facility, substance management method, and substance manufacturing method